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1 Scope lintro.scope]

This document specifies requirements for implementations of the C++ programming language. The first such
requirement is that they implement the language, so this document also defines C++. Other requirements
and relaxations of the first requirement appear at various places within this document.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:2011 Programming languages — C' (hereinafter referred to as the C standard). C++ provides
many facilities beyond those provided by C, including additional data types, classes, templates, exceptions,
namespaces, operator overloading, function name overloading, references, free store management operators,
and additional library facilities.

Scope 1
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2 Normative references lintro.refs]

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.

— INTERNET ENGINEERING TASK FORCE (IETF). RFC 6557: Procedures for Maintaining the Time
Zone Database [online]. Edited by E. Lear, P. Eggert. February 2012 [viewed 2018-03-26]. Available at
https://www.ietf.org/rfc/rfc6557.txt

— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation
of dates and times

— ISO/IEC 9899:2011, Programming languages — C
— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)
— ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-Point
arithmetic

— ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology

The library described in Clause 7 of ISO/IEC 9899:2011 is hereinafter called the C standard library.!
The operating system interface described in ISO/TEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

[Note: References to ISO/TEC 10646-1:1993 are used only to support deprecated features (D.13). —end
note]

1) With the qualifications noted in Clause 16 through Clause 30 and in C.6, the C standard library is a subset of the C++
standard library.

Normative references 2
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3 Terms and definitions lintro.defs]

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1:1993, the terms,
definitions, and symbols given in ISO 80000-2:2009, and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/

15.3 defines additional terms that are used only in Clause 15 through Clause 30 and Annex D.

Terms that are used only in a small portion of this document are defined where they are used and italicized
where they are defined.

3.1 [defns.access]
access
(execution-time action) read or modify the value of an object

3.2 [defns.argument]
argument
(function call expression) expression in the comma-separated list bounded by the parentheses (7.6.1.2)

3.3 [defns.argument.macro]
argument

(function-like macro) sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
(14.3)

3.4 [defns.argument.throw]
argument
(throw expression) operand of throw (7.6.17)

3.5 [defns.argument.templ]
argument

(template instantiation) constant-expression, type-id, or id-expression in the comma-separated list bounded
by the angle brackets (12.3)

3.6 [defns.block]
block

wait for some condition (other than for the implementation to execute the execution steps of the thread of
execution) to be satisfied before continuing execution past the blocking operation

3.7 [defns.cond.supp]
conditionally-supported
program construct that an implementation is not required to support

[Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not
support. — end note]

3.8 [defns.diagnostic]
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.9 [defns.dynamic.type]
dynamic type
(glvalue) type of the most derived object (6.6.2) to which the glvalue refers

[Ezample: If a pointer (9.2.3.1) p whose static type is “pointer to class B” is pointing to an object of class D,
derived from B (10.6), the dynamic type of the expression *p is “D”. References (9.2.3.2) are treated similarly.
— end example]

§3.9 3
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3.10 [defns.dynamic.type.prvalue]
dynamic type
(prvalue) static type of the prvalue expression

3.11 [defns.ill.formed]
ill-formed program
program that is not well-formed (3.29)

3.12 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents

3.13 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation

3.14 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

3.15 [defns.multibyte]
multibyte character

sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment

[Note 1 to entry: The extended character set is a superset of the basic character set (5.3). — end note]
3.16 [defns.parameter]
parameter

(function or catch clause) object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

3.17 [defns.parameter.macro]
parameter

(function-like macro) identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

3.18 [defns.parameter.templ]
parameter
(template) member of a template-parameter-list

3.19 [defns.signature]
signature
(function) name, parameter type list (9.2.3.5), enclosing namespace (if any), and trailing requires-clause (9.2)

(if any)

[Note 1 to entry: Signatures are used as a basis for name mangling and linking. — end note]
3.20 [defns.signature.templ]
signature

(function template) name, parameter type list (9.2.3.5), enclosing namespace (if any), return type, template-
head, and trailing requires-clause (9.2) (if any)

3.21 [defns.signature.spec]
signature

(function template specialization) signature of the template of which it is a specialization and its template
arguments (whether explicitly specified or deduced)

§3.21 4
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3.22 [defns.signature.member]
signature

(class member function) name, parameter type list (9.2.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), and trailing requires-clause (9.2) (if any)

3.23 [defns.signature.member.templ]
signature

(class member function template) name, parameter type list (9.2.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), return type (if any), template-head, and trailing requires-clause (9.2)
(if any)

3.24 [defns.signature.member.spec]
signature

(class member function template specialization) signature of the member function template of which it is a
specialization and its template arguments (whether explicitly specified or deduced)

3.25 [defns.static.type]
static type
type of an expression (6.7) resulting from analysis of the program without considering execution semantics

[Note 1 to entry: The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing. — end note|

3.26 [defns.unblock]
unblock
satisfy a condition that one or more blocked threads of execution are waiting for

3.27 [defns.undefined]
undefined behavior
behavior for which this document imposes no requirements

[Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of
behavior or when a program uses an erroneous construct or erroneous data. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environment (with or without the issuance
of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed.
Evaluation of a constant expression never exhibits behavior explicitly specified as undefined in Clause 4
through Clause 14 of this document (7.7). — end note]

3.28 [defns.unspecified]
unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation

[Note 1 to entry: The implementation is not required to document which behavior occurs. The range of
possible behaviors is usually delineated by this document. — end note|

3.29 [defns.well.formed]
well-formed program

C++ program constructed according to the syntax rules, diagnosable semantic rules, and the one-definition
rule (6.2)
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4 General principles lintro]

4.1 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in
“undefined behavior”.

Although this document states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this document, a conforming implementation shall,
within its resource limits, accept and correctly execute® that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this document as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this document places no
requirement on implementations with respect to that program.

[Note: During template argument deduction and substitution, certain constructs that in other contexts
require a diagnostic are treated differently; see 12.9.2. — end note]

For classes and class templates, the library Clauses specify partial definitions. Private members (10.8) are not
specified, but each implementation shall supply them to complete the definitions according to the description
in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (9.7). A C++ translation unit (5.2) obtains access to
these names by including the appropriate standard library header (14.2).

The templates, classes, functions, and objects in the library have external linkage (6.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (5.2).

Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. For a
hosted implementation, this document defines the set of available libraries. A freestanding implementation is
one in which execution may take place without the benefit of an operating system, and has an implementation-
defined set of libraries that includes certain language-support libraries (15.5.1.3).

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this document. Having done so, however, they can
compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.?

4.1.1 Abstract machine [intro.abstract]

The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This
document places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required
to emulate (only) the observable behavior of the abstract machine as explained below.*

2) “Correct execution” can include undefined behavior, depending on the data being processed; see Clause 3 and 6.8.1.

3) This documentation also defines implementation-defined behavior; see 6.8.1.

4) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
document as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable
behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no side effects affecting the observable behavior of the program are produced.
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Certain aspects and operations of the abstract machine are described in this document as implementation-
defined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects.’
Such documentation shall define the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this document as unspecified
(for example, order of evaluation of arguments in a function call (7.6.1.2)). Where possible, this document
defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An
instance of the abstract machine can thus have more than one possible execution for a given program and a
given input.

Certain other operations are described in this document as undefined (for example, the effect of attempting
to modify a const object). [Note: This document imposes no requirements on the behavior of programs that
contain undefined behavior. — end note]

A conforming implementation executing a well-formed program shall produce the same observable behavior as
one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this document places
no requirement on the implementation executing that program with that input (not even with regard to
operations preceding the first undefined operation).

The least requirements on a conforming implementation are:
— Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: More stringent cor-
respondences between abstract and actual semantics may be defined by each implementation. — end
note]

[Note: Operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.’ For example, in the following fragment

int a, b;

VAT V)

a=a+ 32760 + b + 5;
the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);
due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which

overflows produce an exception and in which the range of values representable by an int is [-32768, +327671,
the implementation cannot rewrite this expression as

a = ((a +b) + 32765);
since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);
or

a= (a+ (b+ 32765));
since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above

expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note]

5) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.
6) Overloaded operators are never assumed to be associative or commutative.
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4.2 Structure of this document [intro.structure]

Clause 5 through Clause 14 describe the C++ programming language. That description includes detailed
syntactic specifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic
specifications.

Clause 16 through Clause 30 and Annex D (the library clauses) describe the C++ standard library. That
description includes detailed descriptions of the entities and macros that constitute the library, in a form
described in Clause 15.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this document, each example is introduced by “[Ezample: ” and terminated by “ — end exzample]”.
Each note is introduced by “[Note: ” and terminated by “ — end note]”. Examples and notes may be nested.
4.3 Syntax notation [syntax]

In the syntax notation used in this document, syntactic categories are indicated by italic type, and literal
words and characters in constant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is marked by the phrase “one of”. If the text of an alternative is too long to
fit on a line, the text is continued on subsequent lines indented from the first one. An optional terminal or
non-terminal symbol is indicated by the subscript “,,:”, so

{ expressionp: }
indicates an optional expression enclosed in braces.

Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).
— X-seq is one or more X’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).
— X-list is one or more X's separated by intervening commas (e.g., identifier-list is a sequence of identifiers
separated by commas).
4.4 Acknowledgments [intro.ack]

The C++ programming language as described in this document is based on the language as described in
Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition, Addison-
Wesley Publishing Company, ISBN 0-201-53992-6, copyright ©1991 AT&T). That, in turn, is based on the C
programming language as described in Appendix A of Kernighan and Ritchie: The C' Programming Language
(Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright ©1978 AT&T).

Portions of the library Clauses of this document are based on work by P.J. Plauger, which was published as
The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright ©1995 P.J. Plauger).

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.
ECMAScript® is a registered trademark of Ecma International.

All rights in these originals are reserved.
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5 Lexical conventions [lex]

5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with
all the headers (15.5.1.2) and source files included (14.2) via the preprocessing directive #include, less any
source lines skipped by any of the conditional inclusion (14.1) preprocessing directives, is called a translation
unit. [Note: A C++ program need not all be translated at the same time. — end note]

2 [Note: Previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (6.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program (6.5). — end note|

5.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.”

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of physical
source file characters accepted is implementation-defined. Any source file character not in the basic
source character set (5.3) is replaced by the universal-character-name that designates that character.
An implementation may use any internal encoding, so long as an actual extended character encountered
in the source file, and the same extended character expressed in the source file as a universal-character-
name (e.g., using the \uXXXX notation), are handled equivalently except where this replacement is
reverted (5.4) in a raw string literal.

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical source
line shall be eligible for being part of such a splice. Except for splices reverted in a raw string literal,
if a splice results in a character sequence that matches the syntax of a universal-character-name, the
behavior is undefined. A source file that is not empty and that does not end in a new-line character,
or that ends in a new-line character immediately preceded by a backslash character before any such
splicing takes place, shall be processed as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (5.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial
comment.® Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or replaced
by one space character is unspecified. The process of dividing a source file’s characters into preprocessing
tokens is context-dependent. [Ezample: See the handling of < within a #include preprocessing directive.
— end example]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name
is produced by token concatenation (14.3.3), the behavior is undefined. A #include preprocessing
directive causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each source character set member in a character literal or a string literal, as well as each escape
sequence and universal-character-name in a character literal or a non-raw string literal, is converted to
the corresponding member of the execution character set (5.13.3, 5.13.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.”

7) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

8) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

9) An implementation need not convert all non-corresponding source characters to the same execution character.
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6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token is converted
into a token (5.6). The resulting tokens are syntactically and semantically analyzed and translated
as a translation unit. [Note: The process of analyzing and translating the tokens may occasionally
result in one token being replaced by a sequence of other tokens (12.2). — end note] [Note: Source
files, translation units and translated translation units need not necessarily be stored as files, nor need
there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [Note: Some or all of
these may be supplied from a library. — end note] Each translated translation unit is examined
to produce a list of required instantiations. [Note: This may include instantiations which have been
explicitly requested (12.8.2). — end note] The definitions of the required templates are located. Tt
is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [Note: An implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. — end note] All the required
instantiations are performed to produce instantiation units. [Note: These are similar to translated
translation units, but contain no references to uninstantiated templates and no template definitions.
— end note] The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

5.3 Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control characters representing
horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:'°

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789

SAYIT# ) <>y o7 x4+ -/ 78]~ L=, "7

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:

\u hez-quad
\U hez-quad hex-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN
is that character whose character short name in ISO/TEC 10646 is O000NNNN. If the hexadecimal value for a
universal-character-name corresponds to a surrogate code point (in the range 0xD800-0xDFFF, inclusive),
the program is ill-formed. Additionally, if the hexadecimal value for a universal-character-name outside the
c-char-sequence, s-char-sequence, or r-char-sequence of a character or string literal corresponds to a control
character (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the basic
source character set, the program is ill-formed.!*

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose value is 0. For each basic execution
character set, the values of the members shall be non-negative and distinct from one another. In both the
source and execution basic character sets, the value of each character after 0 in the above list of decimal
digits shall be one greater than the value of the previous. The ezxecution character set and the execution
wide-character set are implementation-defined supersets of the basic execution character set and the basic

10) The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC
10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the source
character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to document
how the basic source characters are represented in source files.

11) A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a universal-
character-name.

§5.3 10



(3.1)

©ISO/IEC N4762

execution wide-character set, respectively. The values of the members of the execution character sets and the
sets of additional members are locale-specific.

5.4 Preprocessing tokens [lex.pptoken)]

preprocessing-token:

header-name

identifier

pp-number

character-literal

user-defined-character-literal

string-literal

user-defined-string-literal

preprocessing-op-or-punc

each non-white-space character that cannot be one of the above
Each preprocessing token that is converted to a token (5.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals
(including user-defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a > or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (5.7), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in Clause
14, in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more
than preprocessing token separation. White space can appear within a preprocessing token only as part of a
header name or between the quotation characters in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character:

— If the next character begins a sequence of characters that could be the prefix and initial double quote
of a raw string literal, such as R", the next preprocessing token shall be a raw string literal. Between
the initial and final double quote characters of the raw string, any transformations performed in phases
1 and 2 (universal-character-names and line splicing) are reverted; this reversion shall apply before any
d-char, r-char, or delimiting parenthesis is identified. The raw string literal is defined as the shortest
sequence of characters that matches the raw-string pattern

encoding-prefitop: R raw-string

— Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >, the <
is treated as a preprocessing token by itself and not as the first character of the alternative token <:.

— Otherwise, the next preprocessing token is the longest sequence of characters that could constitute
a preprocessing token, even if that would cause further lexical analysis to fail, except that a header-
name (5.8) is only formed within a #include directive (14.2).

[Example:

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

— end example]

[Example: The program fragment Oxe+foo is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as three preprocessing tokens Oxe, +, and foo might
produce a valid expression (for example, if foo were a macro defined as 1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a
macro name. — end ezample]

[Ezample: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have integral types,
violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct
expression. — end example]
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5.5 Alternative tokens [lex.digraph)]
1 Alternative token representations are provided for some operators and punctuators.!'?

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.!® The set of alternative tokens is defined in Table 1.

Table 1 — Alternative tokens

’ Alternative Primary \ Alternative Primary \ Alternative Primary ‘

<h { and && and_eq &=
u%> } bitor | or_eq |=
<: [ or [ xor_eq ~=
> ] xor - not !
% # compl ~ not_eq 1=
% ## bitand &
5.6 Tokens [lex.token)]
token:

identifier

keyword

literal

operator

punctuator

L There are five kinds of tokens: identifiers, keywords, literals,'* operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. — end note]

5.7 Comments [lex.comment]

1 The characters /* start a comment, which terminates with the characters */. These comments do not nest.
The characters // start a comment, which terminates immediately before the next new-line character. If
there is a form-feed or a vertical-tab character in such a comment, only white-space characters shall appear
between it and the new-line that terminates the comment; no diagnostic is required. [Note: The comment
characters //, /*, and */ have no special meaning within a // comment and are treated just like other
characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.
— end note]

5.8 Header names [lex.header]
header-name:

< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char
h-char:
any member of the source character set except new-line and >

g-char-sequence:
q-char
q-char-sequence q-char

g-char:
any member of the source character set except new-line and "

12) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not
perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

13) Thus the “stringized” values (14.3.2) of [ and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

14) Literals include strings and character and numeric literals.
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1 [Note: Header name preprocessing tokens only appear within a #include preprocessing directive (see 5.4).
— end note] The sequences in both forms of header-names are mapped in an implementation-defined manner
to headers or to external source file names as specified in 14.2.

2 The appearance of either of the characters > or \ or of either of the character sequences /* or // in a
g-char-sequence or an h-char-sequence is conditionally-supported with implementation-defined semantics, as
is the appearance of the character " in an h-char-sequence.'

5.9 Preprocessing numbers [lex.ppnumber]

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number ° digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

1 Preprocessing number tokens lexically include all integer literal tokens (5.13.2) and all floating literal
tokens (5.13.4).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integer literal token or a floating literal token.

5.10 Identifiers [lex.name]
identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
nondigit: one of
abcdefghijklm
nopgqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWIXYZ _
digit: one of
0123456789
1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in ISO/TEC 10646 falls into one of the ranges specified in
Table 2. The initial element shall not be a universal-character-name designating a character whose encoding
falls into one of the ranges specified in Table 3. Upper- and lower-case letters are different. All characters are
significant.!6

2 The identifiers in Table 4 have a special meaning when appearing in a certain context. When referred to
in the grammar, these identifiers are used explicitly rather than using the identifier grammar production.
Unless otherwise specified, any ambiguity as to whether a given identifier has a special meaning is resolved
to interpret the token as a regular identifier.

3 In addition, some identifiers are reserved for use by C++ implementations and shall not be used otherwise; no
diagnostic is required.

15) Thus, a sequence of characters that resembles an escape sequence might result in an error, be interpreted as the character
corresponding to the escape sequence, or have a completely different meaning, depending on the implementation.

16) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to
encode the \u in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not
place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered
different for all identifiers, including external identifiers.
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Table 2 — Ranges of characters allowed

00AS8 00AA O0OAD OOAF 00B2-00B5
00B7-00BA 0OBC-00BE 00C0-00D6 00D8-00F6 OOF8-00FF
0100-167F 1681-180D 180F-1FFF

200B-200D 202A-202E 203F-2040 2054 2060-206F
2070-218F 2460-24FF 2776-2793 2C00-2DFF 2E80-2FFF
3004-3007 3021-302F 3031-D7FF

F900-FD3D FD40-FDCF FDFO-FE44 FE47-FFFD

10000-1FFFD 20000-2FFFD 30000-3FFFD 40000-4FFFD 50000-5FFFD
60000-6FFFD 70000-7FFFD 80000-8FFFD 90000-9FFFD AO0OOO-AFFFD
BOOOO-BFFFD COOOO-CFFFD DOOOO-DFFFD EOOOO-EFFFD

Table 3 — Ranges of characters disallowed initially (combining characters)

’ 0300-036F 1DCO-1DFF 20DO-20FF FE20-FE2F

Table 4 — Identifiers with special meaning

]audit axiom final override‘

(3.1) — Each identifier that contains a double underscore __ or begins with an underscore followed by an
uppercase letter is reserved to the implementation for any use.

(3.2) — Each identifier that begins with an underscore is reserved to the implementation for use as a name in
the global namespace.

5.11 Keywords [lex.key]

L The identifiers shown in Table 5 are reserved for use as keywords (that is, they are unconditionally treated as
keywords in phase 7) except in an attribute-token (9.11.1):

Table 5 — Keywords

alignas const_cast for public thread_local
alignof continue friend register throw
asm decltype goto reinterpret_cast true
auto default if requires try

bool delete inline return typedef
break do int short typeid
case double long signed typename
catch dynamic_cast mutable sizeof union
char else namespace static unsigned
charl6_t enum new static_assert using
char32_t explicit noexcept static_cast virtual
class export nullptr struct void
concept extern operator switch volatile
const false private template wchar_t
constexpr float protected this while

[Note: The export and register keywords are unused but are reserved for future use. — end note|

2 Furthermore, the alternative representations shown in Table 6 for certain operators and punctuators (5.5)
are reserved and shall not be used otherwise:

Table 6 — Alternative representations

and and_eq bitand Dbitor compl not
not_eq or or_eq  Xor xor_eq
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5.12 Operators and punctuators [lex.operators]

The lexical representation of C++ programs includes a number of preprocessing tokens which are used in the
syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of

{ 1 [ ] # ## ( )

<: > <% %> % hith: H :

new delete 7 B Sk -> =>% ~
! + - * / % - & |
- += -= *= /= Y= = - =
== 1= < > <= >= <=> && Il
<< >> <<= >>= ++ - ,

and or xor not bitand Dbitor compl

and_eq or_eq xor_eq not_eq

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (5.2).

5.13 Literals [lex.literal]
5.13.1 Kinds of literals [lex.literal.kinds]
There are several kinds of literals.'”

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

5.13.2 Integer literals [lex.icon]

integer-literal:
binary-literal integer-suffizop:
octal-literal integer-suffizop:
decimal-literal integer-suffizop:
hezadecimal-literal integer-suffiz,p:

binary-literal:
0b binary-digit
0B binary-digit
binary-literal ? ops binary-digit

octal-literal:
0
octal-literal ’ ,p: octal-digit

decimal-literal:

nonzero-digit

decimal-literal ? ope digit
hexadecimal-literal:

hezxadecimal-prefix heradecimal-digit-sequence
binary-digit: one of

01

octal-digit: one of
01234567

nonzero-digit: one of
123456789

hexadecimal-prefix: one of
0x OX

hezxadecimal-digit-sequence:
hexadecimal-digit
hezadecimal-digit-sequence ’ ope hexadecimal-digit

17) The term “literal” generally designates, in this document, those tokens that are called “constants” in ISO C.
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hezxadecimal-digit: one of
0123456789
abcdef
ABCDEF
integer-suffix:
unsigned-suffic long-suffizop:
unsigned-suffiz long-long-suffizop:
long-suffiz unsigned-suffizop:
long-long-suffiz unsigned-suffizop:
unsigned-suffix: one of
uU

long-suffiz: one of
1L

long-long-suffiz: one of
11 LL

1 An integer literal is a sequence of digits that has no period or exponent part, with optional separating single
quotes that are ignored when determining its value. An integer literal may have a prefix that specifies its base
and a suffix that specifies its type. The lexically first digit of the sequence of digits is the most significant. A
binary integer literal (base two) begins with Ob or OB and counsists of a sequence of binary digits. An octal
integer literal (base eight) begins with the digit 0 and consists of a sequence of octal digits.'® A decimal
integer literal (base ten) begins with a digit other than 0 and consists of a sequence of decimal digits. A
hezxadecimal integer literal (base sixteen) begins with 0x or 0X and consists of a sequence of hexadecimal
digits, which include the decimal digits and the letters a through £ and A through F with decimal values ten
through fifteen. [Ezample: The number twelve can be written 12, 014, 0XC, or 0b1100. The integer literals
1048576, 1°048°576, 0X100000, 0x10?0000, and 0°004°000°000 all have the same value. — end ezample]

2 The type of an integer literal is the first of the corresponding list in Table 7 in which its value can be
represented.

Table 7 — Types of integer literals

] Suffix Decimal literal Binary, octal, or hexadecimal literal |
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorlLl long int long int
long long int unsigned long int
long long int
unsigned long long int
BothuorU unsigned long int unsigned long int
and 1 or L unsigned long long int | unsigned long long int
11 or LL long long int long long int
unsigned long long int
BothuorU | unsigned long long int | unsigned long long int
and 11 or LL

3 If an integer literal cannot be represented by any type in its list and an extended integer type (6.7.1) can
represent its value, it may have that extended integer type. If all of the types in the list for the integer literal
are signed, the extended integer type shall be signed. If all of the types in the list for the integer literal are
unsigned, the extended integer type shall be unsigned. If the list contains both signed and unsigned types,

18) The digits 8 and 9 are not octal digits.
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the extended integer type may be signed or unsigned. A program is ill-formed if one of its translation units
contains an integer literal that cannot be represented by any of the allowed types.

5.13.3 Character literals [lex.ccon]

character-literal:
encoding-prefizop: ° c-char-sequence ’

encoding-prefix: one of
u8 u U L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hezxadecimal-escape-sequence

simple-escape-sequence: one of

A S VAN

\a \b \f \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hezxadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by u8,
u, U, or L, as in u8’w’, u’x’, U’y’, or L’z’, respectively.

A character literal that does not begin with u8, u, U, or L is an ordinary character literal. An ordinary
character literal that contains a single c-char representable in the execution character set has type char,
with value equal to the numerical value of the encoding of the c-char in the execution character set. An
ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharacter
literal, or an ordinary character literal containing a single c-char not representable in the execution character
set, is conditionally-supported, has type int, and has an implementation-defined value.

A character literal that begins with u8, such as u8’w’, is a character literal of type char, known as a UTF-8
character literal. The value of a UTF-8 character literal is equal to its ISO/TEC 10646 code point value,
provided that the code point value is representable with a single UTF-8 code unit (that is, provided it is in
the CO Controls and Basic Latin Unicode block). If the value is not representable with a single UTF-8 code
unit, the program is ill-formed. A UTF-8 character literal containing multiple c-chars is ill-formed.

A character literal that begins with the letter u, such as u’x’, is a character literal of type char16_t. The
value of a char16_t character literal containing a single c-char is equal to its ISO/TEC 10646 code point
value, provided that the code point value is representable with a single 16-bit code unit (that is, provided
it is in the basic multi-lingual plane). If the value is not representable with a single 16-bit code unit, the
program is ill-formed. A chari16_t character literal containing multiple c-chars is ill-formed.

A character literal that begins with the letter U, such as U’y?’, is a character literal of type char32_t. The
value of a char32_t character literal containing a single c-char is equal to its ISO/TEC 10646 code point
value. A char32_t character literal containing multiple c-chars is ill-formed.

A character literal that begins with the letter L, such as L’z’, is a wide-character literal. A wide-character
literal has type wchar_t.'® The value of a wide-character literal containing a single c-char has value equal
to the numerical value of the encoding of the c-char in the execution wide-character set, unless the c-char
has no representation in the execution wide-character set, in which case the value is implementation-defined.

19) They are intended for character sets where a character does not fit into a single byte.
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[Note: The type wchar_t is able to represent all members of the execution wide-character set (see 6.7.1).
— end note] The value of a wide-character literal containing multiple c-chars is implementation-defined.

7 Certain non-graphic characters, the single quote ’, the double quote ", the question mark 7,2° and the
backslash \, can be represented according to Table 8. The double quote " and the question mark ?, can
be represented as themselves or by the escape sequences \" and \7 respectively, but the single quote °’
and the backslash \ shall be represented by the escape sequences \’ and \\ respectively. Escape sequences
in which the character following the backslash is not listed in Table 8 are conditionally-supported, with
implementation-defined semantics. An escape sequence specifies a single character.

Table 8 — Escape sequences

new-line NL(LF) \n
horizontal tab  HT \t
vertical tab VT \v
backspace BS \b
carriage return  CR \r
form feed FF \f
alert BEL \a
backslash \ A\
question mark 7 \?
single quote ’ \’
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

8 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify
the value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by
the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character
literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for
character literals with no prefix) or wchar_t (for character literals prefixed by L). [Note: If the value of a
character literal prefixed by u, u8, or U is outside the range defined for its type, the program is ill-formed.
— end note]

9 A universal-character-name is translated to the encoding, in the appropriate execution character set, of the
character named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: In translation phase 1, a universal-character-name is introduced whenever an actual
extended character is encountered in the source text. Therefore, all extended characters are described in
terms of universal-character-names. However, the actual compiler implementation may use its own native
character set, so long as the same results are obtained. — end note]

5.13.4 Floating literals [lex.fcon]

floating-literal:
decimal-floating-literal
hezxadecimal-floating-literal

decimal-floating-literal:
fractional-constant exponent-partop: floating-suffizop:
digit-sequence exponent-part floating-suffizopt

hexadecimal-floating-literal:
hezadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-suffiz,p:
hezadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-suffizop:

fractional-constant:
digit-sequenceop: . digit-sequence
digit-sequence .

20) Using an escape sequence for a question mark is supported for compatibility with ISO C++ 2014 and ISO C.

§5.13.4 18



©ISO/IEC N4762

hezxadecimal-fractional-constant:
hezxadecimal-digit-sequenceop: . hexadecimal-digit-sequence
hezxadecimal-digit-sequence .

exponent-part:
e signept digit-sequence
E signop: digit-sequence
binary-exponent-part:
P Stgnopt digit-sequence
P signop: digit-sequence
sitgn: one of
+ -
digit-sequence:
digit
digit-sequence ’ op; digit
floating-suffix: one of
f1FL

1 A floating literal consists of an optional prefix specifying a base, an integer part, a radix point, a fraction
part, an e, E, p or P, an optionally signed integer exponent, and an optional type suffix. The integer and
fraction parts both consist of a sequence of decimal (base ten) digits if there is no prefix, or hexadecimal
(base sixteen) digits if the prefix is 0x or 0X. The floating literal is a decimal floating literal in the former
case and a hezadecimal floating literal in the latter case. Optional separating single quotes in a digit-sequence
or hexadecimal-digit-sequence are ignored when determining its value. [Ezample: The floating literals
1.602°176°565e-19 and 1.602176565e-19 have the same value. — end ezample] Either the integer part or
the fraction part (not both) can be omitted. Either the radix point or the letter e or E and the exponent (not
both) can be omitted from a decimal floating literal. The radix point (but not the exponent) can be omitted
from a hexadecimal floating literal. The integer part, the optional radix point, and the optional fraction part,
form the significand of the floating literal. In a decimal floating literal, the exponent, if present, indicates
the power of 10 by which the significand is to be scaled. In a hexadecimal floating literal, the exponent
indicates the power of 2 by which the significand is to be scaled. [Ezample: The floating literals 49.625 and
0xC.68p+2 have the same value. — end ezample] If the scaled value is in the range of representable values
for its type, the result is the scaled value if representable, else the larger or smaller representable value nearest
the scaled value, chosen in an implementation-defined manner. The type of a floating literal is double unless
explicitly specified by a suffix. The suffixes £ and F specify float, the suffixes 1 and L specify long double.
If the scaled value is not in the range of representable values for its type, the program is ill-formed.

5.13.5 String literals [lex.string]

string-literal:
encoding-prefizop: " s-char-sequenceop; "
encoding-prefizop: R raw-string

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequenceop: ( r-char-sequenceopt ) d-char-sequenceop: "
r-char-sequence:

r-char
r-char-sequence r-char

r-char:
any member of the source character set, except a right parenthesis ) followed by
the initial d-char-sequence (which may be empty) followed by a double quote ".

d-char-sequence:
d-char
d-char-sequence d-char
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d-char:
any member of the basic source character set except:
space, the left parenthesis (, the right parenthesis ), the backslash \, and the control characters
representing horizontal tab, vertical tab, form feed, and newline.

A string-literal is a sequence of characters (as defined in 5.13.3) surrounded by double quotes, optionally
prefixed by R, u8, u8R, u, uR, U, UR, L, or LR, as in "...", R"(...)", u8"..." u8R"**x(...)*x" u"..."
uR"*~ (... )x~" U"..." UR"zzz(...)zzz",L"..." or LR"(...)", respectively.

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter. The
terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-sequence.
A d-char-sequence shall consist of at most 16 characters.

[Note: The characters > (* and ’)’ are permitted in a raw-string. Thus, R"delimiter ((alb))delimiter" is
equivalent to "(a|b)". — end note]

[Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string
literal. Assuming no whitespace at the beginning of lines in the following example, the assert will succeed:

const char* p = R"(a\

b

C) n ;

assert(std: :strcmp(p, "a\\\nb\nc") == 0);
— end note]
[Example: The raw string

R"a(
N
a"
)au

is equivalent to "\n)\\\na\"\n". The raw string
R" (X = ll\lly\ll n) n
is equivalent to "x = \"\\\"y\\\"\"". — end ezample]

After translation phase 6, a string-literal that does not begin with an encoding-prefix is an ordinary string
literal, and is initialized with the given characters.

A string-literal that begins with u8, such as u8"asdf", is a UTF-8 string literal.

Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow
string literal has type “array of n const char”, where n is the size of the string as defined below, and has
static storage duration (6.6.4).

For a UTF-8 string literal, each successive element of the object representation (6.7) has the value of the
corresponding code unit of the UTF-8 encoding of the string.

A string-literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal
has type “array of n const char16_t”, where n is the size of the string as defined below; it is initialized
with the given characters. A single c¢-char may produce more than one char16_t character in the form of
surrogate pairs.

A string-literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal
has type “array of n const char32_t”, where n is the size of the string as defined below; it is initialized
with the given characters.

A string-literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type
“array of n const wchar_t”, where n is the size of the string as defined below; it is initialized with the given
characters.

In translation phase 6 (5.2), adjacent string-literals are concatenated. If both string-literals have the same
encoding-prefizr, the resulting concatenated string literal has that encoding-prefix. If one string-literal has
no encoding-prefiz, it is treated as a string-literal of the same encoding-prefir as the other operand. If a
UTF-8 string literal token is adjacent to a wide string literal token, the program is ill-formed. Any other
concatenations are conditionally-supported with implementation-defined behavior. [Note: This concatenation
is an interpretation, not a conversion. Because the interpretation happens in translation phase 6 (after
each character from a string literal has been translated into a value from the appropriate character set), a
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string-literal’s initial rawness has no effect on the interpretation or well-formedness of the concatenation.
—end note] Table 9 has some examples of valid concatenations.

Table 9 — String literal concatenations

Source Means Source Means Source Means
ullaII ullb" ullabll Ullall Ullbll Ullabll Lllall Lllbll L"abll
ullall llbll ullabll Ullall llbll Ullabll Lllall ||bl| Lllabll
llall ullbll ullabll llall Ullbll Ullabll ||a|| Lllbll Lllabll

Characters in concatenated strings are kept distinct.
[Example:
"\XA" npn

contains the two characters >\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’). — end example]

After any necessary concatenation, in translation phase 7 (5.2), >\0’ is appended to every string literal so
that programs that scan a string can find its end.

Escape sequences and universal-character-names in non-raw string literals have the same meaning as in
character literals (5.13.3), except that the single quote ’ is representable either by itself or by the escape
sequence \’, and the double quote " shall be preceded by a \, and except that a universal-character-name in
a char16_t string literal may yield a surrogate pair. In a narrow string literal, a universal-character-name
may map to more than one char element due to multibyte encoding. The size of a char32_t or wide string
literal is the total number of escape sequences, universal-character-names, and other characters, plus one
for the terminating U’\0’ or L’\0’. The size of a char16_t string literal is the total number of escape
sequences, universal-character-names, and other characters, plus one for each character requiring a surrogate
pair, plus one for the terminating u’\0’. [Note: The size of a char16_t string literal is the number of
code units, not the number of characters. — end note] Within char32_t and char16_t string literals, any
universal-character-names shall be within the range 0x0 to 0x10FFFF. The size of a narrow string literal is
the total number of escape sequences and other characters, plus at least one for the multibyte encoding of
each universal-character-name, plus one for the terminating >\0’.

Evaluating a string-literal results in a string literal object with static storage duration, initialized from
the given characters as specified above. Whether all string literals are distinct (that is, are stored in
nonoverlapping objects) and whether successive evaluations of a string-literal yield the same or a different
object is unspecified. [Note: The effect of attempting to modify a string literal is undefined. — end note]

5.13.6 Boolean literals [lex.bool]
boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals are prvalues and have type bool.

5.13.7 Pointer literals [lex.nullptr]
pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It is a prvalue of type std: :nullptr_t. [Note: std::nullptr_t
is a distinct type that is neither a pointer type nor a pointer-to-member type; rather, a prvalue of this type is
a null pointer constant and can be converted to a null pointer value or null member pointer value. See 7.3.11
and 7.3.12. — end note]

5.13.8 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal
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user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffiz
hezxadecimal-literal ud-suffix
binary-literal ud-suffix
user-defined-floating-literal:
fractional-constant exponent-partop: ud-suffiz
digit-sequence exponent-part ud-suffix
hezxadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffiz

user-defined-string-literal:
string-literal ud-suffiz

user-defined-character-literal:
character-literal ud-suffiz

ud-suffiz:
identifier

If a token matches both user-defined-literal and another literal kind, it is treated as the latter. [Ezample:
123_km is a user-defined-literal, but 12LL is an integer-literal. — end example] The syntactic non-terminal
preceding the ud-suffix in a user-defined-literal is taken to be the longest sequence of characters that could
match that non-terminal.

A wuser-defined-literal is treated as a call to a literal operator or literal operator template (11.5.8). To
determine the form of this call for a given user-defined-literal L with ud-suffiz X, the literal-operator-id whose
literal suffix identifier is X is looked up in the context of L using the rules for unqualified name lookup (6.4.1).
Let S be the set of declarations found by this lookup. S shall not be empty.

If L is a user-defined-integer-literal, let m be the literal without its ud-suffiz. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X (nULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (11.5.8) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator "" X("n")
Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator "" X<’ci’, ’c2’, ... ’cx’>(0)

where n is the source character sequence cjca...ci. [Note: The sequence ¢jcs...c;, can only contain characters
from the basic source character set. — end note]

If L is a user-defined-floating-literal, let f be the literal without its ud-suffiz. If S contains a literal operator
with parameter type long double, the literal L is treated as a call of the form

operator "" X (fL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (11.5.8) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator nn X (nf u)
Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator "" X<’ci’, ’c2’, ... ’cx’>(0)

where f is the source character sequence cjca...ci. [Note: The sequence c¢jca...ci can only contain characters
from the basic source character set. — end note]

If L is a user-defined-string-literal, let str be the literal without its ud-suffiz and let len be the number of
code units in str (i.e., its length excluding the terminating null character). If S contains a literal operator
template with a non-type template parameter for which str is a well-formed template-argument, the literal L
is treated as a call of the form

operator "" X<str>()
Otherwise, the literal L is treated as a call of the form

operator "" X(str, len)
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If L is a user-defined-character-literal, let ch be the literal without its ud-suffiz. S shall contain a literal
operator (11.5.8) whose only parameter has the type of ch and the literal L is treated as a call of the form
operator "" X (ch)

[Ezample:
long double operator "" _w(long double);
std::string operator "" _w(const charl6_t*, std::size_t);
unsigned operator "" _w(const charx);
int main() {
1.2_w; // calls operator "" _w(1.2L)
u"one"_w; // calls operator "" _w(u"one", 3)
12_w; // calls operator "" _w("12")
"two" _w; // error: no applicable literal operator
}

— end example]

In translation phase 6 (5.2), adjacent string literals are concatenated and user-defined-string-literals are
considered string literals for that purpose. During concatenation, ud-suffizes are removed and ignored and the
concatenation process occurs as described in 5.13.5. At the end of phase 6, if a string literal is the result of a
concatenation involving at least one user-defined-string-literal, all the participating user-defined-string-literals
shall have the same ud-suffiz and that suffix is applied to the result of the concatenation.

[Exzample:

int main() {
L"A" "B" "C"_x; // OK: same as L"ABC"_x

"P"_x "Q" "R"_y;// error: two different ud-suffizes
}

— end example]
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6 Basics [basic]

[Note: This Clause presents the basic concepts of the C++ language. It explains the difference between an
object and a name and how they relate to the value categories for expressions. It introduces the concepts
of a declaration and a definition and presents C++’s notion of type, scope, linkage, and storage duration.
The mechanisms for starting and terminating a program are discussed. Finally, this Clause presents the
fundamental types of the language and lists the ways of constructing compound types from these. — end
note]

[Note: This Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

An entity is a value, object, reference, structured binding, function, enumerator, type, class member, bit-field,
template, template specialization, namespace, or pack.

A name is a use of an identifier (5.10), operator-function-id (11.5), literal-operator-id (11.5.8), conversion-
function-id (10.3.8.2), or template-id (12.2) that denotes an entity or label (8.6.4, 8.1).

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is
introduced either by a goto statement (8.6.4) or a labeled-statement (8.1).

A wariable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name, if any, denotes the reference or object.

A local entity is a variable with automatic storage duration (6.6.4.3), a structured binding (9.5) whose
corresponding variable is such an entity, or the *this object (7.5.2).

Some names denote types or templates. In general, whenever a name is encountered it is necessary to
determine whether that name denotes one of these entities before continuing to parse the program that
contains it. The process that determines this is called name lookup (6.4).

Two names are the same if
— they are identifiers composed of the same character sequence, or
— they are operator-function-ids formed with the same operator, or
— they are conversion-function-ids formed with the same type, or
— they are template-ids that refer to the same class, function, or variable (12.5), or
— they are the names of literal operators (11.5.8) formed with the same literal suffix identifier.
A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (6.5) of the name specified in each translation unit.
6.1 Declarations and definitions [basic.def]

A declaration (Clause 9) may introduce one or more names into a translation unit or redeclare names
introduced by previous declarations. If so, the declaration specifies the interpretation and attributes of these
names. A declaration may also have effects including:

— a static assertion (Clause 9),
— controlling template instantiation (12.8.2),
— guiding template argument deduction for constructors (12.10),
— use of attributes (Clause 9), and
— nothing (in the case of an empty-declaration).
Each entity declared by a declaration is also defined by that declaration unless:
— it declares a function without specifying the function’s body (9.4),

— it contains the extern specifier (9.1.1) or a linkage-specification®' (9.10) and neither an initializer nor
a function-body,

21) Appearing inside the brace-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.
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— it declares a non-inline static data member in a class definition (10.3, 10.3.9),

— it declares a static data member outside a class definition and the variable was defined within the class
with the constexpr specifier (this usage is deprecated; see D.4),

— it is introduced by an elaborated-type-specifier (10.2),
— it is an opaque-enum-declaration (9.6),
— it is a template-parameter (12.1),

— it is a parameter-declaration (9.2.3.5) in a function declarator that is not the declarator of a function-
definition,

— it is a typedef declaration (9.1.3),

— it is an alias-declaration (9.1.3),

— it is a using-declaration (9.8),

— it is a deduction-guide (12.10),

— it is a static__assert-declaration (Clause 9),

— it is an attribute-declaration (Clause 9),

— it is an empty-declaration (Clause 9),

— it is a using-directive (9.7.3),

— it is an explicit instantiation declaration (12.8.2), or

— it is an explicit specialization (12.8.3) whose declaration is not a definition.

A declaration is said to be a definition of each entity that it defines. [Ezample: All but one of the following
are definitions:

int a; // defines a

extern const int ¢ = 1; // defines c

int f(int x) { return x+a; } // defines £ and defines x

struct S { int a; int b; }; // defines S, S::a, and S::b

struct X { // defines X
int x; // defines non-static data member x
static int y; // declares static data member y
XO: x0) {2 // defines a constructor of X

};

int X::y = 1; // defines X::y

enum { up, down }; // defines up and down

namespace N { int d; 2} // defines N and N: :d

namespace N1 = N; // defines N1

X anX; // defines anX

whereas these are just declarations:

extern int a; // declares a

extern comst int c; // declares ¢

int f(int); // declares £

struct S; // declares S

typedef int Int; // declares Int

extern X anotherX; // declares anotherX

using N::d; // declares d

— end example]

[Note: In some circumstances, C++ implementations implicitly define the default constructor (10.3.4), copy
constructor, move constructor (10.3.5), copy assignment operator, move assignment operator (10.3.6), or
destructor (10.3.7) member functions. — end note] [Ezample: Given

#include <string>
struct C {

std: :string s; // std::string is the standard library class (Clause 20)
};
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int main() {

C a;
Cb=a;
b = a;
}
the implementation will implicitly define functions to make the definition of C equivalent to
struct C {
std::string s;
cO :sO {1}

C(const C& x): s(x.s) { }
C(C&& x): s(static_cast<std::string&&>(x.s)) { }
// : s(std::move(x.s)) { %}
C& operator=(const C& x) { s = x.s; return *this; }
C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }
// { s = std::move(x.s); return *this; }
~cO {12
}
— end example]
[Note: A class name can also be implicitly declared by an elaborated-type-specifier (9.1.7.3). — end note]

In the definition of an object, the type of that object shall not be an incomplete type (6.7), an abstract class
type (10.6.3), or a (possibly multi-dimensional) array thereof.

6.2 One-definition rule [basic.def.odr]

No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type, or template.

An expression is potentially evaluated unless it is an unevaluated operand (7.2) or a subexpression thereof.
The set of potential results of an expression e is defined as follows:

— If e is an id-expression (7.5.4), the set contains only e.

— 1If e is a subscripting operation (7.6.1.1) with an array operand, the set contains the potential results of
that operand.

— If e is a class member access expression (7.6.1.5), the set contains the potential results of the object
expression.

— If e is a pointer-to-member expression (7.6.4) whose second operand is a constant expression, the set
contains the potential results of the object expression.

— If e has the form (el), the set contains the potential results of el.

— If e is a glvalue conditional expression (7.6.16), the set is the union of the sets of potential results of
the second and third operands.

— If e is a comma expression (7.6.19), the set contains the potential results of the right operand.
— Otherwise, the set is empty.

[Note: This set is a (possibly-empty) set of id-expressions, each of which is either e or a subexpression of e.
[Ezample: In the following example, the set of potential results of the initializer of n contains the first S: :x
subexpression, but not the second S: :x subexpression.
struct S { static const int x = 0; };
const int &f(const int &r);
int n=b 7 (1, S::x) // St:x is not odr-used here
: £(8::x); // S::x is odr-used here, so a definition is required

— end example] — end note)
A function is named by an expression as follows:

— A function whose name appears in an expression is named by that expression if it is the unique
lookup result or the selected member of a set of overloaded functions (6.4, 11.3, 11.4), unless it
is a pure virtual function and either its name is not explicitly qualified or the expression forms a
pointer to member (7.6.2.1). [Note: This covers taking the address of functions (7.3.3, 7.6.2.1), calls
to named functions (7.6.1.2), operator overloading (Clause 11), user-defined conversions (10.3.8.2),
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allocation functions for placement new-ezpressions (7.6.2.4), as well as non-default initialization (9.3). A
constructor selected to copy or move an object of class type is considered to be named by an expression
even if the call is actually elided by the implementation (10.9.5). — end note]

(3:2) — An allocation or deallocation function for a class is named by a new-expression as specified in 7.6.2.4
and 10.11.
(3:3) — A deallocation function for a class is named by a delete expression as specified in 7.6.2.5 and 10.11.
4

A variable x whose name appears as a potentially-evaluated expression ex is odr-used by ex unless applying
the lvalue-to-rvalue conversion (7.3.1) to x yields a constant expression (7.7) that does not invoke any
non-trivial functions and, if x is an object, ex is an element of the set of potential results of an expression e,
where either the lvalue-to-rvalue conversion (7.3.1) is applied to e, or e is a discarded-value expression (7.2).

5 A structured binding is odr-used if it appears as a potentially-evaluated expression.

6 xthis is odr-used if this appears as a potentially-evaluated expression (including as the result of the implicit
transformation in the body of a non-static member function (10.3.2)).

7 A virtual member function is odr-used if it is not pure. A function is odr-used if it is named by a potentially-
evaluated expression. A non-placement allocation or deallocation function for a class is odr-used by the
definition of a constructor of that class. A non-placement deallocation function for a class is odr-used by the
definition of the destructor of that class, or by being selected by the lookup at the point of definition of a
virtual destructor (10.3.7).%2

8 An assignment operator function in a class is odr-used by an implicitly-defined copy-assignment or move-
assignment function for another class as specified in 10.3.6. A constructor for a class is odr-used as specified
in 9.3. A destructor for a class is odr-used if it is potentially invoked (10.3.7).

9 A local entity (Clause 6) is odr-usable in a declarative region (6.3.1) if:

(9.1) — the local entity is either not *this, or an enclosing class or non-lambda function parameter scope exists
and, if the innermost such scope is a function parameter scope, it corresponds to a non-static member
function, and

(9:2) — for each intervening declarative region (6.3.1) between the point at which the entity is introduced
and the region (where *this is considered to be introduced within the innermost enclosing class or
non-lambda function definition scope), either:

(9.2.1) — the declarative region is a block scope, or

(9.2.2) — the declarative region is the function parameter scope of a lambda-expression that has a simple-
capture naming the entity or has a capture-default.

If a local entity is odr-used in a declarative region in which it is not odr-usable, the program is ill-formed.

[Ezample:
void f(int n) {
[0 {n=1; 3} // error, n is not odr-usable due to intervening lambda-expression
struct A {
void £f() { n = 2; } // error, n is not odr-usable due to intervening function definition scope
};
void g(int = n); // error, n is not odr-usable due to intervening function parameter scope
[&] { [n]{ return n; }; 3}; // OK

}
— end example]

10 Every program shall contain exactly one definition of every non-inline function or variable that is odr-used in
that program outside of a discarded statement (8.4.1); no diagnostic required. The definition can appear
explicitly in the program, it can be found in the standard or a user-defined library, or (when appropriate) it
is implicitly defined (see 10.3.4, 10.3.7, 10.3.5, and 10.3.6). An inline function or variable shall be defined in
every translation unit in which it is odr-used outside of a discarded statement.

11 Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [Fzample: The following complete translation unit is well-formed, even though it
never defines X:

22) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.
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struct X; // declare X as a struct type
struct X*x x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end example] [Note: The rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

an object of type T is defined (6.1), or

a non-static class data member of type T is declared (10.3), or

T is used as the allocated type or array element type in a new-expression (7.6.2.4), or

an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (7.3.1), or

an expression is converted (either implicitly or explicitly) to type T (7.3, 7.6.1.3, 7.6.1.7, 7.6.1.9, 7.6.3),
or

an expression that is not a null pointer constant, and has type other than cv void*, is converted to the
type pointer to T or reference to T using a standard conversion (7.3), a dynamic_cast (7.6.1.7) or a
static_cast (7.6.1.9), or

a class member access operator is applied to an expression of type T (7.6.1.5), or

the typeid operator (7.6.1.8) or the sizeof operator (7.6.2.3) is applied to an operand of type T, or
a function with a return type or argument type of type T is defined (6.1) or called (7.6.1.2), or

a class with a base class of type T is defined (10.6), or

an lvalue of type T is assigned to (7.6.18), or

the type T is the subject of an alignof expression (7.6.2.6), or

an exception-declaration has type T, reference to T, or pointer to T (13.3).

— end note]

There can be more than one definition of a class type (Clause 10), enumeration type (9.6), inline function with
external linkage (9.1.6), inline variable with external linkage (9.1.6), class template (Clause 12), non-static
function template (12.6.6), concept (12.6.8), static data member of a class template (12.6.1.3), member
function of a class template (12.6.1.1), or template specialization for which some template parameters are not
specified (12.8, 12.6.5) in a program provided that each definition appears in a different translation unit, and
provided the definitions satisfy the following requirements. Given such an entity named D defined in more
than one translation unit, then

§6.2

each definition of D shall consist of the same sequence of tokens; and

in each definition of D, corresponding names, looked up according to 6.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (11.3) and after
matching of partial template specialization (12.9.3), except that a name can refer to

— a non-volatile const object with internal or no linkage if the object
— has the same literal type in all definitions of D,
— is initialized with a constant expression (7.7),
— is not odr-used in any definition of D, and
— has the same value in all definitions of D,
or

— a reference with internal or no linkage initialized with a constant expression such that the reference
refers to the same entity in all definitions of D;

and
in each definition of D, corresponding entities shall have the same language linkage; and

in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function, or
to a function defined within the definition of D; and

in each definition of D, a default argument used by an (implicit or explicit) function call is treated as if
its token sequence were present in the definition of D; that is, the default argument is subject to the
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requirements described in this paragraph (and, if the default argument has subexpressions with default
arguments, this requirement applies recursively)??; and

(12.6) — if D invokes a function with a precondition, or is a function that contains an assertion or has a contract
condition (9.11.4), it is implementation-defined under which conditions all definitions of D shall be
translated using the same build level and violation continuation mode; and

(12.7) — if D is a class with an implicitly-declared constructor (10.3.4), it is as if the constructor was implicitly
defined in every translation unit where it is odr-used, and the implicit definition in every translation
unit shall call the same constructor for a subobject of D. [Example:

// translation unit 1:
struct X {

X(int, int);

X(int, int, int);
};
X::X(int, int = 0) { }
class D {

X x = 0;

D di; // X(int, int) called by D)

// translation unit 2:
struct X {
X(int, int);
X(int, int, int);
};
X::X(int, int = 0, int = 0) { }
class D {
X x =0;

D d2; // X(int, int, int) called by DQ);
// DO ’s implicit definition violates the ODR

— end example]

If D is a template and is defined in more than one translation unit, then the preceding requirements shall
apply both to names from the template’s enclosing scope used in the template definition (12.7.3), and also to
dependent names at the point of instantiation (12.7.2). If the definitions of D satisfy all these requirements,
then the behavior is as if there were a single definition of D. [Note: The entity is still declared in multiple
translation units, and 6.5 still applies to these declarations. In particular, lambda-expressions (7.5.5) appearing
in the type of D may result in the different declarations having distinct types. — end note] If the definitions
of D do not satisfy these requirements, then the behavior is undefined.

6.3 Scope [basic.scope]
6.3.1 Declarative regions and scopes [basic.scope.declarative]

1 Every name is introduced in some portion of program text called a declarative region, which is the largest part
of the program in which that name is valid, that is, in which that name may be used as an unqualified name
to refer to the same entity. In general, each particular name is valid only within some possibly discontiguous
portion of program text called its scope. To determine the scope of a declaration, it is sometimes convenient
to refer to the potential scope of a declaration. The scope of a declaration is the same as its potential scope
unless the potential scope contains another declaration of the same name. In that case, the potential scope of
the declaration in the inner (contained) declarative region is excluded from the scope of the declaration in
the outer (containing) declarative region.

2 [Ezample: In

int j = 24;

int main() {
int 1 = j, j;
j = 42;

}

23) 9.2.3.6 describes how default argument names are looked up.
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the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potential scope of the first j begins immediately after that j and extends to the end
of the program, but its (actual) scope excludes the text between the , and the }. The declarative region of
the second declaration of j (the j immediately before the semicolon) includes all the text between { and },
but its potential scope excludes the declaration of i. The scope of the second declaration of j is the same as
its potential scope. — end example]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (10.8.3), certain uses of the elaborated-type-specifier (9.1.7.3), and
using-directives (9.7.3) alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,
— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name
and the other declarations shall all refer to the same variable, non-static data member, or enumerator,
or all refer to functions and function templates; in this case the class name or enumeration name is
hidden (6.3.10). [Note: A namespace name or a class template name must be unique in its declarative
region (9.7.2, Clause 12). — end note]

[Note: These restrictions apply to the declarative region into which a name is introduced, which is not
necessarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers
(9.1.7.3) and friend declarations (10.8.3) may introduce a (possibly not visible) name into an enclosing
namespace; these restrictions apply to that region. Local extern declarations (6.5) may introduce a name
into the declarative region where the declaration appears and also introduce a (possibly not visible) name
into an enclosing namespace; these restrictions apply to both regions. — end note]

For a given declarative region R and a point P outside R, the set of intervening declarative regions between
P and R comprises all declarative regions that are or enclose R and do not enclose P.

[Note: The name lookup rules are summarized in 6.4. — end note]

6.3.2 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (9.2) and before its initializer
(if any), except as noted below. [Ezample:

unsigned char x = 12;
{ unsigned char x = x; }

Here the second x is initialized with its own (indeterminate) value. — end ezample]

[Note: A name from an outer scope remains visible up to the point of declaration of the name that hides it.
[Example:

const int i = 2;
{ int if[il; }
declares a block-scope array of two integers. — end example] — end note]

The point of declaration for a class or class template first declared by a class-specifier is immediately after
the identifier or simple-template-id (if any) in its class-head (Clause 10). The point of declaration for
an enumeration is immediately after the identifier (if any) in either its enum-specifier (9.6) or its first
opaque-enum-declaration (9.6), whichever comes first. The point of declaration of an alias or alias template
immediately follows the defining-type-id to which the alias refers.

The point of declaration of a using-declarator that does not name a constructor is immediately after the
using-declarator (9.8).

The point of declaration for an enumerator is immediately after its enumerator-definition. [Ezample:

const int x = 12;
{enum {x=x13} }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end ezample]

After the point of declaration of a class member, the member name can be looked up in the scope of its class.
[Note: This is true even if the class is an incomplete class. For example,

struct X {
enum E { z = 16 };
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int b[X::2]; // OK
¥

— end note]
The point of declaration of a class first declared in an elaborated-type-specifier is as follows:
— for a declaration of the form
class-key attribute-specifier-seqop: identifier ;
the identifier is declared to be a class-name in the scope that contains the declaration, otherwise

— for an elaborated-type-specifier of the form
class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the
smallest namespace or block scope that contains the declaration. [Note: These rules also apply within
templates. — end note] [Note: Other forms of elaborated-type-specifier do not declare a new name,
and therefore must refer to an existing type-name. See 6.4.4 and 9.1.7.3. — end note]

The point of declaration for an injected-class-name (Clause 10) is immediately following the opening brace of
the class definition.

The point of declaration for a function-local predefined variable (9.4.1) is immediately before the function-body
of a function definition.

The point of declaration of a structured binding (9.5) is immediately after the identifier-list of the structured
binding declaration.

The point of declaration for the variable or the structured bindings declared in the for-range-declaration of a
range-based for statement (8.5.4) is immediately after the for-range-initializer.

The point of declaration for a template parameter is immediately after its complete template-parameter.
[Exzample:
typedef unsigned char T;
template<class T
=T // lookup finds the typedef name of unsigned char
, T // lookup finds the template parameter
N = 0> struct A { };

— end example]

[Note: Friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (9.7.1.2). Function declarations at block scope
and variable declarations with the extern specifier at block scope refer to declarations that are members of
an enclosing namespace, but they do not introduce new names into that scope. — end note]

[Note: For point of instantiation of a template, see 12.7.4.1. — end note]

6.3.3 Block scope [basic.scope.block]

A name declared in a block (8.3) is local to that block; it has block scope. Its potential scope begins at its
point of declaration (6.3.2) and ends at the end of its block. A variable declared at block scope is a local
variable.

The name declared in an exception-declaration is local to the handler and shall not be redeclared in the
outermost block of the handler.

Names declared in the init-statement, the for-range-declaration, and in the condition of if, while, for, and
switch statements are local to the if, while, for, or switch statement (including the controlled statement),
and shall not be redeclared in a subsequent condition of that statement nor in the outermost block (or, for
the if statement, any of the outermost blocks) of the controlled statement; see 8.4.

6.3.4 Function parameter scope [basic.scope.param]

A function parameter (including one appearing in a lambda-declarator) or function-local predefined variable
(9.4) has function parameter scope. The potential scope of a parameter or function-local predefined variable
begins at its point of declaration. If the nearest enclosing function declarator is not the declarator of a
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function definition, the potential scope ends at the end of that function declarator. Otherwise, if the function
has a function-try-block the potential scope ends at the end of the last associated handler. Otherwise the
potential scope ends at the end of the outermost block of the function definition. A parameter name shall
not be redeclared in the outermost block of the function definition nor in the outermost block of any handler
associated with a function-try-block.

6.3.5 Function scope [basic.funscope]

Labels (8.1) have function scope and may be used anywhere in the function in which they are declared. Only
labels have function scope.

6.3.6 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. Entities declared in a namespace-body
are said to be members of the namespace, and names introduced by these declarations into the declarative
region of the namespace are said to be member names of the namespace. A namespace member name has
namespace scope. Its potential scope includes its namespace from the name’s point of declaration (6.3.2)
onwards; and for each using-directive (9.7.3) that nominates the member’s namespace, the member’s potential
scope includes that portion of the potential scope of the using-directive that follows the member’s point of
declaration. [Example:

namespace N {
int i;
int g(int a) { return a; }
int jO;
void q(Q);
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration to the end of the translation unit

namespace N {
int g(char a) { // overloads N::g(int)

return l+a; // 1 is from unnamed namespace
}
int i; // error: duplicate definition
int jO; // OK: duplicate function declaration
int jO { // OK: definition of N::3()
return g(i); // calls N: :g(int)
}
int qQ; // error: different return type

}
— end example]

A namespace member can also be referred to after the :: scope resolution operator (7.5.4.2) applied to
the name of its namespace or the name of a namespace which nominates the member’s namespace in a
using-directive; see 6.4.3.2.

The outermost declarative region of a translation unit is also a namespace, called the global namespace. A
name declared in the global namespace has global namespace scope (also called global scope). The potential
scope of such a name begins at its point of declaration (6.3.2) and ends at the end of the translation unit
that is its declarative region. A name with global namespace scope is said to be a global name.

6.3.7 Class scope [basic.scope.class]

The potential scope of a name declared in a class consists not only of the declarative region following the
name’s point of declaration, but also of all complete-class contexts (10.3) of that class.

A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in the
completed scope of S. No diagnostic is required for a violation of this rule.

A name declared within a member function hides a declaration of the same name whose scope extends to or
past the end of the member function’s class.

The potential scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if the members are defined lexically outside the class (this
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includes static data member definitions, nested class definitions, and member function definitions, including
the member function body and any portion of the declarator part of such definitions which follows the
declarator-id, including a parameter-declaration-clause and any default arguments (9.2.3.6)).

5 [Ezample:

typedef int c;
enum { i =1 };

class X {
char v[il; // error: i refers to ::i but when reevaluated is X: :1i
int £() { return sizeof(c); } // OK: X::c
char c;
enum { i = 2 };

};

typedef char* T;

struct Y {
T a; // error: T refers to ::T but when reevaluated is Y::T
typedef long T;
T b;

+;

typedef int I;
class D {
typedef I I; // error, even though no reordering involved

}’

— end example]

6 The name of a class member shall only be used as follows:

(6.1)

(6.2)

(6.3)

(6.4)

— in the scope of its class (as described above) or a class derived (10.6) from its class,

— after the . operator applied to an expression of the type of its class (7.6.1.5) or a class derived from its
class,

— after the > operator applied to a pointer to an object of its class (7.6.1.5) or a class derived from its
class,

— after the :: scope resolution operator (7.5.4.2) applied to the name of its class or a class derived from
its class.

6.3.8 Enumeration scope [basic.scope.enum]

The name of a scoped enumerator (9.6) has enumeration scope. Its potential scope begins at its point of
declaration and terminates at the end of the enum-specifier.

6.3.9 Template parameter scope [basic.scope.temp]

The declarative region of the name of a template parameter of a template template-parameter is the smallest
template-parameter-list in which the name was introduced.

The declarative region of the name of a template parameter of a template is the smallest template-declaration
in which the name was introduced. Only template parameter names belong to this declarative region; any
other kind of name introduced by the declaration of a template-declaration is instead introduced into the
same declarative region where it would be introduced as a result of a non-template declaration of the same
name. [Ezample:

namespace N {

template<class T> struct A { }; /) #1
template<class U> void £(U) { } /) #2
struct B {

template<class V> friend int g(struct Cx); // #3
}

}

The declarative regions of T, U and V are the template-declarations on lines #1, #2, and #3, respectively.
But the names A, £, g and C all belong to the same declarative region — namely, the namespace-body of N.
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(g is still considered to belong to this declarative region in spite of its being hidden during qualified and
unqualified name lookup.) — end ezample]

The potential scope of a template parameter name begins at its point of declaration (6.3.2) and ends
at the end of its declarative region. [Note: This implies that a template-parameter can be used in the
declaration of subsequent template-parameters and their default arguments but cannot be used in preceding
template-parameters or their default arguments. For example,

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

This also implies that a template-parameter can be used in the specification of base classes. For example,

template<class T> class X : public Array<T> { /* ... */ };
template<class T> class Y : public T { /* ... %/ };

The use of a template parameter as a base class implies that a class used as a template argument must be
defined and not just declared when the class template is instantiated. — end note]

The declarative region of the name of a template parameter is nested within the immediately-enclosing
declarative region. [Note: As a result, a template-parameter hides any entity with the same name in an
enclosing scope (6.3.10). [Ezample:

typedef int N;
template<N X, typename N, template<N Y> class T> struct A;

Here, X is a non-type template parameter of type int and Y is a non-type template parameter of the same
type as the second template parameter of A. — end example] — end note]

[Note: Because the name of a template parameter cannot be redeclared within its potential scope (12.7.1), a
template parameter’s scope is often its potential scope. However, it is still possible for a template parameter
name to be hidden; see 12.7.1. — end note]

6.3.10 Name hiding [basic.scope.hiding)]

A declaration of a name in a nested declarative region hides a declaration of the same name in an enclosing
declarative region; see 6.3.1 and 6.4.1.

If a class name (10.2) or enumeration name (9.6) and a variable, data member, function, or enumerator are
declared in the same declarative region (in any order) with the same name (excluding declarations made
visible via using-directives (6.4.1)), the class or enumeration name is hidden wherever the variable, data
member, function, or enumerator name is visible.

In a member function definition, the declaration of a name at block scope hides the declaration of a member
of the class with the same name; see 6.3.7. The declaration of a member in a derived class (10.6) hides the
declaration of a member of a base class of the same name; see 10.7.

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see 6.4.3.2.

If a name is in scope and is not hidden it is said to be wvisible.

6.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (9.1.3), namespace-names (9.7),
and class-names (10.2)) wherever the grammar allows such names in the context discussed by a particular
rule. Name lookup associates the use of a name with a set of declarations (6.1) of that name. The declarations
found by name lookup shall either all denote the same entity or shall all denote functions or function
templates; in the latter case, the declarations are said to form a set of overloaded functions (11.1). Overload
resolution (11.3) takes place after name lookup has succeeded. The access rules (10.8) are considered only
once name lookup and function overload resolution (if applicable) have succeeded. Only after name lookup,
function overload resolution (if applicable) and access checking have succeeded are the attributes introduced
by the name’s declaration used further in expression processing (Clause 7).

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

The injected-class-name of a class (Clause 10) is also considered to be a member of that class for the purposes
of name hiding and lookup.
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[Note: 6.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed
in 6.3. — end note]

6.4.1 Unqualified name lookup [basic.lookup.unqual]

In all the cases listed in 6.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing
the using-directive; see 9.7.3. For the purpose of the unqualified name lookup rules described in 6.4.1, the
declarations from the namespace nominated by the using-directive are considered members of that enclosing
namespace.

The lookup for an unqualified name used as the postfiz-ezpression of a function call is described in 6.4.2. [Note:
For purposes of determining (during parsing) whether an expression is a postfiz-expression for a function call,
the usual name lookup rules apply. In some cases a name followed by < is treated as a template-name even
though name lookup did not find a template-name (see 12.2). For example,

int h;

void g();

namespace N {
struct A {};

template <class T> int £(T);
template <class T> int g(T);
template <class T> int h(T);

}

int x = £f<N::A>(N::A0); // OK: lookup of £ finds nothing, £ treated as template name
int y = g<N::A>(N::A0); // OK: lookup of g finds a function, g treated as template name
int z = h<N::A>(N::AQ); // error: h< does not begin a template-id

The rules in 6.4.2 have no effect on the syntactic interpretation of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = f(a); // £ is the typedef, not the friend function: equivalent to int(a)
}
};
}
Because the expression is not a function call, the argument-dependent name lookup (6.4.2) does not apply
and the friend function £ is not found. — end note]

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

A name used in a user-declared namespace outside of the definition of any function or class shall be declared
before its use in that namespace or before its use in a namespace enclosing its namespace.

In the definition of a function that is a member of namespace N, a name used after the function’s declarator-id>*
shall be declared before its use in the block in which it is used or in one of its enclosing blocks (8.3) or shall
be declared before its use in namespace N or, if N is a nested namespace, shall be declared before its use in
one of N’s enclosing namespaces. [Erample:

namespace A {
namespace N {

void £();
}
}
void A::N::f() {
i = 5;

24) This refers to unqualified names that occur, for instance, in a type or default argument in the parameter-declaration-clause
or used in the function body.
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// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N
// 8) scope of namespace A
// 4) global scope, before the definition of A::N::f

}

— end example]

7 A name used in the definition of a class X*° outside of a complete-class context (10.3) of X shall be declared

(7.1)

(7.2)

(7.3)

(7.4)

in one of the following ways:
— before its use in class X or be a member of a base class of X (10.7), or

— if X is a nested class of class Y (10.3.11), before the definition of X in Y, or shall be a member of a base
class of Y (this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing

class),?® or

— if X is a local class (10.5) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the definition of class X
in namespace N or in one of N’s enclosing namespaces.

[Ezample:

namespace M {
class B { };
}

namespace N {
class Y : public M::B {
class X {
int al[il;
};
}
}

// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i

// 2) scope of class N: :Y, before the definition of N::Y::X
// 8) scope of N::Y’s base class M: :B

// 4) scope of namespace N, before the definition of N::Y
// &) global scope, before the definition of N

— end example] [Note: When looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 9.7.1.2. — end
note] [Note: 6.3.7 further describes the restrictions on the use of names in a class definition. 10.3.11 further
describes the restrictions on the use of names in nested class definitions. 10.5 further describes the restrictions
on the use of names in local class definitions. — end note]

For the members of a class X, a name used in a complete-class context (10.3) of X or in the definition of a
class member outside of the definition of X, following the member’s declarator-id>", shall be declared in one
of the following ways:

— before its use in the block in which it is used or in an enclosing block (8.3), or
— shall be a member of class X or be a member of a base class of X (10.7), or

— if X is a nested class of class Y (10.3.11), shall be a member of Y, or shall be a member of a base class of
Y (this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),?® or

25) This refers to unqualified names following the class name; such a name may be used in a base-specifier or in the
member-specification of the class definition.

26) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a
namespace scope enclosing Y’s definition (10.3.11).

27) That is, an unqualified name that occurs, for instance, in a type in the parameter-declaration-clause or in the noexcept-
specifier.

28) This lookup applies whether the member function is defined within the definition of class X or whether the member function
is defined in a namespace scope enclosing X’s definition.
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(84)  — if X is a local class (10.5) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

(8.5) — if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the use of the name, in
namespace N or in one of N’s enclosing namespaces.

[Exzample:

class B { };
namespace M {
namespace N {
class X : public B {

void £();
};
}
}
void M::N::X::f() {
i = 16;
}

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of M::N::X::£, before the use of i
// 2) scope of class M::N::X

// 8) scope of M::N::X’s base class B

// 4) scope of namespace M: :N

// 5) scope of namespace M

// 6) global scope, before the definition of M: :N::X::f

— end example] [Note: 10.3.1 and 10.3.9 further describe the restrictions on the use of names in member
function definitions. 10.3.11 further describes the restrictions on the use of names in the scope of nested
classes. 10.5 further describes the restrictions on the use of names in local class definitions. — end note]

9 Name lookup for a name used in the definition of a friend function (10.8.3) defined inline in the class granting
friendship shall proceed as described for lookup in member function definitions. If the friend function is
not defined in the class granting friendship, name lookup in the friend function definition shall proceed as
described for lookup in namespace member function definitions.

10 In a friend declaration naming a member function, a name used in the function declarator and not part of a
template-argument in the declarator-id is first looked up in the scope of the member function’s class (10.7). If
it is not found, or if the name is part of a template-argument in the declarator-id, the look up is as described
for unqualified names in the definition of the class granting friendship. [Ezample:

struct A {

typedef int AT;

void £1(AT);

void f2(float);

template <class T> void £3();
I
struct B {

typedef char AT;

typedef float BT;

friend void A::f1(AT); // parameter type is A: :AT
friend void A::f2(BT); // parameter type is B: :BT
friend void A::f3<AT>(); // template argument is B: : AT

};
— end example]

11 During the lookup for a name used as a default argument (9.2.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (10.9.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the function
declaration. [Note: 9.2.3.6 further describes the restrictions on the use of names in default arguments. 10.9.2
further describes the restrictions on the use of names in a ctor-initializer. — end note]

12 During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared
enumerators of the enumeration are visible and hide the names of entities declared in the block, class, or
namespace scopes containing the enum-specifier.
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A name used in the definition of a static data member of class X (10.3.9.2) (after the qualified-id of the
static member) is looked up as if the name was used in a member function of X. [Note: 10.3.9.2 further
describes the restrictions on the use of names in the definition of a static data member. — end note]

If a variable member of a namespace is defined outside of the scope of its namespace then any name that
appears in the definition of the member (after the declarator-id) is looked up as if the definition of the
member occurred in its namespace. [Ezample:

namespace N {
int i = 4;
extern int j;

}
int i = 2;

int N::j = i; J/N:ij ==
— end example]
A name used in the handler for a function-try-block (Clause 13) is looked up as if the name was used in
the outermost block of the function definition. In particular, the function parameter names shall not be

redeclared in the exception-declaration nor in the outermost block of a handler for the function-try-block.
Names declared in the outermost block of the function definition are not found when looked up in the scope

of a handler for the function-try-block. [Note: But function parameter names are found. — end note]
[Note: The rules for name lookup in template definitions are described in 12.7. — end note]
6.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When the postfiz-expression in a function call (7.6.1.2) is an unqualified-id, other namespaces not considered
during the usual unqualified lookup (6.4.1) may be searched, and in those namespaces, namespace-scope friend
function or function template declarations (10.8.3) not otherwise visible may be found. These modifications
to the search depend on the types of the arguments (and for template template arguments, the namespace of
the template argument). [Ezample:

namespace N {
struct S { };

void £(S);
}
void g() {

N::S s;

f(s); // OK: calls N: : £

(£)(s); // error: N::f not considered; parentheses prevent argument-dependent lookup
}

— end example]

For each argument type T in the function call, there is a set of zero or more associated namespaces and a
set of zero or more associated classes to be considered. The sets of namespaces and classes are determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type (including unions), its associated classes are: the class itself; the class of which it is
a member, if any; and its direct and indirect base classes. Its associated namespaces are the innermost
enclosing namespaces of its associated classes. Furthermore, if T is a class template specialization,
its associated namespaces and classes also include: the namespaces and classes associated with the
types of the template arguments provided for template type parameters (excluding template template
parameters); the namespaces of which any template template arguments are members; and the classes
of which any member templates used as template template arguments are members. [Note: Non-type
template arguments do not contribute to the set of associated namespaces. — end note]

— If T is an enumeration type, its associated namespace is the innermost enclosing namespace of its
declaration. If it is a class member, its associated class is the member’s class; else it has no associated
class.
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— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those
associated with the function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

If an associated namespace is an inline namespace (9.7.1), its enclosing namespace is also included in the set.
If an associated namespace directly contains inline namespaces, those inline namespaces are also included in
the set. In addition, if the argument is the name or address of a set of overloaded functions and/or function
templates, its associated classes and namespaces are the union of those associated with each of the members
of the set, i.e., the classes and namespaces associated with its parameter types and return type. Additionally,
if the aforementioned set of overloaded functions is named with a template-id, its associated classes and
namespaces also include those of its type template-arguments and its template template-arguments.

Let X be the lookup set produced by unqualified lookup (6.4.1) and let Y be the lookup set produced by
argument dependent lookup (defined as follows). If X contains

— a declaration of a class member, or
— a block-scope function declaration that is not a using-declaration, or
— a declaration that is neither a function nor a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the argument
types as described below. The set of declarations found by the lookup of the name is the union of X and Y.
[Note: The namespaces and classes associated with the argument types can include namespaces and classes
already considered by the ordinary unqualified lookup. — end note] [Ezample:

namespace NS {
class T { };
void £(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {

f (parm) ; // OK: calls NS: :f
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)

}
— end example]

When considering an associated namespace, the lookup is the same as the lookup performed when the
associated namespace is used as a qualifier (6.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates (10.8.3) declared in associated
classes are visible within their respective namespaces even if they are not visible during an ordinary
lookup (9.7.1.2).

— All names except those of (possibly overloaded) functions and function templates are ignored.

6.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class or namespace member or enumerator can be referred to after the :: scope resolution
operator (7.5.4.2) applied to a nested-name-specifier that denotes its class, namespace, or enumeration. If a
: 1 scope resolution operator in a nested-name-specifier is not preceded by a decltype-specifier, lookup of the
name preceding that :: considers only namespaces, types, and templates whose specializations are types. If
the name found does not designate a namespace or a class, enumeration, or dependent type, the program is
ill-formed. [Ezample:

class A {
public:
static int n;
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};
int main() {

int A;

A::n = 42; // OK

A b; // ill-formed: A does not name a type
}

— end example]

[Note: Multiply qualified names, such as N1::N2::N3::n, can be used to refer to members of nested
classes (10.3.11) or members of nested namespaces. — end note]

In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared
are looked up in the defining namespace scope; names following the qualified-id are looked up in the scope of
the member’s class or namespace. [Ezxample:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
};
X C::arr[numberl; //ill-formed:
// equivalent to ::X C::arr[C: :number];
// and not to C::X C::arr[C: :number] ;

— end example]

A name prefixed by the unary scope operator :: (7.5.4.2) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declaration
is visible in global scope because of a using-directive (6.4.3.2). The use of :: allows a global name to be
referred to even if its identifier has been hidden (6.3.10).

A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumerator
of that enumeration.

If a pseudo-destructor-name (7.6.1.4) contains a nested-name-specifier, the type-names are looked up as types
in the scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

nested-name-specifierop; class-name :: ~ class-name
the second class-name is looked up in the same scope as the first. [Example:

struct C {
typedef int I;
};
typedef int I1, I2;
extern intx* p;
extern intx* q;

p—>C::I::~I0); // T is looked up in the scope of C
q->I1::~120); // 12 is looked up in the scope of the postfiz-expression
struct A {
~A0);
};

typedef A AB;
int main() {

AB* p;
p->AB::~AB(); // explicitly calls the destructor for A
}
— end example] [Note: 6.4.5 describes how name lookup proceeds after the . and -> operators. — end note]
6.4.3.1 Class members [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (10.7), except for the cases listed below. The name shall
represent one or more members of that class or of one of its base classes (10.6). [Note: A class member can
be referred to using a qualified-id at any point in its potential scope (6.3.7). — end note] The exceptions to
the name lookup rule above are the following:
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(1.1)  — the lookup for a destructor is as specified in 6.4.3;

(1.2) — a conversion-type-id of a conversion-function-id is looked up in the same manner as a conversion-type-id
in a class member access (see 6.4.5);

(1.3) — the names in a template-argument of a template-id are looked up in the context in which the entire
postfiz-expression occurs.

(14)  — the lookup for a name specified in a using-declaration (9.8) also finds class or enumeration names
hidden within the same scope (6.3.10).

2 In a lookup in which function names are not ignored?® and the nested-name-specifier nominates a class C:

(2.1) — if the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name of
C (Clause 10), or

(2.2) — in a using-declarator of a using-declaration (9.8) that is a member-declaration, if the name specified
after the nested-name-specifier is the same as the identifier or the simple-template-id’s template-name
in the last component of the nested-name-specifier,

the name is instead considered to name the constructor of class C. [Note: For example, the constructor is not
an acceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place of
the injected-class-name. — end note] Such a constructor name shall be used only in the declarator-id of a
declaration that names a constructor or in a using-declaration. [Ezample:

struct A { AQ; };
struct B: public A { BO; };

A::AQ {3}

B::BO { }

B::A ba; // object of type A

A::A a; // error, A::A is not a type name
struct A::A a2; // object of type A

— end example]

3 A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the :: operator.

6.4.3.2 Namespace members [namespace.qual]

L If the nested-name-specifier of a qualified-id nominates a namespace (including the case where the nested-
name-specifier is : :, i.e., nominating the global namespace), the name specified after the nested-name-specifier
is looked up in the scope of the namespace. The names in a template-argument of a template-id are looked
up in the context in which the entire postfiz-expression occurs.

2 For a namespace X and name m, the namespace-qualified lookup set S(X,m) is defined as follows: Let
S’(X,m) be the set of all declarations of m in X and the inline namespace set of X (9.7.1). If S'(X,m) is not
empty, S(X,m) is S'(X,m); otherwise, S(X,m) is the union of S(NN;, m) for all namespaces N; nominated
by wusing-directives in X and its inline namespace set.

3 Given X::m (where X is a user-declared namespace), or given ::m (where X is the global namespace), if
S(X,m) is the empty set, the program is ill-formed. Otherwise, if S(X,m) has exactly one member, or if
the context of the reference is a using-declaration (9.8), S(X, m) is the required set of declarations of m.
Otherwise if the use of m is not one that allows a unique declaration to be chosen from S(X,m), the program
is ill-formed. [Ezample:

int x;

namespace Y {
void f(float);
void h(int);

}

namespace Z {
void h(double);
}

29) Lookups in which function names are ignored include names appearing in a nested-name-specifier, an elaborated-type-specifier,
or a base-specifier.
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namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;

void g();
}
void h()
{
AB::g(); // & is declared directly in AB, therefore S is {AB::g()} and AB::g() is chosen
AB::f(1); // £ is not declared directly in AB so the rules are applied recursively to A and B;
// mamespace Y is not searched and Y: :f(float) is not considered;
// 8 is {A::£(int),B::f(char) } and overload resolution chooses A::f (int)
AB::f(’c?); // as above but resolution chooses B: : £ (char)
AB: :x++; // x is not declared directly in AB, and is not declared in A or B, so the rules
// are applied recursively to Y and Z, S is {} so the program is ill-formed
AB: :i++; // i is not declared directly in AB so the rules are applied recursively to A and B,
// S s {A::1,B::1} so the use is ambiguous and the program is ill-formed
AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules
// are applied recursively to Y and Z, S is {Y::h(int),Z: :h(double)} and
// overload resolution chooses Z::h(double)
}

— end example]

4 [Note: The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
[Ezample:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}
void £()

{
BC::a++; // OK: S is {A::a,A::a}
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}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}
void g()
{
BD::a++; // OK: S is {A::a,A::a}
}
— end example] — end note|

5 [Ezample: Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void £()

{
A::at+; // OK: a declared directly in A, S is {A::a}
B::at+; // OK: both A and B searched (once), S is {A::a}
A: b+ // OK: both A and B searched (once), S is {B::b}
B::b++; // OK: b declared directly in B, S is {B::b}

}

— end example]

6 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same variable, the same enumerator or 