
P1031R0: Low level �le i/o library

Document #: P1031R0
Date: 2018-05-06
Project: Programming Language C++

Library Evolution Working Group
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

A proposal for a low level �le i/o library very thinly wrapping kernel syscalls into a portable standard
library API, preserving all of the time and space complexities of the host platform.

See [P1026] A call for a Data Persistence (iostream v2) study group for some of the interesting
things one can build with this library as a foundation.

A reference implementation of the proposed library with reference API documentation can be found
at https://ned14.github.io/afio/. It works well on FreeBSD, MacOS, Linux and Microsoft
Windows on ARM, AArch64, x64 and x86.

Contents

1 Introduction 2

1.1 Latency to storage has become more important than it was 2
1.2 The immature standard library support for �le i/o leads to a lot of ine�cient and

buggy code and/or reinvention of the wheel . 5

2 Examples of use 6

2.1 Read an entire �le into a vector assuming a single valid extent: 7
2.2 Write multiple gather bu�ers to a �le: . 7
2.3 Map a �le into memory and search it for a string (1): 8
2.4 Map a �le into memory and search it for a string (2): 8
2.5 Kernel memory allocation and control (1): . 9
2.6 Kernel memory allocation and control (1): . 11
2.7 Sparsely stored arrays: . 11
2.8 Resumable i/o with Coroutines: . 12
2.9 Read all valid extents of a �le using asynchronous �le i/o: 12

3 Impact on the Standard 14

4 Proposed Design 15

4.1 Handles to kernel resources . 15
4.1.1 Class hierarchy inheriting from handle . 18
4.1.2 Miscellaneous and utility classes and functions 22

1

mailto:s_sourceforge@nedprod.com

4.2 Generic �lesystem algorithms and template classes 23
4.2.1 Introduction . 23
4.2.2 Filesystem template library (so far) � the `FTL' 24
4.2.3 Planned generic �lesystem template algorithms yet to be reference implemented 27
4.2.4 Functionality whose design is blocked on undecided features at WG21 27

4.3 Filesystem functionality deliberately omitted from this proposal 28

5 Design decisions, guidelines and rationale 28

5.1 Race free �lesystem . 28
5.2 No (direct) support for kernel threads . 30
5.3 Asynchronous �le i/o is much less important than synchronous �le i/o 31
5.4 Pass through the raciness at the low level, abstract it away at the high level 32

6 Technical speci�cations 33

7 Frequently asked questions 33

7.1 Why bother with a low level �le i/o library when calling the kernel syscalls directly
is perfectly �ne? . 33

7.2 The �lesystem has a reputation for being riddled with unpredictable semantics and
behaviours. How can it be possible to usefully standardise anything in such a world? 34

7.3 Why do you consider race free �lesystem so important as to impact performance for
all code by default, when nobody else is making such claims? 36

8 Acknowledgements 37

9 References 37

1 Introduction

Why does the C++ standard need a low level �le i/o library, above and beyond needing one to
build out an iostreams v2?

1.1 Latency to storage has become more important than it was

For a long time now, kernels have kept a cache of recently accessed �lesystem data in order to
improve read latencies, but also to bu�er writes in order to reorder those writes into strides suitable
for e�ciently making use of a spinning hard drive's actuators. A randomly placed 4Kb i/o to
main memory takes about 5 microseconds, whereas the same i/o to a hard drive takes up to 26,000
microseconds 99% of the time. One could a�ord a few extra memory copies of an i/o without
noticing a di�erence. Thus the standard library's iostreams does not worry too much about the
multiple memory copies (in the whole system between the C++ code and the hard drive) that all
the major STL implementations make per i/o1.

1All the major STL implementations implement std::ofstream::write() via the C function fwrite(). Because
of bu�ering, fwrite() often calls write() multiple times. Each is an unavoidable memory copy into the kernel page

2

Figure 1: Latency di�erential between reads performed using std::ifstream and the proposed Low
level �le i/o library as the size of the i/o increases. Test was conducted on a warm cache 100Mb
�le with random o�set i/o, and represents the average of 100,000 iterations. Note the invariance to
block size of the low level �le i/o library's file_handle benchmark up to half the CPU's L1 cache
size, demonstrating that no unnecessary memory copies have occurred. Note that the low level �le
i/o library's mapped_file_handle benchmark demonstrates no copying of memory at all.

1

10

100

1000

10000

100000

1000000
1

 2 4

8

16

32

64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

N
an

o
se

co
n

d
s

Block size

std::ifstream (VS2017) afio::file_handle afio::mapped_file_handle

Block size 1 4 16 64 256 1024 4096 16384 65536

std::ifstream (VS2017) 3301 2986 3017 2994 3020 7254 7389 20282 71538
afio::file_handle 1915 1766 1869 1873 1855 1750 1812 2633 4576

afio::mapped_file_handle 99 99 96 108 101 105 108 107 111

The rise of SSD storage has changed things. Now a SATA connected �ash drive takes maybe 800
microseconds for that 4Kb i/o @ 99%2, and random access is as fast as sequential access, so that
is no longer an amortised latency �gure hiding large individual i/o latency variance. Furthermore,
�ash based SSDs are highly concurrent, they can service between 16 and 32 concurrent random 4Kb
i/o's (queue depth, QD) in almost the same time as a single random 4Kb i/o. These two di�erences

cache, plus kernel transition. Eventually the dirty page in the kernel page cache will reach its age deadline, and be
�ushed to storage.

2The 99% means that 99% of i/o latencies will be below the given �gure. All latency numbers in this section
come from empirical testing by me on hardware devices. They di�er signi�cantly from manufacturer �gures. Device
manufacturers tend to quote the latency of the device without intervening �lesystem or user space transition. All
latency values quoted in this paper include intervening software systems, and are what a user space process can
realistically expect to achieve.

3

profoundly transform how to write algorithms which work well on a �lesystem, but it also has an
important consequence for C++:

800 microseconds

32
= 25 microseconds per 4Kb i/o amortised @ 99%.

On a SATA connected �ash SSD with QD32 i/o, every unnecessary memory copy increases i/o cost
by a minimum of 20%!

Achieving sustained QD32 i/o is rare however � one needs to be performing large sequential blocks
of i/o of at least 32 x 4Kb = 128Kb to have any chance of sustaining QD32, and for large sequential
block i/o, latency is usually unimportant for most users3.

However, just recently NVMe rather than SATA connected �ash drives have become available to the
mass market. These perform that random 4Kb i/o in just 300 microseconds @ 99%. At QD4, which
is much more common than QD32, every unnecessary memory copy in the whole system increases

3But not all. A past consulting client of mine had a problem whereby their application was applying real-time
�lters to uncompressed 8k video at a high frame rate. The CPU demands were not the problem, it was the storage
subsystem: to get smooth video added an unacceptable amount of latency to the real-time video stream for their
customers. This is exactly the sort of problem domain C++ ought to excel at.

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

1980 1985 1990 1995 2000 2005 2010 2015 2020

LO
G

(b
yt

es
 p

er
 r

ea
l U

S$
)

Magnetic vs Flash vs XPoint Storage Capacity per
Inflation-adjusted Dollar 1980-2018

Magnetic Hard Drives Flash Drives XPoint Drives

Model Magnetic Hard Drives Model Flash Drives Model XPoint Drives

R2 = 0.997229

R2 = 0.998677

Figure 2: Magnetic vs Flash vs XPoint storage capacity per in�ation-adjusted dollar 1980-2018.

4

i/o cost by 6%. If you are using <iostream> on a recent MacBook Pro (which has a high end
NVMe �ash SSD), perhaps 10% of your i/o cost is due to your choosing <iostream>, and especially
with larger block sizes it really begins to hurt, as you can see in Figure 1. In my opinion, that is
unacceptable in the C++ standard going forward.

And the march of technological progress will make things even worse soon. Intel's NVMe Optane
drives using X-Point non-volatile memory will do that 4Kb i/o in just 35 microseconds @ 99% and 13
microseconds @ 50%, and at QD1. Every unnecessary memory copy in the whole system increases
i/o cost by 14-38%. Next year NV-DIMMs will be standardised, at which point your non-volatile
storage will do a 4Kb i/o in 8 microseconds. Every unnecessary memory copy is now adding 60%
to i/o costs. See Figure 2 for a logistic regression plot of the evolution of storage bytes per in�ation
adjusted dollar for spinning rust, �ash and X-Point technology storage.

If C++ is to achieve the direction laid out in [P0939] Direction for ISO C++, in my opinion it
needs a data persistence implementation which enables zero memory copies throughout the whole
system. One will soon no longer be able to get away with anything less.

1.2 The immature standard library support for �le i/o leads to a lot of ine�cient
and buggy code and/or reinvention of the wheel

Memory mapped �les, especially on 64 bit architectures, are usually a good reasonable default
choice for most i/o to non-networked drives. They usually have superb sequential and random i/o
performance, and usually cause no more than one memory copy in the whole system. Yet using them
from standard C++ is not as trivial as one would imagine. Even with the Boost C++ Libraries to
hand, there are two main mechanisms for mapping �les into memory, and the plethora of questions
about various corner case use issues on Stack Over�ow would suggest that neither is entirely obvious
to people. They are certainly not `�re and forget', like a std::ofstream would be.

One area where a lot of people get stuck is how to e�ciently append to a memory mapped �le. Most
developers � probably even most of the WG21 experts reading this paper right now � would suggest
making the �le much bigger and coordinate between your processes at what o�set one `appends'
new data. They would suggest this because there is a widespread, and completely inaccurate, belief
that memory maps are �xed size, and you must tear them down and recreate bigger ones in order
to expand a map.

In fact, all the major platforms let you reserve address space for future expansion of a memory map.
Indeed, often they will auto-expand your memory map into that reservation if the maximum extent
of the backing �le is increased, or they provide a super fast syscall for poking the kernel to expand
maps of that �le across the system. So, in fact, appending to memory mapped �les without costly
teardown and recreation of maps is fully supported by kernels, yet judging from Stack Over�ow
posts, very few realise this4.

A standard library supplied implementation of a `�re and forget' memory mapped �le primitive
object would help address these sorts of problem. The proposed low level �le i/o library proposes
a suite of polymorphic objects which can perform i/o. Code written to use them need not consider
their implementation, thus allowing initiating code to choose whichever implementation is most

4https://stackoverflow.com/questions/4460507/appending-to-a-memory-mapped-file

5

https://stackoverflow.com/questions/4460507/appending-to-a-memory-mapped-file

suitable. Virtual function overrides then choose an optimised implementation, and the code need
not worry itself about implementation details. Appends, for example, `just work' with optimal
performance for the chosen implementation.

2 Examples of use

A surprising number of people wanted examples of usage before any further discussion of the pro-
posed library design. I therefore supply many such use examples, and my thanks to std-proposals
for suggesting which.

I make the following caveats in the following use examples:

• These use examples are for the reference library written in C++ 14, not the proposed approx-
imate C++ 23 library which assumes that something approximating [P0709] Zero-overhead
deterministic exceptions have been added to the language. Speci�cally, this means that the
.value() at the end of each call would not be there any more, and because std::byte is now
in the language, we wouldn't have to keep reinterpret casting between byte and char.

• This is a very low level library o�ering absolute maximum performance, with minimum guar-
antees of e�ects, semantics, or behaviours. It is correspondingly less convenient to use. Specif-
ically, no single bu�er overloads, no integration with STL containers, no serialisation/deseri-
alisation, no dynamic memory allocation, no (traditional) exception throws, all as per [P1027]
SG14 Design guidelines for future low level libraries. All these convenience APIs, and stronger
behaviour guarantees, would be in later standardised layers built on top of this bottom most
layer. Please see [P1026] A call for a Data Persistence (iostream v2) study group for a broad
overview of the vision of which this proposed library is just a foundation.

• There is also no �le length. Files do not have length. They have a maximum extent property.
This property refers to the maximum possible extent o�set which you will encounter when
reading the valid extents which constitute the �le's storage. It is extremely important to
understand this di�erence: �les, especially ones built using the planned generic �lesystem
algorithms template library, may regularly have a maximum extent in the Petabytes range,
but store only a few Kb of extents. Algorithms and programs which treat the maximum extent
as a length will perform extremely poorly in this situation.

This is why we truncate �les, we do not resize �les, because we are truncating those extents
exceeding the new maximum extent. We can also truncate to a later maximum extent. I
appreciate that many �nd the idea of `truncating to extend' confusing, but remember that
increasing the maximum extent of a �le doesn't actually do anything. It simply adjusts a
number in the metadata in the inode of the �le, and any related kernel resources. It does
nothing to the actual �le storage. This is why .extend() is a poor choice of name, because
nothing is extended.

I agree that .truncate() is not ideal either, but I feel better to focus on the data which could
be lost when naming. Better suggestions are, of course, welcome. But do bear in mind that
there is a single kernel syscall for changing the maximum extent value, and there is no race
free concept of `set to X if X > Y' etc.

6

2.1 Read an entire �le into a vector assuming a single valid extent:

For brevity, the initial examples are lazy code which will su�er from pathologically poor performance
on �les with a large maximum extent. Later examples account for allocated extents.

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Open the file for read
4 afio::file_handle fh = afio::file(//
5 {}, // path_handle to base directory
6 "foo" // path_view to path fragment relative to base directory
7 // default mode is read only
8 // default creation is open existing
9 // default caching is all

10 // default flags is none
11).value(); // If failed, throw a filesystem_error exception
12

13 // Make a vector sized the current maximum extent of the file
14 std::vector<afio::byte> buffer(fh.maximum_extent().value());
15

16 // Synchronous scatter read from file
17 afio::file_handle::buffers_type filled = afio::read(
18 fh, // handle to read from
19 0, // offset
20 {{ buffer.data(), buffer.size() }} // Single scatter buffer of the vector
21 // default deadline is infinite
22).value(); // If failed, throw a filesystem_error exception
23

24 // In case of racy truncation of file by third party to new length, adjust buffer to
25 // bytes actually read
26 buffer.resize(filled[0].len);

2.2 Write multiple gather bu�ers to a �le:

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Open the file for write, creating if needed, don’t cache reads nor writes
4 afio::file_handle fh = afio::file(//
5 {}, // path_handle to base directory
6 "hello", // path_view to path fragment relative to base directory
7 afio::file_handle::mode::write, // write access please
8 afio::file_handle::creation::if_needed, // create new file if needed
9 afio::file_handle::caching::only_metadata // cache neither reads nor writes of data on this handle

10 // default flags is none
11).value(); // If failed, throw a filesystem_error exception
12

13 // Empty file. Note this is racy, use creation::truncate to be non-racy.
14 fh.truncate(0).value();
15

16 // Perform gather write
17 const char a[] = "hel";
18 const char b[] = "l";
19 const char c[] = "lo w";

7

20 const char d[] = "orld";
21

22 fh.write(0, // offset
23 { // gather list, buffers use std::byte
24 { reinterpret_cast<const afio::byte *>(a), sizeof(a) - 1 },
25 { reinterpret_cast<const afio::byte *>(b), sizeof(b) - 1 },
26 { reinterpret_cast<const afio::byte *>(c), sizeof(c) - 1 },
27 { reinterpret_cast<const afio::byte *>(d), sizeof(d) - 1 },
28 }
29 // default deadline is infinite
30).value(); // If failed, throw a filesystem_error exception
31

32 // Explicitly close the file rather than letting the destructor do it
33 fh.close().value();

2.3 Map a �le into memory and search it for a string (1):

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Open the mapped file for read
4 afio::mapped_file_handle mh = afio::mapped_file(//
5 {}, // path_handle to base directory
6 "foo" // path_view to path fragment relative to base directory
7 // default mode is read only
8 // default creation is open existing
9 // default caching is all

10 // default flags is none
11).value(); // If failed, throw a filesystem_error exception
12

13 auto length = mh.maximum_extent().value();
14

15 // Find my text
16 for (char *p = reinterpret_cast<char *>(mh.address());
17 (p = (char *)memchr(p, ’h’, reinterpret_cast<char *>(mh.address()) + length - p));
18 p++)
19 {
20 if (strcmp(p, "hello"))
21 {
22 std::cout << "Happy days!" << std::endl;
23 }
24 }

2.4 Map a �le into memory and search it for a string (2):

The preceding example used the wrap of other facilities into a convenience type mapped_file_handle.
For more control and customisation, it can also be done by hand:

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Open the file for read
4 afio::file_handle rfh = afio::file(//

8

5 {}, // path_handle to base directory
6 "foo" // path_view to path fragment relative to base directory
7 // default mode is read only
8 // default creation is open existing
9 // default caching is all

10 // default flags is none
11).value(); // If failed, throw a filesystem_error exception
12

13 // Open the same file for atomic append
14 afio::file_handle afh = afio::file(//
15 {}, // path_handle to base directory
16 "foo", // path_view to path fragment relative to base directory
17 afio::file_handle::mode::append // open for atomic append
18 // default creation is open existing
19 // default caching is all
20 // default flags is none
21).value(); // If failed, throw a filesystem_error exception
22

23 // Create a section for the file of exactly the current maximum extent of the file
24 afio::section_handle sh = afio::section(rfh).value();
25

26 // Map the end of the file into memory with a 1Mb address reservation
27 afio::map_handle mh = afio::map(sh, 1024 * 1024, sh.length().value() & ~4095).value();
28

29 // Append stuff to append only handle
30 afio::write(afh,
31 0, // offset is ignored for atomic append only

handles
32 {{ reinterpret_cast<const afio::byte *>("hello"), 6 }} // single gather buffer
33 // default deadline is infinite
34).value();
35

36 // Poke map to update itself into its reservation if necessary to match its backing
37 // file, bringing the just appended text into the map. A no-op on many platforms.
38 size_t length = mh.update_map().value();
39

40 // Find my appended text
41 for (char *p = reinterpret_cast<char *>(mh.address());
42 (p = (char *) memchr(p, ’h’, reinterpret_cast<char *>(mh.address()) + length - p));
43 p++)
44 {
45 if (strcmp(p, "hello"))
46 {
47 std::cout << "Happy days!" << std::endl;
48 }
49 }

2.5 Kernel memory allocation and control (1):

Something not initially obvious is that this library standardises kernel virtual memory support.
This is `for free' as we implement all of the support and control for memory mapped �les, and the
exact same kernel APIs work with swap �le mapped memory (e.g. mmap()).

9

Standardising this support adds lots of interesting opportunities for how STL containers and algo-
rithms which work on reasonably large datasets are implemented.

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Call whatever the equivalent to mmap() is on this platform to fetch
4 // new private memory backed by the swap file. This will be the system
5 // all bits zero page mapped into each page of the allocation. Only on
6 // first write will a page fault allocate a real zeroed page for that
7 // page.
8 afio::map_handle mh = afio::map(4096).value();
9

10 // Fill the newly allocated memory with ’a’ C style. For each first write
11 // to a page, it will be page faulted into a private page by the kernel.
12 afio::byte *p = mh.address();
13 size_t len = mh.length();
14 memset(p, ’a’, len);
15

16 // Tell the kernel to throw away the contents of any whole pages
17 // by resetting them to the system all zeros page. These pages
18 // will be faulted into existence on first write.
19 mh.zero_memory({ mh.address(), mh.length() }).value();
20

21 // Do not write these pages to the swap file (flip dirty bit to false)
22 mh.do_not_store({mh.address(), mh.length()}).value();
23

24 // Fill the memory with ’b’ C++ style, probably faulting new pages into existence
25 afio::algorithm::mapped_span<char> p2(mh);
26 std::fill(p2.begin(), p2.end(), ’b’);
27

28 // Kick the contents of the memory out to the swap file so it is no longer cached in RAM
29 // This also remaps the memory to reserved address space.
30 mh.decommit({mh.address(), mh.length()}).value();
31

32 // Map the swap file stored edition back into memory, it will fault on
33 // first read to do the load back into the kernel page cache.
34 mh.commit({ mh.address(), mh.length() }).value();
35

36 // And rather than wait until first page fault read, tell the system we are going to
37 // use this region soon. Most systems will begin an asynchronous population of the
38 // kernel page cache immediately.
39 afio::map_handle::buffer_type pf[] = { mh.address(), mh.length() };
40 mh.prefetch(pf).value();
41

42

43 // You can actually save yourself some time and skip manually creating map handles.
44 // Just construct a mapped_span directly, this creates an internal map_handle instance,
45 // so memory is released when the span is destroyed
46 afio::algorithm::mapped_span<float> f(1000); // 1000 floats, allocated used mmap()
47 std::fill(f.begin(), f.end(), 1.23f);

10

2.6 Kernel memory allocation and control (1):

Another thing not initially obvious is that this library standardises shared memory support. This
is also `for free' as memory maps are by default shared memory when multiple processes open the
same �le.

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Create 4Kb of anonymous shared memory. This will persist
4 // until the last handle to it in the system is destructed.
5 // You can fetch a path to it to give to other processes using
6 // sh.current_path()
7 afio::section_handle sh = afio::section(4096).value();
8

9 {
10 // Map it into memory, and fill it with ’a’
11 afio::algorithm::mapped_span<char> ms1(sh);
12 std::fill(ms1.begin(), ms1.end(), ’a’);
13

14 // Destructor unmaps it from memory
15 }
16

17 // Map it into memory again, verify it contains ’a’
18 afio::algorithm::mapped_span<char> ms1(sh);
19 assert(ms1[0] == ’a’);
20

21 // Map a *second view* of the same memory
22 afio::algorithm::mapped_span<char> ms2(sh);
23 assert(ms2[0] == ’a’);
24

25 // The addresses of the two maps are unique
26 assert(ms1.data() != ms2.data());
27

28 // Yet writes to one map appear in the other map
29 ms2[0] = ’b’;
30 assert(ms1[0] == ’b’);

2.7 Sparsely stored arrays:

A neat use case making use of the new kernel memory allocation support is for sparsely allocated
huge arrays. One can allocate up to 127Tb of address space on most 64 bit architectures.

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Make me a 1 trillion element sparsely allocated integer array!
4 afio::mapped_file_handle mfh = afio::mapped_temp_inode().value();
5

6 // On an extents based filing system, doesn’t actually allocate any physical
7 // storage but does map approximately 4Tb of all bits zero data into memory
8 (void) mfh.truncate(1000000000000ULL * sizeof(int));
9

10 // Create a typed view of the one trillion integers
11 afio::algorithm::mapped_span<int> one_trillion_int_array(mfh);

11

12

13 // Write and read as you see fit, if you exceed physical RAM it’ll be paged out
14 one_trillion_int_array[0] = 5;
15 one_trillion_int_array[999999999999ULL] = 6;

2.8 Resumable i/o with Coroutines:

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Create an asynchronous file handle
4 afio::io_service service;
5 afio::async_file_handle fh =
6 afio::async_file(service, {}, "testfile.txt",
7 afio::async_file_handle::mode::write,
8 afio::async_file_handle::creation::if_needed).value();
9

10 // Resize it to 1024 bytes
11 truncate(fh, 1024).value();
12

13 // Begin to asynchronously write "hello world" into the file at offset 0,
14 // suspending execution of this coroutine until completion and then resuming
15 // execution. Requires the Coroutines TS.
16 alignas(4096) char buffer[] = "hello world";
17 co_await co_write(fh, 0, { { reinterpret_cast<afio::byte *>(buffer), sizeof(buffer) } }).value();

2.9 Read all valid extents of a �le using asynchronous �le i/o:

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Create an i/o service to complete the async file i/o
4 afio::io_service service;
5

6 // Open the file for read
7 afio::async_file_handle fh = afio::async_file(//
8 service, // The i/o service to complete i/o to
9 {}, // path_handle to base directory

10 "foo" // path_view to path fragment relative to base directory
11 // default mode is read only
12 // default creation is open existing
13 // default caching is all
14 // default flags is none
15).value(); // If failed, throw a filesystem_error exception
16

17 // Get the valid extents of the file.
18 const std::vector<
19 std::pair<afio::file_handle::extent_type, afio::file_handle::extent_type>
20 > valid_extents = fh.extents().value();
21

22 // Schedule asynchronous reads for every valid extent
23 std::vector<
24 std::pair<std::vector<afio::byte>, afio::async_file_handle::io_state_ptr>

12

25 > buffers(valid_extents.size());
26 for (size_t n = 0; n < valid_extents.size(); n++)
27 {
28 // Set up the scatter buffer
29 buffers[n].first.resize(valid_extents[n].second);
30 for(;;)
31 {
32 afio::async_file_handle::buffer_type scatter_req{
33 buffers[n].first.data(), buffers[n].first.size()
34 }; // buffer to fill
35 auto ret = afio::async_read(//
36 fh, // handle to read from
37 { { scatter_req }, valid_extents[n].first }, // The scatter request buffers + offset
38 [](// The completion handler
39 afio::async_file_handle *, // The parent handle
40 afio::async_file_handle::io_result<afio::async_file_handle::buffers_type> & // Result of the

i/o
41) { /* do nothing */ }
42 // default deadline is infinite
43);
44 // Was the operation successful?
45 if (ret)
46 {
47 // Retain the handle to the outstanding i/o
48 buffers[n].second = std::move(ret).value();
49 break;
50 }
51 if (ret.error() == std::errc::resource_unavailable_try_again)
52 {
53 // Many async file i/o implementations have limited total system concurrency
54 std::this_thread::yield();
55 continue;
56 }
57 // Otherwise, throw a filesystem_error exception
58 ret.value();
59 }
60 }
61

62 // Pump i/o completion until no work remains
63 while (service.run().value())
64 {
65 // run() returns per completion handler dispatched if work remains
66 // It blocks until some i/o completes (there is a polling and deadline based overload)
67 // If no work remains, it returns false
68 }
69

70 // Gather the completions of all i/o scheduled for success and errors
71 for (auto &i : buffers)
72 {
73 // Did the read succeed?
74 if (i.second->result.read)
75 {
76 // Then adjust the buffer size to that actually read
77 i.first.resize(i.second->result.read.value().size());
78 }
79 else

13

80 {
81 // Throw the cause of failure as an exception
82 i.second->result.read.value();
83 }
84 }

3 Impact on the Standard

The proposed low level �le i/o library is potentially a pure-library solution with dependencies on:

1. std::filesystem

2. P0057 C++ Extensions for Coroutines https://wg21.link/P0057. Status: Approved for
C++ 20.

3. P0122 span: bounds-safe views for sequences of objects https://wg21.link/P0122. Status:
Approved for C++ 20.

4. P0734 Concepts https://wg21.link/P0734. Approved for C++ 20.

5. P1028 SG14 status_code and standard error object for P0709 Zero-overhead deterministic
exceptions https://wg21.link/P1028.

This proposes a refactored, even lighter weight <system_error> v2 which �xes a number
of problems which have emerged in the use <system_error> as hindsight has emerged. The
replacement for std::error_code, status_code, is rare�ed into a proposed std::error object
for [P0709].

6. P1030 Filesystem path views https://wg21.link/P1030.

This proposes a lightweight view of a �lesystem path. Path views can help eliminate the often
frequent copying of �lesystem paths when calling a library such as this one.

There are two design guideline papers which the proposed library mostly meets:

1. P0829 Freestanding C++ https://wg21.link/P0829.

This paper sets out the parts of the C++ language and standard library which are widely
compatible with embedded systems. This low level �le i/o library would not work on many
embedded systems due to their lack of a �ling system, but the discipline of laser focus upon
determinism and not using unnecessary memory nor features is retained.

2. P1027 SG14 Design guidelines for future low level libraries https://wg21.link/P1027.

This paper re�nes [P0939] Direction for ISO C++ with concrete design guidelines for future
low level library additions to the standard C++ library. Such low level libraries would histor-
ically have been an internal implementation detail of a standard library, P1027 calls for them
to become public and standardised.

There is an optional dependency on two core language enhancements:

14

https://wg21.link/P0057
https://wg21.link/P0122
https://wg21.link/P0734
https://wg21.link/P1028
https://wg21.link/P1030
https://wg21.link/P0829
https://wg21.link/P1027

1. [P0709] Zero-overhead deterministic exceptions: Throwing values https://wg21.link/P0709.

This proposes that the C++ language implements the lightweight throwing of error/status
codes similar to that implemented by Boost.Outcome [1].

2. P1029 SG14 [[move_relocates]] https://wg21.link/P1029.

This proposes a new C++ attribute [[move_relocates]] which lets the compiler optimise
such attributed moves as aggressively as trivially copyable types. If approved, this would
enable a large increase in the variety of types permissible in P1027's guidelines, plus P1028's
standard error object would gain the ability to transport std::exception_ptr instances di-
rectly, a highly desirable feature for improving e�ciency of legacy C++ exceptions support
under P0709.

All types consumed and returned in the APIs of this Low level �le i/o proposal have standard
layout, are trivially copyable, or move relocating, as per the low level library design guidelines
in P1027.

There may be a dependency on [P0443] A Uni�ed Executors Proposal for C++ depending on design
decisions not yet taken (see below).

The low level �le i/o library generally works with span<T> or span<span<T>>, and thus should
automatically work well with Ranges.

4 Proposed Design

4.1 Handles to kernel resources

The design is very straightforward and intuitive, if you are familiar with low level i/o. We do
not innovate in this proposed design. It is more, or less, a straight thin wrap of a subset of the
POSIX �le i/o speci�cation, as it was standardised in the POSIX.1-2008 speci�cation (ten years ago
was chosen as it has wide implementation conformance), but with signi�cantly weakened behaviour
guaramtees than than those in the POSIX speci�cation. This weakening was done to aid portability,
speci�cally to far-from-POSIX �lesystems such as those typically used in HPC and heterogeneous
compute.

There is a fundamental type called native_handle_type which is a simple, unmanaged union storage
of one of a POSIX �le descriptor, or a Windows HANDLE. Any other platform-speci�c resource
identi�er types would be added here.

native_handle_type contains disposition about the identi�er, speci�cally what kind it is, what
rights it has, is it seekable, does it require aligned i/o, must it be spoken to in overlapped and so
on. It can be made invalid i.e. it has a formal invalid state. It is all-constexpr.

At the base of the inheritance hierarchy is the polymorphic class handle. It manages a
native_handle_type, which can be released from its handle if wished. When the handle is destruc-
ted, the native_handle_type inside the instance is closed.

15

https://wg21.link/P0709
https://wg21.link/P1029

class handle is a move-only type. It does provide a polymorphic clone member function which will
duplicate the handle. The reason that the C++ copy constructor is disabled is because duplicating
handles is expensive, and unintentionally doing so would be bad.

Apart from releasing, cloning and closing, the only other thing one can do with a handle is to
retrieve its current path on the �lesystem. It is very important to understand that this is not the
path it was opened with (if the user wants that, they can cache it themselves). Rather it is what
the kernel says is the current path for this inode right now5. This can be useful to know, as other
processes can arbitrarily change the path of large numbers of open �les in a single syscall simply
by changing the name of a directory further up the hierarchy. In fact, handle has entirely trivial
storage as it stores nothing which is allocated from memory, it can thus be constexpr constructed,
and moves of it relocate6.

Handle de�nes many types and bit�elds used by its re�nements:

• mode

This selects what kind of i/o we wish to do with a handle. One of none, attribute read,
attribute write, read, write, (atomic) append.

• creation

This selects what opening a handle ought to do if the path speci�ed already exists or doesn't
exist. One of open existing, only if not exist, if needed, (atomic) truncate.

• caching

This selects what kind of caching (bu�ering) the kernel ought to perform for this handle:

� No caching whatsoever, and additionally fsync() the �le and any other resources7 at
certain key moments to ensure recovery after sudden power loss (immediately after cre-
ation, immediately after maximum extent change, immediately before close). On many,
but not all, platforms this is direct DMA to the device from user space which comes with
a list of special use requirements (see later in paper).

� Cache only metadata. On many, but not all, platforms this is direct DMA to the device
from user space.

� Cache only reads, and with fsync() at key moments described above. Writes block until
they and the metadata to retrieve them after power loss fully reach storage.

� Cache reads and metadata, and fsync() at key moments described above. Writes block
until they fully reach storage, but the metadata to retrieve them is written out asyn-
chronously.

5A standard API for this is not present in POSIX.1-2008, but proprietary APIs are available on all the major
platforms and most of the minor ones, including embedded operating systems. For those few systems without kernel
support, we provide a templated adapter for all handle types which caches the path for you.

6This is a concept which doesn't exist in the language yet, see [P1029] for its proposal paper.
7On Linux ext4, one must also sync the parent directory as well as the inode to ensure complete recovery after

power loss.

16

� Cache reads, writes, and metadata (the default). Writes are enqueued and written to
storage at some later point asynchronously.

� Cache reads, writes, and metadata, and fsync() at key moments described above.

� Avoid writing to storage as much as possible. Useful for temporary �les.

For those not familiar with data synchronisation outside of fsync(), explicitly disabling some
or all of kernel caching at handle open results in much better performance than following every
write with a fsync(). Indeed, in some �ling systems like ZFS, a special fast non-volatile device
is used to complete an uncached write immediately, which is synced later to slow non-volatile
storage.

• flags

This selects various bespoke behaviours and semantics:

� unlink_on_close

Causes the entry in the �lesystem to disappear on �rst close by any process in the system.

Microsoft Windows partially implements this in its kernel, and signi�cantly changes how
it caches data based on the setting of this �ag.

� disable_safety_fsyncs

Disables the safety fsync()'s for the modes listed above.

� disable_safety_unlinks

Do not compare inode and device with that of the open �le descriptor before unlinking
it.

� disable_prefetching

Most kernels prefetch data into the kernel cache after an i/o. For truly random i/o
workloads, this �ag ought to be set.

� maximum_prefetching

If we are copying a �le's contents using caching i/o, this �ag ought to be set.

� win_disable_unlink_emulation

On Microsoft Windows, POSIX unlink semantics are emulated by renaming on unlink
the �le entry to something very random such that it cannot be found8,9. Setting this
�ag disables this emulation.

8Due to VMS legacy compatibility, NT implements �le deletion by marking a �le entry as deleted which prevents it
being opened for access thenceforth. It does not remove the �le entry until some arbitrary time (usually milliseconds)
after the last open handle to it in the system has closed. This confounds code written to expect POSIX semantics
whereby unlinking a �le causes it to immediately disappear from the �lesystem. This workaround of renaming the
�le to something very random simulates, incompletely, POSIX semantics on Microsoft Windows, su�ciently so at
least that most �lesystem algorithms `just work'.

9I have been told by Microsoft that the next version of Windows 10 implement opt-in POSIX unlink semantics,
so on newer Windows we can avoid rename-to-random workarounds.

17

� win_disable_sparse_file_creation

Microsoft's NTFS �le system was designed in the 1980s back when extents-based �ling
systems were not common. It was later upgraded to an extents-based implementation
capable of working with sparse �les. Due to backwards compatibility, during �le creation
one must opt-in to using extents-based storage. That setting remains attached to that
�le for the remainder of its life, which could theoretically break some programs. The
proposed library always opts in to extents based storage by default for newly created
�les to match semantics with almost every modern �ling system elsewhere. This �ag
disables that default opt-in.

4.1.1 Class hierarchy inheriting from handle

Inheriting from class handle are these re�nements of handle:

• io_handle

I/O handle adds types and member functions for scatter-gather synchronous i/o to a seekable
handle10.

All i/o is optionally deadline based, with a choice of interval or absolute timeout. Deadline
i/o for �les only works if the most derived implementation is async_file_handle as these
synchronous calls are implemented using an asynchronous implementation which can be can-
celled.

I/O handle also adds member functions for mutually excluding part, or all of, the resource
represented by the handle from any other process in the system. These are always advisory
not mandatory exclusions i.e. they require all processes to cooperate by checking for locks
before an i/o.

Inheriting from io_handle are these re�nements of i/o handle:

� file_handle

File handle is the simple, unfussy thin wrap of the platform's �le read and write facilities.
All i/o is always performed via the appropriate syscall. This passes through any POSIX
read-write atomicity and sequential consistency guarantees which may be implemented
by the platform.

10Non-seekable handles are valid, but that would start to overlap the Networking TS. For various technical reasons,
asynchronous socket and pipe i/o cannot portably use the same i/o service implementation as asynchronous �le i/o,
this is why this proposed library is orthogonal to the Networking TS.

18

File handles provide the following additional static member functions:

∗ For creating and opening a named �le using a path_handle instance as the base
(a default constructed path_handle instance requires the path view to refer to an
absolute path).

∗ For creating a cryptographically randomly named �le at a location speci�ed by a
path_handle instance. This is useful for creating a temporary �le which once fully
written to, will be atomically renamed to replace an existing �le.

∗ For creating a temporary �le in one of the temporary �le locations found during path
discovery (see path_discovery below), counted against user quota or system RAM
quota.

∗ For securely creating an anonymous temporary inode at a location speci�ed by a
path_handle instance. These are always unnamed, always inaccessible inodes which
do not survive process exit. These are used especially by generic template algorithms
to implement novel STL containers like vectors with constant, rather than linear,
capacity expansion times.

File handles provide the following additional polymorphic member functions:

∗ For getting and setting the maximum �le extent (not `the length', though many
people get confused on this).

∗ For issuing a write reordering barrier which can be optionally applied to a subset
of extents in the �le, optionally with blocking until preceding writes reach storage,
and optionally with an additional �ush of inode metadata which indicates current
maximum extent, timestamps etc.

∗ For enumerating the valid extents in the �le. Modern extents-based �ling systems
(pretty much all in common use today except for FAT) only store the extents written
to, so a 1Tb maximum extent �le might only have 4Kb of extents allocated within
it. Colloquially known as `sparse �les'.

∗ For deallocating a valid extent in the �le. Colloquially known as `hole punching'.

∗ For unlinking the hard link currently referred to by the open handle.

∗ For relinking the hard link currently referred to by the open handle to another path,
optionally atomically replacing any item currently at that path.

∗ For creating a new hard link to the inode referred to by the open handle at a new
path location.

Note that one can instance any re�nement of file_handle implementation and pass it to
functions as if it were a true file_handle. Under the bonnet, scatter-gather synchronous
i/o is implemented as whatever is the most optimal for that implementation type e.g.
for mapped_file_handle scatter-gather synchronous i/o is implemented with memcpy().

Inheriting from file_handle are these re�nements of �le handle:

∗ async_file_handle

19

The async �le handle can behave in every way as if a synchronous �le handle i.e.
the member functions inherited from io_handle behave as if synchronous, though
unlike in other implementations, they can observe timeouts.

It adds member functions for scatter-gather asynchronous i/o taking a completion
callback (async_read(), async_write()). Instantiating an async �le handle requires
the user to supply an instance of io_service to issue callback completions against,
this must be pumped for completion dispatch very similarly to the io_service in
the Networking TS.

Async �le handle also provides member functions for coroutinised i/o (co_read(),
co_write()) whereby the calling coroutine is suspended until the i/o completes,
whereupon it is resumed.

∗ mapped_file_handle

The mapped �le handle is the most highly performing �le handle implementation
in terms of i/o, but comes with signi�cantly higher cost construction, extension and
destruction and with severe usability limits on 32 bit architectures. It also loses any
POSIX read-write atomicity and sequential consistency guarantees which may be
implemented by the platform on the other types of handle.

It always maps the whole �le into memory, extending the map as needed into an
address reservation. Unless you are opening and closing �les frequently, or the �les
you are working with are much smaller than the system page size, or you are on a 32
bit architecture, this is an excellent default choice for most users giving maximum
zero whole system memory copy performance on all devices apart from network
attached storage devices.

� map_handle

Map handle is a region of shared or private memory mapped from a backing section_handle,
or unmapped private memory backed by the swap �le, or reserved address space. Within
the committed (i.e. allocated) part of that region, i/o can be performed, or more usefully,
the region can be accessed directly as memory.

Added member functions include the ability to commit (allocate) sub-regions of reserved
address space, or to decommit (deallocate) previously allocated sub-regions.

It comes with a comprehensive set of static member functions which can be applied to any
memory in a process e.g. `please kick the contents of this memory page out to backing
storage', `please unset the dirty bit of this memory page (i.e. don't �ush its contents
to storage until the next modi�cation)', or `please asynchronously ready this range of
memory for access (i.e. prefault it)' and so on.

mapped_file_handle and many other classes use this class as an internal implementation
primitive for all forms of mapped and unmapped and reserved memory.

• path_handle

Path handles refer to some base location on the �lesystem from which path lookup begins.

20

The inode opened may change its path arbitrarily and at any time without a�ecting the paths
which use an open path handle as their base. This handle is, therefore, the foundation of the
race free �lesystem which the proposed library implements.

Many platforms implement the creation of these handles as an especially lightweight operation,
hence they are standalone from directory_handle.

Inheriting from path_handle are these re�nements of path handle:

� directory_handle

Directory handles refer to inodes which list other inodes. The main added member
function is to enumerate that list of other inodes into a user supplied array (span) of
directory_entry. One can open existing directories, create new directories, create ran-
domly named new directories, and in your choice of path including temporary paths
found during path discovery. One can of course also unlink and relink directories.

• section_handle

Section handles refer to a section of shared or private memory. They may be backed by a user
supplied file_handle, or by an anonymous inode in one of the path categories returned by
path_discovery, or by some other source of shared memory. They are particularly useful for
when you need some temporary storage (counted against either the RAM quota or the current
user's quota) which will be thrown away at process end.

Section handles have a length which can be queried and changed. It may be less than, but
cannot exceed, the maximum extent of any backing �le.

Section handles have additional �ags in addition to those inherited from handle. Section
handle �ags are reused by map_handle:

� none: This memory region is reserved address space.

� read: This memory region can be read.

� write: This memory region can be written.

� cow: This memory region is copy-on-write (i.e. when you �rst write, the kernel makes
you a process-local copy of the page).

� execute: This memory region can contain code which the CPU will execute.

� nocommit: Don't immediately allocate resources for this section/memory region upon
construction. Most kernels allocate space for unbacked sections against the system mem-
ory + swap �les, and will refuse new allocations once some limit is reached. Setting
this �ag causes unbacked sections to allocate system resources `as you go' i.e. as you
explicitly commit pages using the appropriate member functions of map_handle.

� prefault: Prefault, as if by reading every page, any views of memory upon creation.
This eliminates �rst-page-access latencies where on �rst access, the page is faulted into
existence.

� executable: This section represents an executable binary.

21

� singleton: A single instance of this section is to be shared by all processes using the
same backing �le. This means that when one process changes the section's length, all
other processes are instantly updated (with appropriate updates of maps of the section)
at the same time, which can be considerably more e�cient.

� barrier_on_close: Maps of this section, if writable, issue a blocking barrier() when
destructed, blocking until data (not metadata) reaches physical storage.

• symlink_handle

Symlink handles refer to inodes which contain a relative or absolute path. Added member
functions can read and write that stored path.

4.1.2 Miscellaneous and utility classes and functions

There are also some utility classes:

• deadline

A deadline is a standard layout and trivially copyable type which speci�es either an interval
or absolute deadline. Deadlines can construct from any arbitrary std::chrono::duration<>

or std::chrono::time_point<>. The advantage to this object is halving the number of
polymorphic function overloads required, and maintaining a stable ABI as per the guidelines
in [P1027].

• directory_entry

A path_view and stat_t combination. Filled by directory_handle's enumeration function.
Note that it has standard layout and is trivially copyable.

• io_service

A completion handler dispatcher used by async_file_handle. Looks deliberately like a sim-
pli�ed subset of the Networking TS's io_service, but must be distinct as asynchronous �le
i/o cannot be portably implemented using the same i/o service as pipe and socket i/o.

• path_discovery

Path discovery generally runs once per process and it interrogates the platform to discover
suitable paths for (i) storage backed temporary �les (counted against the current user's quota)
and (ii) memory backed temporary �les (counted against available RAM). Path discovery
does not trust the platform speci�c APIs, and it tries creating a �le in each of the directories
reported by the platform to �nd out which are valid. This is slow, so the results are statically
cached.

• path_view

Path views are covered in detail in [P1030], but in essence they are a lightweight reference to a
string which is the format of a �lesystem path. They are standard layout and trivially copyable.
Path views are very considerably more e�cient to work with than �lesystem path objects, and
make a big di�erence to performance, especially when enumerating large directories.

22

• stat_t

Almost certainly WG21 will want the name to be changed to avoid con�ict with the platform
stat_t, but I haven't personally found it to be an issue in practice. This is a C++-i�ed struct

stat_t, it uses std::filesystem constants and data types instead of the platform-speci�c
ones. It is standard layout and trivially copyable.

• statfs_t

Similarly, almost certainly WG21 will want the name to be changed to avoid con�ict with
the platform statfs_t, but I haven't personally found it to be an issue in practice. This
is a C++-i�ed struct statfs_t, it uses std::filesystem constants and data types instead
of the platform-speci�c ones. Unusually for types in the proposed library, this one is not
trivially copyable as it contains two std::string's and a std::filesystem::path for the
f_fstypename, f_mntfromname and f_mntonname members.

There are some minor utility functions as well which are not described in detail for now. They
fetch things like the TLB page size entries for this machine, have the kernel return single TLB entry
allocations of varying sizes either via a C malloc type API or via a special STL allocator, ask the
kernel to �ll a bu�er with cryptographically strong random data, fast to-hex and from-hex routines
and so on. These minor utility functions are used throughout the internal implementation of the
library, but are useful to other code built on top of the library as well.

4.2 Generic �lesystem algorithms and template classes

4.2.1 Introduction

A key thing to understand about this low level library is the lack of guaranteed behaviours it provides
in its very lowest layers. This is principally because �le i/o has surprisingly few guarantees in the
POSIX standard, and thus we are gated as to what the thin kernel syscall wraps can guarantee. For
example, file_handle::barrier() asks the kernel to issue a write reordering barrier on a range of
bytes in the open �le, with options for blocking until preceding writes reach storage, and whether
to also �ush the metadata with which to retrieve the region after sudden power loss. This looks
great, but you will �nd wide variation as to how well that is implemented across platforms. These
are the current behaviours on the three major platforms11:

• FreeBSD/MacOS

For normal �les, range barriers are not available, so the whole �le is barriered. Metadata is
always synchronised. On MacOS only, non-blocking barriers are available, on FreeBSD all
barriers always block until completion of the entire �le plus metadata. On FreeBSD a total
sequentially consistent ordering is maintained, so concurrent barriers exclude other barriers
until completion. I do not know the behaviour on MacOS, but I would assume it is the same.

For mapped �les, range barriers are only available if not synchronising metadata, in which case
it is to the nearest 4Kb page level. Blocking until writes reach storage forms a sequentially
consistent ordering, otherwise concurrent barriers are racy.

11This is from memory, it may be inaccurate.

23

• Linux

For normal and mapped �les, fully implemented to the nearest 4Kb page level. BUT with
the huge caveat that these do not form a total sequential ordering amongst concurrent callers
upon overlapping byte ranges, so it is therefore racy in terms of useful recovery after sudden
power loss.

• Microsoft Windows

For normal �les, range barriers are not available, so the whole �le is barriered. Otherwise
full implementation, and a total sequentially consistent ordering is maintained so concurrent
barriers exclude other barriers until completion.

For mapped �les, range barriers are only available if not synchronising metadata, in which
case it is to the nearest 4Kb page level. Concurrent barriers are always racy.

What this means is that on Linux or if barriering on a mapped �le, you must coordinate between
multiple processes or threads using your own mechanism to ensure only one thing issues a barrier for
some range at a time. On all platforms apart from Linux, currently range barriers with metadata
actually barrier the whole �le, so there is no point in trying to achieve any concurrency in your
write reordering barriers.

In case you think this sort of platform speci�c variance is limited to just write reordering barriers,
you may be in for a surprise. In my own personal opinion (explained in more detail below), I don't
think any standards text can claim anything more than `implementation de�ned' for all the lowest
level functions. Even the humble write data function has a multitude of platform speci�c surprise.

These variations may seem problematic, but it is exactly what generic �lesystem algorithms and
template classes are for: to add layers of increasing abstraction plus guarantees on top of the raw
low level API. That way, for those who need the raw bare metal performance, they can get that.
But for more portable code where we need some consistency, template algorithms can abstract out
these platform speci�c details for us.

As an analogy, in the Networking TS we have lowest level functions such as async_write_some()
which attempts to write some or all of a gather bu�er sequence. But we also have higher level func-
tions � async_write() � which guarantees to write a whole gather bu�er sequence, not completing
until it is all done. That design pattern of API layers of increasing guarantees is present in �le i/o
as well, just a bit more complex than (and quite di�erent to) socket i/o.

4.2.2 Filesystem template library (so far) � the `FTL'

These are some generic algorithms and template classes which act as abstraction primitives for more
complex �lesystem algorithms. It should be stressed that all of the below are 100% header only
code, and use no platform-speci�c APIs. They are implemented exclusively using the public APIs
in the proposed low level �le i/o library. This may give an idea of the expressive power to build
useful and interesting �lesystem algorithms using the proposed design.

• shared_fs_mutex

24

This is an abstract base class for a family of shared �ling system mutexs i.e. a suite of
algorithms for excluding other processes and threads from execution using the �lesystem as
the interprocess communication mechanism.

Unlike memory-based mutexes already in the standard library, in the lock operation these
mutexes take a sequence of entities upon which to take a shared or exclusive lock. An entity
is a 63 bit number (the top bit stores whether it is exclusive or not)12.

The reason that these mutexes are list-of-entities based is because it is very common to lock
more than one thing concurrently on the �ling system, whereas with memory-based mutexes
that is the exception rather than the norm. For example, if you were updating �le number 2
and �le number 10 in a list of �les at the same time, you would concurrently lock entities 2
and 10. If you were implementing a content addressable database like a git store, you'd use
the last 63 bits of the git SHA as the entity, and so on.

Each of the implementations has varying bene�ts and tradeo�s, including the ability to lock
many entities in the same time as one entity. The appropriate choice depends on use case,
and to an extent, the platform upon which the code is running.

� shared_fs_mutex::atomic_append

This implementation uses an atomically appended shared �le as the IPC mechanism.
Advantages include invariance to number of entities locked at a time, ability to sleep the
CPU and compatibility with all forms of storage except NFS. Disadvantages include an
intolerance to one of the using processes experiencing sudden process exit during lock
hold, and �lling all available free space on �ling systems which are not extents based (i.e.
incapable of `hole punching').

� shared_fs_mutex::byte_ranges

This implementation uses the byte range locks feature of your platform as the IPC mech-
anism. Advantages include ability to sleep the CPU and automatic handling of sudden
process using during lock hold. Disadvantages include wildly di�ering performance and
scalability between platforms, lack of thread compatibility with POSIX implementations
other than recent Linux, ability to crash NFS in the kernel due to overload.

� shared_fs_mutex::lock_files

This implementation uses exclusively created lock �les as the IPC mechanism. Ad-
vantages include simplicity and wide compatibility without corner case quirks on some
platforms. Disadvantages include an inability to sleep the CPU, and an intolerance to
one of the using processes experiencing sudden process exit during lock hold.

� shared_fs_mutex::memory_map

This implementation uses a shared memory region as the IPC mechanism. Advantages
include blazing performance to the extent of making your mouse pointer stutter. Disad-
vantages include inability to use networked storage, inability to sleep the CPU, and an

12This design choice works around the problem that on some platforms, byte range locks are signed values, and
attempting to take a lock on a top bit set extent will thus always fail.

25

intolerance to one of the using processes experiencing sudden process exit during lock
hold.

� shared_fs_mutex::safe_byte_ranges

This implementation � on POSIX only � wraps the byte range locks on the platform with
a thread locking layer such that individual threads do not overwrite the locks of other
threads within the same process, as is required by the POSIX standard for byte range
locks. On other platforms, this is a typedef to shared_fs_mutex::byte_ranges.

• cached_parent_handle_adapter<T>

Ordinarily, handles do not store any reference to their parent inode. They provide a member
function which will obtain a such a handle by fetching the current path of the inode and
looping the check to see if it has a leaf with the same inode and device number as the handle.
This, obviously enough, is expensive to call.

For use cases where a lot of race free sibling and parent operations occur, one can instantiate
any of the handle types using this adapter. It overrides some of the virtual functions to use a
cached parent inode implementation instead. These parent inode handles are kept in a global
registry, and are reference counted to minimise duplication. This very considerably improves
the performance of race free sibling and parent operations, at the cost of increasing the use of
�le descriptors, plus synchronising all threads on accessing the global registry.

There is an additional use case, and that is where the platform does not implement �le inode
path discovery reliably, which can a�ict some older editions of some kernels 13.

• mapped_span<T>

A mapped span is a span<T> of a map_handle's region. It implies a reinterpret_cast<T> of
the map_handle's char mapped memory.

Mapped spans allow one to easily adapt sparse storage into a sparsely stored array:

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Make me a 1 trillion element sparsely allocated integer array!
4 afio::mapped_file_handle mfh = afio::mapped_temp_inode().value();
5

6 // On an extents based filing system, doesn’t actually allocate any physical
7 // storage but does map approximately 4Tb of all bits zero data into memory
8 mfh.truncate(1000000000000ULL*sizeof(int));
9

10 // Create a typed span of the one trillion integers
11 afio::algorithm::mapped_span<int> one_trillion_int_array(mfh);
12

13 // Write and read as you see fit, if you exceed physical RAM it’ll be paged out
14 one_trillion_int_array[0] = 5;
15 one_trillion_int_array[999999999999ULL] = 6;

13At the time of writing, OS X's path fetching API returns one of the paths for any hard link to the inode, randomly.
This is almost certainly a bug. FreeBSD does not reliably provide path fetching for �le inodes, but does for directory
inodes. From examination of the kernel source, this ought to be easy to �x. In both cases, fetching the path of a
directory inode is reliable, and thus via this adapter works around these platform-speci�c quirks and bugs.

26

Virtual memory based kernels have been able to do this sort of stu� for decades, but making
use of it, especially portably, was tedious and error prone. The above shows how much easier
this sort of programming becomes.

4.2.3 Planned generic �lesystem template algorithms yet to be reference implemented

• Persistent page allocator which is interruption safe, concurrency safe, lock free. This is ef-
fectively a persistent linked-list implementation of allocated and non-allocated regions within
the �le.

• The aforementioned B+ tree implementation [2] which is interruption safe, concurrency safe,
lock free.

• Persistent vector which is interruption safe, concurrency safe, lock free.

• Coroutine generators for valid, or all, �le extents.

• Compare two directory enumerations for di�erences (Ranges based).

• B+-tree friendly14 directory hierarchy deletion algorithm.

• B+-tree friendly directory hierarchy copy algorithm.

• B+-tree friendly directory hierarchy update (two and three way) algorithm.

4.2.4 Functionality whose design is blocked on undecided features at WG21

Most of the just listed items are tricky to implement until compilers and standard libraries implement
Coroutines and Ranges without quality of implementation problems, hence why they have not been
reference implemented yet.

Some, however, are blocked on WG21. In particular, the directory algorithms need to be available
to multiple kernel threads as the �lesystem tends to scale linearly with CPU cores if poked at right
i.e. the algorithm would sometimes choose to execute a list of operations in parallel knowing that
this �ling system will scale for this operation, but execute another list sequentially knowing that
that will scale better, and this would need to be dynamically determined inside the algorithm's
execution tree.

In theory, the [P0443] Executors proposal should �t the bill. Perhaps it is my ignorance of the
proposed design, but it seems too `heavy' for the kind of micro-operations that the directory algo-
rithms would do. In particular, it appears to require allocating memory for every task executed,
and the future-based completion noti�cation mechanism which implies another memory allocation,
plus atomic reference counting, is hardly lightweight. An alternative is something based on the
Parallelism TS, but that would su�er from being too much a `one size �ts all' approach.

14By `B+-tree friendly', I mean that the algorithm orders its operations to avoid the �lesystem's B+-tree rebal-
ancing frequently, as a naïve algorithm which almost everybody writes without thinking will do. This can improve
performance by around 20% on the major �ling systems.

27

My ideal solution would in fact be completely agnostic to the concurrency mechanism employed,
so the user decides. But designing such an implementation with so many as yet undecided design
choices at WG21 is hard, and it will get easier if I simply kick the can down the road. Which is
what I have done until now.

If WG21 agrees to set up a Data Persistence Study Group as [P1026] calls for, that would be an
excellent place to bounce around some ideas on how best to implement these remaining generic
�lesystem algorithms.

4.3 Filesystem functionality deliberately omitted from this proposal

The eagle eyed will have spotted entire tracts of the �lesystem have been omitted from this initial
proposal:

• Permissions

Standardising this is a ton of extra work best pushed, in my opinion, into a later standardis-
ation e�ort.

• Extended attributes

These probably could be standardised without much e�ort, but I am also unsure of the demand
from the user base. Despite almost universal support in �le systems nowadays, they are not
widely used outside of MacOS, which is a shame.

• Directory change monitoring

This is surprisingly hard to implement correctly. Imagine writing an implementation which
scales up to 10M item directories and never misrepresents a change? The demands on handling
race conditions correctly are very detailed and tricky to get right in a performant and portable
way. I would like the change delta algorithms decided upon before tackling this one.

5 Design decisions, guidelines and rationale

The design decisions are as follows, in priority:

5.1 Race free �lesystem

As anyone familiar with programming the �lesystem is aware, it is riddled with race conditions
because most code is designed assuming that the �lesystem will not be changed by third parties
during a sequence of operations. Yet, not only can the �lesystem permute at any time, it is also
a bountiful source of unintended data loss and security exploits via Time-of-check-Time-of-use
(TOCTOU) failures.

As an example, imagine the following sequence of code which creates an anonymous inode to tem-
porarily hold data which will be thrown away on the close of the �le descriptor, perhaps to pass to
a child process or something:

28

1 int fd = ::open("/home/ned/db/foo", O_RDWR|O_CREAT|O_EXCL, S_IWUSR);
2 ::unlink("/home/ned/db/foo");
3 ::write(fd, child_data, ...);

Imagine that privileged code is executing that code. Now witness this:

1 int fd = ::open("/home/ned/db/foo",
2 O_RDWR|O_CREAT|O_EXCL, S_IWUSR);
3

4

5 ::unlink("/home/ned/db/foo"); // oh dear!

1

2

3 ::rename("/home/ned/db", "/home/ned/db.prev");
4 ::symlink("/etc", "/home/ned/db");

We have just seen unintended data loss where /etc/foo is unlinked instead of the programmer
intended /home/ned/db/foo.

Here is another common race on the �lesystem:

1 int storefd = ::open("/home/ned/db/store",
2 O_RDWR);
3

4

5 int indexfd = ::open("/home/ned/db/index",
6 O_RDWR);

1

2

3 ::rename("/home/ned/db", "/home/ned/db.prev");
4 ::rename("/home/ned/db.other", "/home/ned/db")

;

Now the index opened is not the correct index �le for the store �le. Misoperation and potential
data corruption is likely.

POSIX.1-2008, and every major operating system currently in use, �xes this via a race free �lesystem
API. Here are safe implementations:

1 int dirh = ::open("/home/ned/db", O_RDONLY|O_DIRECTORY);
2 int fd = ::openat(dirh, "foo", O_RDWR|O_CREAT|O_EXCL, S_IWUSR);
3 ::unlinkat(dirh, "foo", 0);

1 int dirh = ::open("/home/ned/db", O_RDONLY|O_DIRECTORY);
2 int storefd = ::openat(dirh, "store", O_RDWR);
3 int indexfd = ::openat(dirh, "index", O_RDWR);

The proposed low level �le i/o library considers race free �lesystem to be su�ciently important that
it is enabled by default i.e. it is always on unless you explicitly ask for it to be o�. The natural
question will be `How expensive is this design choice?'.

These are �gures for the reference library implementation running on various operating systems
and �ling systems. They were performed with a fully warm cache i.e. entirely from kernel memory
without accessing the device. They therefore represent a worst case overhead.

FreeBSD ZFS Linux ext4 Win10 NTFS

Delete File: 6.2% 11.6% 0%

29

The extra cost on POSIX for deletion is due to opening the inode's parent directory, checking that a
leaf item with the same name as the �le to be unlinked has the same inode and device as that of the
open handle, and if so then unlinking the leaf in that directory. This algorithm makes �le deletion
impervious to concurrent third party changes in the path, up to the containing directory, during
the deletion operation. A similar algorithm is used for renames, and added overhead is typically
around 10%.

One will surely note that overhead on Microsoft Windows is zero. The is because the NT kernel
provides much more extensive a race free �lesystem API than POSIX does. In particular, it provides
a by-open-�le-handle API for deletion and renaming so one need not implement any additional work
to achieve race freedom.

I appreciate that the choice to make race free �lesystem opt-out rather than opt-in will be a contro-
versial one on the committee, not least due to implementation concerns on the less major kernels15.
However it is my belief that correctness trumps performance for the default case, and for those
users who want the fastest possible �lesystem performance, race free �lesystem can be disabled per
object in the constructor.

5.2 No (direct) support for kernel threads

For those coming from a Networking TS/ASIO background, the choice to not support kernel threads
in the proposed library's io_service seems stunning. I know this from the more than one bug report
�led against the reference library implementation over the years: there is a widespread belief that
asynchronous i/o ought to support kernel threads. I therefore need to explain why the proposed
library does not.

Kernels implement synchronous i/o by enqueuing a request to the hardware on the same CPU as
the thread which initiated the i/o. When the hardware completes the i/o, it raises an interrupt on
that CPU, and the kernel resumes the thread. Asynchronous i/o is little di�erent, except that the
initiating thread continues immediately and is not suspended until the hardware raises an interrupt,
rather usually some form of signal or noti�cation is posted to the initiating thread for collection
later when that thread is ready to execute completions.

There is a second variant of asynchronous i/o however, whereby the interrupt is directed to the
next currently idle CPU within a pool of threads attached to completing the i/o. It is this second
variant which ASIO uses, whereas this proposed library uses the �rst variant.

Threaded asynchronous i/o was without doubt much faster than alternatives �fteen years ago,
back when ASIO was designed. But kernels have improved greatly since then, su�ciently so that
asynchronous i/o is usually slower than synchronous i/o because the kernel must do more work
to schedule an asynchronous i/o (speci�cally, it must almost always allocate some memory). In
addition, kernel threads damage locality of CPU cache utilisation which has become much more
important on today's CPUs than those of �fteen years ago. If you're accessing any memory other

15See the description of cached_parent_handle_adapter<T> above. However I believe that kernel maintainers are
highly amenable to adding a syscall to unlink-by-fd or relink-by-fd, they just need to be given a business case for it.
It certainly is trivially easy to implement in any of the kernel sources I have investigated.

30

than the i/o, increasingly you want that hot in the CPU cache of the kernel thread implementing
the i/o completion, a good bet for which usually is the kernel thread which initiated that i/o.

Many latency-sensitive users of ASIO therefore end up running an io_service instance per CPU
pinned kernel thread in order to better control cache locality. However, ASIO still is employing,
under the bonnet, all the machinery to support multiple threads, and that may make it run less
e�ciently than it might otherwise. I will not say more about ASIO on this, but for �le i/o this
author benchmarked a wide variety of �le i/o patterns using blocking i/o, alertable i/o (complete
i/o to the initiating thread) and IOCP (complete i/o to the next idle CPU) on Microsoft Windows,
and found that alertable i/o bested IOCP in every way for �le i/o. Latency variance was an order
of magnitude lower. No mutexs were required. Implementation was considerably more simple. This
is why the proposed low level �le i/o library does not support multiple kernel threads.

Two points are important to understand however. The �rst is that it is straightforward to build
a pool of threads running �le i/o services using this proposed library, and to distribute i/o work
across them, if that is what you want. The second is that C++ Coroutines work very well with this
library, you simply write code such as:

1 namespace afio = AFIO_V2_NAMESPACE;
2

3 // Create an asynchronous file handle
4 afio::io_service service;
5 auto fh = afio::async_file(service, {}, "testfile.txt",
6 afio::async_file_handle::mode::write,
7 afio::async_file_handle::creation::if_needed).value();
8

9 // Resize it to 1024 bytes
10 truncate(fh, 1024).value();
11

12 ...
13

14 // Begin to asynchronously write "hello world" into the file at offset 0,
15 // suspending execution of this coroutine until completion and then resuming
16 // execution. Requires the Coroutines TS.
17 alignas(4096) char buffer[] = "hello world";
18 co_await co_write(fh, {{{buffer, sizeof(buffer)}}, 0}).value();

This works exactly as one would expect: coroutines initiate i/o which suspends the coroutine until
it completes. In the meantime, other coroutines on the same kernel thread execute if they are ready
to be resumed.

5.3 Asynchronous �le i/o is much less important than synchronous �le i/o

A theme running throughout this proposal paper is that asynchronous �le i/o is usually not worth
the extra CPU cost on recent kernels of the major operating systems, and hence the proposed low
level �le i/o library mostly speaks of synchronous, not asynchronous, �le i/o. I have noticed that
some on WG21 are very keen on bringing complex coroutinised asynchronous i/o frameworks similar
to WinRT to the C++ standard soon � indeed, these papers from me are being submitted now in
order to preempt misguided papers from those others.

31

Firstly, of the major operating systems, the only one to actually implement asynchronous �le i/o
on bu�ered (cached) �les is Microsoft Windows. Linux, FreeBSD, and MacOS all use userspace
or kernel threadpools to emulate asynchronous i/o, if the handle is bu�ered. And with Microsoft
Windows it de�nitely is an order of magnitude latency variance penalty to use IOCP to complete
asynchronous i/o, only alertable i/o has a reasonable variance, and that still is markedly worse
than straight synchronous i/o. So let me be clear on this: empirical testing suggests that you
are almost always worse o� employing asynchronous i/o on bu�ered �les on all platforms because
asynchronous i/o is always more work for the CPU to complete, and half the time, even with random
i/o, intelligent prefetching by the kernel page cache will be able to complete the i/o immediately in
any case, making the asynchronous ceremony a waste of CPU time.

All of the major operating systems do implement true asynchronous �le i/o if the handle is un-
bu�ered, though rarely by the POSIX asynchronous �le i/o API as it scales poorly to queue depth.
Unbu�ered i/o generally requires all i/o to be performed on native device sector alignment bound-
aries and multiples: 4Kb is a widely portable choice with today's storage devices. It is therefore
unsuitable for WinRT-style general purpose coroutinised asynchronous i/o frameworks. It is quite
hard for the typical developer to write an unbu�ered �lesystem algorithm which signi�cantly out-
performs bu�ered i/o16. Countless thousands of hours by the best �lesystem engineers in the world
have been invested on tuning bu�ered i/o to perform excellently under a very wide range of use
cases.

There are important use cases for unbu�ered i/o, especially in the bulk copying of �les to avoid
evicting the current kernel page cache. This proposed library hence has excellent support for
unbu�ered i/o. There are few cases where asynchronous �le i/o makes sense over synchronous i/o.
If you really need to multiplex i/o, you are far better o� using a userspace pool of threads doing
synchronous i/o, ideally to memory maps to get true zero copy. It parallelises much better, scales
much better, does both consistently across all the major platforms, and makes great use of the
kernel page cache.

All this could be seen as an argument against this proposed library supplying asynchronous i/o at
all. I would not oppose that conclusion, it is a rational one based on empirical fact. However I can
see that deadline �le i/o could be extremely useful for some applications, and that is implemented
using asynchronous i/o. There is also a desirable impact on discipline: even if one never standardises
the asynchronous �le i/o part of this proposal, having it in here forces one to make a better designed,
more extensible, more customisable library in my opinion.

5.4 Pass through the raciness at the low level, abstract it away at the high level

Anyone with experience with the �le system knows how racy many of the kernel syscalls are. For
example, enumerating valid extents on POSIX is utterly racy due to a particularly bad choice of
enumeration API design. There are races in anything which involves a �lesystem path, by de�nition,
but there are also races in the ordering of reads and writes to a �le, the reported maximum extent

16This is not to say that one should not manage the kernel page cache by proactively evicting and hinting pages
where it makes sense to do so. The proposed library has a comprehensive suite of static member functions for doing
this.

32

of a �le, and lots more races in what order all changes land on non-volatile storage, which a�ects
recoverability after sudden power loss.

It is not the business of a low level library to hide this stu�. So pass it through, unmodi�ed, and
supply higher level layers, templates, and algorithms which abstract away these core problems.

6 Technical speci�cations

It is proposed that due to its size, complexity and relative independence from other parts of the
C++ standard library, that the low level �le i/o library be formulated in a Technical Speci�cation
under a new Persistent Data and Algorithms study group [P1026].

7 Frequently asked questions

7.1 Why bother with a low level �le i/o library when calling the kernel syscalls
directly is perfectly �ne?

1. This low level �le i/o library de�nes a common language of basic operations across platforms.
In other words, it chooses a common denominator across 99% of platforms out there. If you
append to a memory mapped �le, that'll do the platform-speci�c magic on all supported
platforms.

2. This low level �le i/o library only consumes and produces trivially copyable, move relocatable
and standard layout objects. Empirical testing has found that the optimiser will eliminate
this low level library almost always, inlining the platform speci�c syscall directly. So, it is no
worse in any way over calling the platform syscalls directly, except that this library API is
portable.

3. Where trivial to do so, we encode domain speci�c knowledge about platform speci�c quirks.
For example, fsync() on MacOS does not do a blocking write barrier, so our barrier()

function calls the appropriate magic fcntl() on MacOS only where the barrier() is requested
to block until completion.

4. This low level �le i/o library is a bunch of primitives which can be readily combined together
to build �lesystem algorithms whose implementation code is much cleaner looking and easier
to rationalise about than using syscalls directly.

5. We can provide deep integration with C++ language features in a way which platform speci�c
syscalls cannot. Ranges, Coroutines and Generators are the obvious examples, but we also
make a ton of use of span<T>, so all code which understands span<T> � or more likely the
std::begin() and std::end() overloads it provides � automagically works with no extra
boilerplate needed.

33

7.2 The �lesystem has a reputation for being riddled with unpredictable se-
mantics and behaviours. How can it be possible to usefully standardise
anything in such a world?

That is a very good question. This proposal passes through, for the most part, whatever the platform
syscalls do. If, for example, read() and write() implement the POSIX �le i/o atomicity guarantees,
then:

1. A write syscall's e�ects will either be wholly visible to concurrent reads, or not at all (i.e. no
`torn writes').

2. Reads of a �le o�set acquire that o�set, writes to a �le o�set release that o�set. Acquire and
release have the same meaning as for atomic acquire and release, so they enforce a sequential
ordering of visibility to concurrent users based on overlapping regions17.

These are very useful guarantees for implementing lock free �lesystem algorithms, and are a major
reason to use read() and write() instead memory maps because one can forego using any additional
locking. Major platform support for the POSIX read/write atomicity guarantees is pretty good in
recent years18:

FreeBSD ZFS Linux ext4 Win10 NTFS

Bu�ered i/o Scatter-gather No Per bu�er
Unbu�ered i/o Scatter-gather Scatter-gather Scatter-gather

As another example, fsync() commonly has no e�ect on the current con�gured platform19, and thus
io_handle::barrier() may do nothing useful. Moreover, code cannot tell if fsync() is working
or not. Writing portable code which works correctly would therefore seem impossible, but in truth
this is a con�guration issue. Software cannot be expected to predict things outside its control. All
it can do is call the correct syscalls at the correct times to prevent unsafe write reordering, and
proceed as if those syscalls are working correctly.

So how would I propose that one writes up the pre and post conditions for the functions in this
library? I propose to mandate certain minimum behaviour guarantees, and to explicitly list those
behaviours which we allow to �oat. For example, consider the gather write function:

1 io_result<const_buffers_type> io_handle::write(io_request<const_buffers_type> reqs,
2 deadline d = deadline()) noexcept;

[io_result<T> is like an Expected which can return either a T or an error code of a form similar to
std::error_code.]

We can write what is required of a conforming implementation:

17Many, if not most, �ling systems actually implement a RWmutex per inode so their guarantees are rather stronger
than POSIX requirements. One should not rely on this in portable code however!

18Scatter-gather atomicity means that the entire of a scatter-gather bu�er sequence is treated as an atomic unit.
Per bu�er atomicity means that atomicity is per scatter-gather bu�er only.

19fsync() having no e�ect is surprisingly common in the real world. First, POSIX permits it to be a no-op, so that
is what it is in many cases. Secondly, `it makes software go slow', so there is huge incentive to partially or wholly
disable it. For example, MacOS makes it into a non-blocking write reordering barrier, which is decidedly out of spec.
Most LXC containers make it into a no-op to prevent containers implementing a denial of service attack on the other
containers.

34

1. If the handle is not open, or not open for writing, the function will fail by returning an error
code which compares equal to std::errc::bad_file_descriptor, std::errc::permission_denied,
or std::errc::operation_not_permitted. [The ambiguity is due to platform-speci�c di�er-
ences between the major platforms, we never remap error codes returns by syscalls]

2. If the handle implementation does not implement deadline i/o, the function will fail by re-
turning an error code which compares equal to std::errc::not_supported.

3. If not opened for append (handle::mode::append), an attempt shall be made to write each
of the regions of memory speci�ed by the i/o request, consecutively, to the o�set within the
open �le speci�ed by the i/o request's o�set member.

4. If opened for append, the open �le's maximum extent shall be atomically increased by the
size necessary to write all of the gather bu�ers list, followed by an attempt to write each of
the regions of memory speci�ed by the i/o request into this newly allocated extent.

5. If the time taken to write the regions exceeds the deadline, the remaining write may be
cancelled and the function may fail by returning an error code which compares equal to
std::errc::timed_out.

6. Upon at least partial success (de�ned by at least one byte written), the bu�ers returned shall
be updated to re�ect the memory regions actually written. These may have di�erent

addresses, as well as sizes, to the bu�ers input, so correct code must always work with
the bu�ers returned, NOT the bu�ers input.

7. If the system currently does not have the resources to write even one of the bu�ers supplied,
an error code comparing equal to std::errc::resource_unavailable_try_again will be re-
turned. If at least part of one bu�er is written, this will be considered a partial success and
the bu�ers returned will have their sizes updated to indicate actual data written.

8. If any failure is returned by any of the syscalls called by the implementation which cannot
be obviously handled immediately, these shall be returned unmodi�ed and unmapped in the
error code.

We can write what we knowingly leave up to implementations to de�ne:

• It is implementation de�ned whether cancellation of i/o completes at any point close to the
deadline speci�ed, or at all.

• It is implementation de�ned whether the system has su�cient resources to issue any more than
one of the gather bu�ers in this operation (some implementations have very limited gather
bu�er limits which depend on system load, these limits can vary from call to call).

• It is implementation de�ned whether other processes doing a read of o�sets overlapping those
being updated will see torn writes (i.e. the write in the process of being applied).

• It is implementation de�ned whether writes are made visible to other processes, or placed
onto storage, in the order the program issues them.

• It is implementation de�ned whether a write which exceeds the �le's maximum extent may
cause the automatic increase of the �le's maximum extent, and whether the change in the

35

�le's maximum extent will be propagated in a timely fashion to other users of the �le20. It is
required that retrieving the �le's maximum extent immediately after a write which may have
automatically extended it, will return an accurate value for that instance of the handle only.

• It is implementation de�ned whether gather bu�ers shall be issued to the system one by one,
or as an atomic group/batch.

• It is implementation de�ned whether the current �le pointer for the underlying handle shall
be a�ected by the write.

There are some gotchas in the above though. For example, NFS has no wire format method
of indicating atomic appends, so append-only �les do not append atomically (Samba gets this
right). So saying that the function will do atomic appends is clearly not possible for some platform
con�gurations unless the standard library always takes a byte range lock at the end of all �les
opened for append only on a NFS mount.

And one might think that wise, until one considers what happens if you have a situation where
some processes are atomic appending locally and others are atomic appending via NFS. Now for
correctness, all atomic append �les need to take a byte range lock, which rather defeats the purpose
of the proposed library exposing kernel support for atomic appends.

My own personal viewpoint on this is to simply consider NFS to have a bug, and to not consider
it further. We mandate the minimum required semantics in the ISO speci�cation per function
in the low level �le i/o library, and leave the rest to �oat as implementation de�ned, naming
them speci�cally where we know of them. We accept that implementations will have a quality of
implementation choice which they themselves can make decisions on based on the platforms they
support, and their user bases.

7.3 Why do you consider race free �lesystem so important as to impact per-
formance for all code by default, when nobody else is making such claims?

Firstly, performance is only impacted if the host platform does not support direct syscall imple-
mentations for all the race free operations exposed by the proposed low level �le i/o library, and
the missing functionality must be emulated from user space. At least one major platform provides
a full set (Microsoft Windows), and I have an enhancement ticket open for Linux21 to implement
the missing support. If WG21 forms the proposed study group, you can be assured that I will try
to bang the drum with the OS vendors to add the missing support to their syscalls, indeed I may
just go submit a kernel patch to Linux myself (or persuade a Study Group member to do it).

I strongly take the opinion that correctness must precede performance, and as the �lesystem is
free to be concurrently permuted at any time by third parties, a correct implementation requires
program code to be as impervious as possible to �lesystem race conditions.

20Some major platforms do not present changes to maximum extent to other processes until the metadata for the
change has reached storage, yet reading o� the end of the apparent maximum extent will succeed. The time required
for the maximum extent value to propagate to all processes can take some milliseconds sometimes, and can confound
algorithms.

21https://bugzilla.kernel.org/show_bug.cgi?id=93441

36

https://bugzilla.kernel.org/show_bug.cgi?id=93441

I appreciate that many do not share this opinion. A great many ran ext3 as their Linux �ling system
when it was demonstrably incorrect in a number of important behaviours22. Such users preferred
maximum performance to losing data occasionally, and I don't mind any individual choosing that
for their individual needs.

But international engineering standards must be more conservative. Choices made here a�ect
everybody, including users where data loss must be avoided at all costs. Defaulting to race free
�lesystem is the safest choice. Without defaulting to race free �lesystem, code written using this
low level �le i/o library would be much less secure, more prone to surprising behaviour, and end
users of C++ code exposed to a higher risk of loss of their data.

8 Acknowledgements

Thanks to Nicol Bolas, Bengt Gusta�son, Chris Je�erson and Marshall Clow for their feedback.

9 References

[P0443] Jared Hoberock, Michael Garland, Chris Kohlho�, Chris Mysen, Carter Edwards, Gordon
Brown,
A Uni�ed Executors Proposal for C++
http://wg21.link/P0443

[P0709] Herb Sutter,
Zero-overhead deterministic exceptions
https://wg21.link/P0709

[P0829] Ben Craig,
Freestanding proposal
https://wg21.link/P0829

[P0939] B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, M. Wong,
Direction for ISO C++
http://wg21.link/P0939

[P1026] Douglas, Niall
A call for a Data Persistence (iostream v2) study group
https://wg21.link/P1026

[P1027] Douglas, Niall
SG14 Design guidelines for future low level libraries
https://wg21.link/P1027

[P1028] Douglas, Niall
SG14 status_code and standard error object for P0709 Zero-overhead deterministic exceptions
https://wg21.link/P1028

22Feel fear after reading http://danluu.com/file-consistency/.

37

http://wg21.link/P0443
https://wg21.link/P0709
https://wg21.link/P0829
http://wg21.link/P0939
https://wg21.link/P1026
https://wg21.link/P1027
https://wg21.link/P1028
http://danluu.com/file-consistency/

[P1029] Douglas, Niall
SG14 [[move_relocates]]
https://wg21.link/P1029

[P1030] Douglas, Niall
Filesystem path views
https://wg21.link/P1030

[1] Boost.Outcome
Douglas, Niall and others
https://ned14.github.io/outcome/

[2] Deukyeon Hwang and Wook-Hee Kim, UNIST; Youjip Won, Hanyang University; Beomseok
Nam, UNIST
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree
Proceedings of the 16th USENIX Conference on File and Storage Technologies (2018)
https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf

38

https://wg21.link/P1029
https://wg21.link/P1030
https://ned14.github.io/outcome/
https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf

	Introduction
	Latency to storage has become more important than it was
	The immature standard library support for file i/o leads to a lot of inefficient and buggy code and/or reinvention of the wheel

	Examples of use
	Read an entire file into a vector assuming a single valid extent:
	Write multiple gather buffers to a file:
	Map a file into memory and search it for a string (1):
	Map a file into memory and search it for a string (2):
	Kernel memory allocation and control (1):
	Kernel memory allocation and control (1):
	Sparsely stored arrays:
	Resumable i/o with Coroutines:
	Read all valid extents of a file using asynchronous file i/o:

	Impact on the Standard
	Proposed Design
	Handles to kernel resources
	Class hierarchy inheriting from handle
	Miscellaneous and utility classes and functions

	Generic filesystem algorithms and template classes
	Introduction
	Filesystem template library (so far) – the `FTL'
	Planned generic filesystem template algorithms yet to be reference implemented
	Functionality whose design is blocked on undecided features at WG21

	Filesystem functionality deliberately omitted from this proposal

	Design decisions, guidelines and rationale
	Race free filesystem
	No (direct) support for kernel threads
	Asynchronous file i/o is much less important than synchronous file i/o
	Pass through the raciness at the low level, abstract it away at the high level

	Technical specifications
	Frequently asked questions
	Why bother with a low level file i/o library when calling the kernel syscalls directly is perfectly fine?
	The filesystem has a reputation for being riddled with unpredictable semantics and behaviours. How can it be possible to usefully standardise anything in such a world?
	Why do you consider race free filesystem so important as to impact performance for all code by default, when nobody else is making such claims?

	Acknowledgements
	References

