
1

The Concurrent Invocation Library

Document number: P0642R4
Date: 2019-11-04
Project: Programming Language C++
Audience: SG1, LEWG, LWG
Authors: Mingxin Wang (Microsoft (China) Co., Ltd.),

Wei Chen (College of Computer Science and Technology, Key Laboratory for
Software Engineering, Jilin University, China)

Reply-to: Mingxin Wang <mingxwa@microsoft.com>

Table of Contents

The Concurrent Invocation Library ... 1
1 History.. 2

1.1 Changes from P0642R3 ... 2
1.2 Changes from P0642R2 ... 2
1.3 Changes from P0642R1 ... 3
1.4 Changes from P0642R0 ... 3

2 Introduction .. 3
3 Motivation and Scope .. 4

3.1 Limitations ... 4
3.1.1 Blocking .. 4
3.1.2 Execution Resource Management ... 5
3.1.3 Exception Handling ... 5
3.1.4 Runtime Extension .. 5
3.1.5 Synchronization ... 6
3.1.6 Supporting Async Libraries ... 6

3.2 The Solution .. 6
3.2.1 Avoiding Blocking... 7
3.2.2 Managing Execution Resources .. 7
3.2.3 Exception Handling ... 8
3.2.4 Exploring Synchronization .. 8
3.2.5 Exploring Runtime Extension ... 9
3.2.6 Supporting Async Libraries ... 9

4 Impact on the Standard... 10
5 Design Decisions.. 10

5.1 Execution Structures .. 10
5.2 Comparing with the Sender/Receiver Model ... 14

5.2.1 About Execution Closure .. 14
5.2.2 About spawn and sync_wait .. 14

2

5.2.3 About Exception .. 15
5.2.4 About the “done” Channel ... 15

5.3 Blocking Algorithms .. 16
5.4 Polymorphism VS Compile-time Routing ... 16
5.5 Variable Parameter VS Single Parameter ... 17

6 Technical Specifications ... 17
6.1 Header <concurrent_invocation> synopsis .. 17
6.2 Type Requirements .. 18

6.2.1 ConcurrentSession requirements ... 18
6.2.2 ConcurrentSessionAggregation requirements .. 18
6.2.3 ConcurrentContinuation requirements ... 18

6.3 Core Types ... 19
6.3.1 Class template concurrent_breakpoint... 19
6.3.2 Class template concurrent_token .. 20
6.3.3 Class template concurrent_context_preparation ... 20

6.4 Helper Utilities... 21
6.4.1 Helper for CSA .. 21
6.4.2 Helper for Concurrent Continuation .. 23

6.5 Function templates concurrent_invoke ... 23

1 History

1.1 Changes from P0642R3

- Remove the class template invalid_concurrent_breakpoint;
- Remove dependency from the concept of "Sink Argument" [P1648R2];
- Update the API for creating concurrent invocation context with the new class template

concurrent_context_preparation, and the helper function template
prepare_concurrent_context.

1.2 Changes from P0642R2

- Add exception support for concurrent_invoke;
- Remove const qualifier when accessing the contextual data concurrently;
- Rename the "ConcurrentInvocationUnit" requirements to "ConcurrentSessionAggregation";
- Add the class template concurrent_invocation_error;
- Add the class template concurrent_breakpoint as the exposed data structure for concurrent invocation;
- Rename the member function fork of concurrent_token to spawn;
- Move member functions spawn and context from concurrent_token to

concurrent_breakpoint;
- Remove the class template concurrent_finalizer;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r2.pdf

3

- Rename the class template concurrent_callable to serial_concurrent_session;
- Rename the class template contextual_concurrent_callable to concurrent_callable;
- Add support for non-moveable but reducible context type;
- Add error channel for the class template async_concurrent_continuation;
- Make concurrent_invoke internally blocking rather than returning a value of std::future;
- Temporarily remove the class thread_executor because it is currently unimplementable as a pure library

with complete semantics on any platform I know, thanks to Billy O'Neal.

1.3 Changes from P0642R1

- Change the title of the paper from "Structure Support for C++ Concurrency" into "The Concurrent Invocation
Library";

- Change the motivating example into a more generic one;
- Change function templates sync_concurrent_invoke and async_concurrent_invoke into

concurrent_invoke.
- Remove the concepts of "Atomic Counter", "Atomic Counter Initializer", "Atomic Counter Modifier", "Linear

Buffer", which become implementation-defined details;
- Add class bad_concurrent_invocation_context_access and class templates

concurrent_token and concurrent_finalizer;
- Remove the concept of "Execution Agent Portal", which could be replaced by the Executors [P0443R10];
- Add two executor extensions: in_place_executor and thread_executor;
- Change requirements for runtime polymorphism into compile-time overload resolution.

1.4 Changes from P0642R0

- Redefine the AtomicCounterModifier requirements: change the number of times of "each of the first
fetch() operations to the returned value of acm.increase(s)" from (s + 1) to s;

- Redefine the ConcurrentProcedure requirements: change the return type of cp(acm, c) from "Any
type that meets the AtomicCounterModifier requirements" to void, update the corresponding sample
code;

- Redefine the signature of function template concurrent_fork: change the return type from "Any type that
meets the AtomicCounterModifier requirements" to void, update the corresponding sample flow chart.

2 Introduction

Currently, there is little structural support to invoke multiple procedures concurrently in C++. Although we could use
multiple call to std::async or use other facilities such as std::latch to control runtime concurrency and
synchronization, there are certain limitations in usability, extendibility and performance. Based on the requirements in
concurrent invocation, this proposal is intended to add structural support in concurrent invocation.

With the support of the proposed library, not only are users able to structure concurrent programs like serial ones as
flexible as function calls, but also to customize execution structure based on platform and performance considerations.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0443r10.html

4

The implementation for the library is available here.

3 Motivation and Scope

This section includes a typical concurrent programming scenario, leading to 6 aspects of limitations when designing
concurrent programs with the facilities in the standard.

3.1 Limitations

Suppose it is required to make several (two or more; let's take "two" as an example) different library calls and save
their return values for subsequent operations. The library APIs are defined as follows:

ResultTypeA call_library_a();

ResultTypeB call_library_b();

In order to increase performance, we may make the two function calls concurrently. With the utilities defined in the

standard, we could use "std::thread", "std::async" or "std::latch" (Concurrency TS). For example, if
"std::async" is used, the following code may be produced:

std::future<ResultTypeA> fa = std::async(call_library_a);

std::future<ResultTypeB> fb = std::async(call_library_b);

ResultTypeA ra = fa.get();

ResultTypeB rb = fb.get();

// Subsequent operations

In the code above, there could be limitations in different execution contexts. Concretely, there could be 6 aspects of

limitations in blocking, execution resource management, exception handling, runtime extension, synchronization and
supporting async libraries.

3.1.1 Blocking

The sample code tries to obtain the result of the asynchronous calls via std::future::get(). However, this will
also block the calling thread and may reduce throughput of a system.

Additionally, we may turn to std::experimental::when_all and
std::experimental::future::then to avoid blocking:

std::experimental::when_all(std::move(fa), std::move(fb)).then(

 [](auto&& f) {

 ResultTypeA ra = std::get<0u>(f.get()).get();

 ResultTypeB rb = std::get<1u>(f.get()).get();

 // Subsequent operations

https://github.com/wmx16835/my-stl/blob/4afe9edc22b30e9d9a953db375d46ad20071296a/main/p0642/concurrent_invocation.h

5

 });

However, it requires more code, much runtime overhead (except for blocking), and potentially more difficulty in

managing execution resources since the thread executing the continuation is unspecified.
Even if blocking caused by std::future::get() is rather acceptable than use a callback, there are many

blocking synchronization primitives that may have better performance supported by various platforms, such as the
"Futex" in modern Linux, the "Semaphore" defined in the POSIX standard and the "Event" in Windows. Besides, the
"work-stealing" strategy is sometimes used in large-scale systems, such as the Click programming language, the
"Fork/Join Framework" in the Java programming language and the "TLP" in the .NET framework.

3.1.2 Execution Resource Management

In the sample code for scenario 1, the two tasks are launched with std::async using default policy
std::launch::async | std::launch::deferred. Behind the function, two concrete threads are created for
the two tasks and will be destroyed when the tasks are completed.

This solution is more efficient than sequential calls of the two functions if there are abundant execution resources (e.g.,
CPU load is low) and the overhead in calling the functions is less than the that in creating new threads. However, in a
high-concurrency system, "threads" are relatively "sensitive" resources because

1. creating and destroying threads usually involve system calls, which may block other system calls and cost much
CPU time, and

2. too many running threads may increase management costs in an operating system and reduce throughput.
A solution to this issue is to use a more generic "Execution Agent" (e.g., thread pool) to control the total number of

threads, as well as to avoid overhead in creating and destroying concrete threads. However, if it is required to use another
execution agent other than creating a new thread to increase performance, std::async won't help and we may need to
write similar code from scratch.

3.1.3 Exception Handling

It usually requires a lot of effort to handle exceptions appropriately across concurrent contexts, because C++ only
support automatically propagating exception in serial code. Although std::exception_ptr allows us to store an
exception and replay it across contexts, a standard way to handle exceptions across concurrent context would largely
simplify the implementation for concurrent algorithms.

3.1.4 Runtime Extension

If one of the libraries in the motivating example may fork independent tasks at runtime that shall share a same
synchronization point, the library is required to perform proper synchronization and return when all the subtasks are
completed.

For example, when implementing a library for parallel quick-sort algorithm, we may not able to know the expected
concurrency at the beginning of the algorithm, because the number is related to the order of the input data. Therefore, we
may seek for more flexible facilities for concurrency control that support runtime extension. For example, the "Phaser" in
the Java programming language [java.util.concurrent.Phaser] provides such mechanism, but similar facilities are missing

https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/Phaser.html

6

in C++.

3.1.5 Synchronization

If n libraries are concurrently called with std::async, there will be a total number of n times of
std::future::get(), introducing n times of "acquire-release" synchronization overhead. However, since the
concurrent calls are only required to happen before the subsequent process, one "acquire" synchronization operation
would be enough.

In the standard, there are four utilities that could efficiently perform such "many-to-one" synchronization:
std::experimental::latch, std::experimental::barrier, std::condition_varable and
std::atomic, where the semantics of the former three ones are coupled with "blocking", not being able to be
optimized.

3.1.6 Supporting Async Libraries

Although one procedure occupies one execution agent in many cases, there are certain requirements where some
procedures may cross multiple execution agents, and std::async will not work. For example, when a procedure
involving async IO calls with a library like:

template <class ResponseHandler>

void async_socket_io(const socket_request& request, ResponseHandler&& handler)

Requires: is_invocable_v<ResponseHandler, socket_response> is true.
Effects: Execute the socket request and invoke the handler with the response data on an unspecified thread when the
data is available.

std::async will not work either, and more code is required to control synchronizations among execution agents.

3.2 The Solution

To implement with the proposed library for the same requirement in the previous section, that is to make different
library calls and save their return values for subsequent operations, the following code could be acceptable:

// #1: Construct an executor

thread_executor e;

// #2: Construct the Concurrent Session Aggregation

auto csa = std::tuple{

 serial_concurrent_session{e, [](contextual_data& cd) {

 cd.result_of_library_a = call_library_a();

 }},

 serial_concurrent_session{e, [](contextual_data& cd) {

 cd.result_of_library_b = call_library_b();

7

 }}};

// #3: Make invocation and block

contextual_data result = concurrent_invoke(std::move(csa), contextual_data{});

// Subsequent operations

The type contextual_data is defined as follows:

struct contextual_data {

 ResultTypeA result_of_library_a;

 ResultTypeB result_of_library_b;

};

On step #1, a value of thread_executor was constructed, which is some implementation of the Executor,

providing asynchronization.
With the executor, we could construct a "Concurrent Session Aggregation" (CSA) on step #2. A CSA could either be a

type meeting the ConcurrentSession requirements (defined in the technical specifications) or an aggregation
(container or tuple) of CSA. The class template serial_concurrent_session is a helper class in the proposed
library that constructs a concurrent session with an executor and a callable object.

On step #3, the concurrent invocation is performed with a proposed function template concurrent_invoke with
the provided contextual data. Note that there is a move construction to the contextual data, and it could be avoid with
prepare_concurrent_context<contextual_data>().

3.2.1 Avoiding Blocking

Blocking is usually harmful to throughput in performance critical scenarios. To avoid blocking with the proposed
library, we could add a third argument to the function template concurrent_invoke indicating a continuation. For
example:

auto ct = async_concurrent_continuation(

 thread_executor{}, [](contextual_data&& data) { /* Subsequent operations */ });

concurrent_invoke(std::move(csa), contextual_data{}, std::move(ct));

In the code above, async_concurrent_continuation is a helper class template proposed in the library to

construct continuation for concurrent invocation. A new thread is expected to be created for the continuation in the
sample code.

3.2.2 Managing Execution Resources

Thread could be expensive execution resources in high performance service, and frequently creating and destroying
threads may increase system overhead. Therefore, the "thread pool" was invented to reuse execution resources in

8

different context.
To apply different management strategy for execution resource for various needs, we could construct different Oneway

Executors. For example, the class static_thread_pool::executor_type proposed in the "Executors" library
[P0443R10].

3.2.3 Exception Handling

The proposed library provides a comprehensive mechanism for exception handling during concurrent invocation, no
matter invoking synchronously or asynchronously. For instance, the concurrent invocation will collect the exceptions
propagated from each concurrent session and propagate all the exceptions out of the context when the invocation is done.

Synchronous concurrent invocation propagates the caught exception by throwing a nested exception, which could be
caught with a try-catch block:

try {

 contextual_data result = concurrent_invoke(std::move(csa), contextual_data{});

} catch (const concurrent_invocation_error<>& ex) {

 for (auto& ep : ex.get_nested()) {

 // ...

 }

}

Asynchronous concurrent invocation propagates the caught exceptions with the error channel in the continuation,

which is required by design and optional for the class template async_concurrent_continuation. For example:

auto continuation = async_concurrent_continuation{

 thread_executor{},

 []() { /* "Normal control flow... */ }, [](auto&& exceptions) {

 for (auto& ep : exceptions) {

 // ...

 }

}};

3.2.4 Exploring Synchronization

Too many synchronization operations is harmful for performance. If n libraries are called with std::async, there
will be a total number of n times of full acquire-release synchronizations, whereas n times of release synchronization and
only one acquire synchronization operations are required for concurrent_invocation. Therefore, the
synchronization overhead for the proposed library, for a same concurrency requirement, could be no higher than
std::experimental::latch, while providing non-blocking mechanism.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0443r10.html

9

3.2.5 Exploring Runtime Extension

If runtime extension is required for some procedures, we could change the parameter type of the CSA from the
"contextual data type" into a breakpoint. For example, the expression in second step of the sample implementation:

serial_concurrent_session{e, [](const contextual_data& cd) {

 cd.result_of_library_b = call_library_b();

}

is equivalent to:

serial_concurrent_session{e, [](auto& breakpoint) {

 breakpoint.context().result_of_library_b = call_library_b();

}

Note that the proposed library will try to invoke the input callable object with the breakpoint; if it is not invocable

with a breakpoint, the library will try to invoke with breakpoint.context(); if it is also not invocable with the
result of breakpoint.context(), the library will try to invoke with no arguments; if it is still not invocable, the
expression is ill-formed.

With the breakpoint, we will be able to do more things than performing operations on the context. One of the
coolest things is to "spawn" the current session with another CSA, and the CSA will share a same concurrent invocation
with the current session as if it were a part of the original CSA for the initial concurrent invocation. This technique is
useful when the concurrency is only known at runtime.

3.2.6 Supporting Async Libraries

When working with asynchronous libraries, it usually requires more engineering effort to control concurrency and
synchronization. There are little facilities in C++ that we could use directly for such requirements. In the Java
programming language, method thenCompose(Function<? super T,? extends CompletionStage<U>>
fn) in the interface java.util.concurrent.CompletionStage<T> provides such mechanism. However, not
only could it fragment the program, reducing readability, but also tightly couples to the Future mechanism, reducing
performance.

Async libraries are easily supported with the proposed library in a concurrent invocation, because the end of a
procedure is not defined as the last line of the callable code, but the destruction of the token. For example, if we need to
call the async library mentioned in the "Limitations in Supporting Async Libraries":

template <class ResponseHandler>

void async_socket_io(const socket_request& request, ResponseHandler&& handler);

we could include the token as a part of the response handler:

[](auto&& token) {

 // ...

https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletionStage.html#thenCompose(java.util.function.Function)
https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletionStage.html#thenCompose(java.util.function.Function)
https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletionStage.html

10

 async_socket_io(

 /* some request */,

 [token = std::move(token)](socket_response) { /* ... */ });

 // ...

};

This feature also provides convenience to perform asynchronous and recursive concurrent invocation.

4 Impact on the Standard

This design is a pure library extension, depends on another ongoing proposal for sink argument [P1648R2]. It also has
the potential to be used to implement the parallel algorithms in Parallel TS with expected performance.

5 Design Decisions

5.1 Execution Structures

In concurrent programs, executions of tasks always depend on one another, thus the developers are required to control
the synchronizations among the executions; these synchronization requirements can be divided into 3 basic
categories: "one-to-one", "one-to-many", "many-to-one". Besides, there are "many-to-many" synchronization
requirements; since they are usually not "one-shot", and often be implemented as a "many-to-one" stage and a
"one-to-many" stage, they are not fundamental ones.

"Function" and "Invocation" are the basic concepts of programming, enabling users to wrap their logic into units and
decoupling every part from the entire program. This solution generalizes these concepts in concurrent programming.

When producing a "Function", only the requirements (pre-condition), input, output, effects, synchronizations,
exceptions, etc. for calling this function shall be considered; who or when to "Invoke" a "Function" is not to be
concerned about. When it comes to concurrent programming, there shall be a beginning and an ending for each
"Invocation"; in other words, a "Concurrent Invocation" shall begin from "one" and end up to "one", which forms a
"one-to-many-to-one" synchronization.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r2.pdf

11

Figure 1

The most common concurrent model is starting several independent tasks and waiting for their completion. This is the
basic model for "Concurrent Invoke", and typical scenario is shown in Figure 1.

Figure 2

Turning blocking program into non-blocking ones is a common way to break bottleneck in throughput. We could let

the execution agent that executes the last finished task in a concurrent invocation to do the rest of the works (the concept

12

"execution agent" is defined in C++ ISO standard 30.2.5.1: An execution agent is an entity such as a thread that may
perform work in parallel with other execution agents). A typical scenario is shown in Figure 2.

Figure 3

The "Concurrent Invoke" models are the static execution structures for concurrent programming, but not enough for

runtime extensions. For example, when implementing a concurrent quick-sort algorithm, it is hard to predict how many
subtasks will be generated. Therefore, we need a more powerful execution structure that can expand a concurrent
invocation, which means, to add other tasks executed concurrently with the current tasks in a same concurrent invocation
at runtime. This model is defined as "Spawn" (previously "Concurrent Fork"). A typical scenario for the "Spawn" model
is shown in Figure 3.

13

Figure 4

Figure 5

With the concept of the "Concurrent Invoke" the "Spawn" models, we can easily build concurrent programs with

14

complex dependencies among the executions, meanwhile, stay the concurrent logic clear. Figure 4 shows a typical
scenario for a composition of the " Concurrent Invoke" and the "Spawn" models; Figure 5 shows a more complicated
scenario.

From the "Concurrent Invoke" and the "Spawn" models, we can tell that:
- the same as serial invocations, the "Concurrent Invoke" models can be applied recursively, and
- applying the "Spawn" model requires one existing concurrent invocation to expand.

5.2 Comparing with the Sender/Receiver Model

During the discussion for P0642 in SG1 in Cologne, 2019, I was encouraged to read [P1660R0] to see if the “Senders
& Receivers” model could be compatible with the proposed “Concurrent Invocation Library”. After reading P1660 and
some related papers, I found there are many similar “concepts” trying to abstract asynchronous execution.

The following content is copied from my reply in the email thread (CIU (aka. Concurrent Invocation Unit) was
renamed to CSA (aka. Concurrent Session Aggregation) in this revision):

As a result, I think the abstraction for “sender & receiver” may be overdesigned and unnecessary, because we would
be able to design more concrete APIs (like the way P0642 does) with the same extendibility/performance, and “more
concrete APIs” promises less learning cost and more usability.

Thanks to Kirk Shoop tried to implement P0642 with the Sender/Receiver model. Looking into the sample code, I have
the following opinions:

5.2.1 About Execution Closure

I noticed that a new class template ensure_callback (line 1446~1464) was added as a decorator of tasks being
submitted to an EA, providing default implementation for done and error functions. There is also a facade template
(PFA, P0957) Callback (line 516~524) providing corresponding polymorphic support. They are used in the class
thread_executor (line 795) and class template static_thread_pool (line 1538, 1588). However, I neither see
a single call to the two functions done and error in the sample code, nor how users could interact with the two
functions, since the lifetime of the object, at least in the two use cases, are managed by the underlying infrastructures.

I think the two facilities are unreasonably over-designed for thread_executor and static_thread_pool, and
I do not find enough motivation to introduce the complexity, at least for the sample code.

5.2.2 About spawn and sync_wait

If I understand correctly, the class template ConcurrentInvokeSender (line 1195~1217), aka.
concurrent_invoke_sender_t (line 1225, 1226), should be the "Sender" model for concurrent invocation. It is
also the return type of concurrent_invoke (line 1219~1223), where users could perform sync_wait (line
1434~1440) or spawn (line 1514~1519).

Per usability, I do not see increment comparing to P0642; on the contrary, it is additionally requested for users to
explicitly wrap the returned "Sender" with a sync_wait or spawn. I am looking for more concrete use cases where
sync_wait and spawn could be useful. Analyzing the memory usage for spawn, it turned out to be less efficient than
the implementation for P0642, because it allocates larger memory on the heap (line 1516), including:

1. The VTABLE introduced by the virtual keyword (line 1474), and

https://godbolt.org/z/qsnLCA

15

2. The decay-copied context parameter (line 1201), and
3. The decay-copied CIU (line 1202), and
4. The decay-copied continuation (line 1203), and
5. The additional bit required for std::optional (line 1204), and
6. The pointer to spawned_op_base (line 1481).
In the list above, 1~4 seem to be inevitable with "Sender & Receiver", because a "Sender" needs the information to

build a breakpoint (line 1207~1210). 5 is required to distinguish the state of an Op on its destruction. 6 is needed for
destroying the Op (line 1486). In the implementation for P0642, it is also needed to destroy the breakpoint with the
invocation has finished, that is why this pointer was provided to the "Concurrent Callback" (line 954, 971). However,
the "Sender & Receiver" model does not support such customization and need to store the pointer, even if the offset of
the pointer to the breakpoint is always a compile-time constant.

As a conclusion, I think “Sender & Receiver” seems NOT a zero-overhead abstraction to implement concurrent
invocation.

5.2.3 About Exception

After testing the code, I found sync_wait on a ConcurrentInvokeSender throws
std::vector<std::exception_ptr> when there is an error in the invocation, while
std::p0642::concurrent_invocation_error is supposed to be thrown. To clarify the design of P0642, the
error type passed to the continuation in asynchronous concurrent invocation is
std::vector<std::exception_ptr>, while the exception type thrown in synchronous concurrent invocation is
std::p0642::concurrent_invocation_error.

The reason why the types are designed to be different is that the mechanism of passing an error as an argument and
throwing exception are different in C++. When passing an error in value, the type of the error could be resolved at
compile-time, and users expect the type to have as clear semantics as possible to code with. On the other hand, when
throwing an error, the type of the error could only be resolved at runtime in a catch block, that is the reason why we
have the exception inheritance hierarchy to help us resolving the type of an error.

I think “Sender & Receiver” may lack of consideration in the difference between the two ways of error handling.

5.2.4 About the “done” Channel

I noticed that the done function is added both in the class template async_concurrent_continuation (line
1247) and sync_wait_promise (line 1393~1396). However, I do not see any reference to the functions, or how it
could be used. For instance, if done should be called in a concurrent invocation, there must be a place to store the
cancelation information to determine whether to call it at runtime (e.g., with an std::atomic_bool). However, it
should not be the right decision to go, because:

1. Cancelation is only one possible collaboration in a concurrent invocation, it has nothing special from other
collaborations, and

2. A single “bit” (std::atomic_bool) is usually not enough for a cancelation. For example, when
implementing a thread pool, a cancelation signal should always be sent to the managed threads. If the thread
pool is simply implemented with a traditional monitor (one std::mutex + one
std::condition_variable), the cancelation signal should always be sent when the calling thread holds a
lock on the mutex.

16

I believe cancelation is a useful pattern, but I still think it should not be in the same level with the concurrent
invocation.

5.3 Blocking Algorithms

In previous revisions of this proposal, the concept "Binary Semaphore" was introduced as an abstraction and
std::future was used for the Ad-hoc synchronizations required in the "Concurrent Invoke" model. Typical
implementations may have one or more of the following mechanisms:

- simply use std::promise<void> to implement, as mentioned earlier, or
- use the "Spinlock" if executions are likely to be blocked for only short periods, or
- use the Mutexes together with the Condition Variables to implement, or
- use the primitives supported by specific platforms, such as the "Futex" in modern Linux, the "Semaphore"

defined in the POSIX standard and the "Event" in Windows, or
- have "work-stealing" strategy that may execute other unrelated tasks while waiting.

However, I found there could be more requirements in blocking:
- sometimes blocking could be tolerated to reduce engineering cost, but we may also need timing mechanism to

ensure the stability of the entire system, which will make it the concept more complicated and the lifetime of
the context shall be extended until every procedures in the concurrent invocation has finished, and

- If we perform blocking as we invoke the library, the CSA will not be destroyed until blocking is released
automatically or due to timeouts, etc. On the one hand, it may be good for performance because async
procedures may reuse the resources on the call stack of the calling thread without copying them. However, on
the other hand, if the CSA could be destroyed in time, not only could the resources be released, but we will be
able to submit tasks to some execution agents in batch, when the executor is destroyed, to reduce the number of
critical section and increase performance. After all, it is convenient to manage all the contextual resources in
the "concurrent context" if necessary.

Therefore, the concept of "Binary Semaphore" was removed based on the considerations above, leaving the blocking
algorithm to be implementation-defined.

5.4 Polymorphism VS Compile-time Routing

I have tried many ways to design the API for the concurrent invocation library, and I once thought that polymorphism
could be the best solution for engineering experience, and that was my original motivation for the PFA [P0957R3].
However, after exploring more in metaprogramming, I found proper compile-time routing has more usability and zero
runtime overhead comparing to polymorphism. Therefore, the PFA was separated from this paper from revision 1.

Here is a part of a deprecated design for concurrent invocation:

template <class F = /* A polymorphic wrapper */, class C = std::vector<F>>

class concurrent_invoker {

 public:

 template <class _F>

 void attach(_F&& f);

 template <class T>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0957r3.pdf

17

 void invoke(T&& context);

};

The class template concurrent_invoker holds a container for the procedures to be invoked concurrently.

However, it may introduce extra runtime overhead since F is a (default or customized) polymorphic wrapper, and an
extra variable-size container will be constructed even if the concurrency could be determined at compile-time.

In order not to introduce extra runtime overhead and retain usability, the concept of "CSA" (Concurrent Session
Aggregation) was proposed with recursive semantics.

5.5 Variable Parameter VS Single Parameter

There are many variable parameter function templates in the standard providing the mechanism for in-place
construction. Actually, I found in-place construction is indispensable in concurrent programming, especially for the
contexts including concurrent data structure such as concurrent queue or map, which are usually not move-constructible
at all.

However, since there could be many parameters for a function template with different semantics, it becomes difficult to
let all of them have the potential for in-place construction. Therefore, the class template
concurrent_context_preparation is designed as a generic solution for lifetime management and in-place
construction for the contextual data.

6 Technical Specifications

6.1 Header <concurrent_invocation> synopsis

namespace std {

template <class CTX = void> class concurrent_invocation_error;

template <class CTX, class CB> class concurrent_breakpoint;

template <class CTX, class CB> class concurrent_token;

struct sync_concurrent_callback;

template <class CT> class async_concurrent_callback;

template <class T, class... Args> class concurrent_context_preparation;

template <class T, class... Args> auto prepare_concurrent_context(Args&&... args);

template <class CSA, class CTX_P, class CT>

void concurrent_invoke(CSA&& csa, CTX_P&& ctx, CT&& ct);

template <class CSA, class CTX_P = concurrent_context_preparation<void>>

auto concurrent_invoke(CSA&& csa, CTX_P&& ctx = CTX_P{});

class unexecuted_concurrent_callable;

template <class F, class CTX, class CB> class concurrent_callable;

18

template <class E, class F> class serial_concurrent_session;

template <class E, class F, class EH>

class async_concurrent_continuation;

struct throwing_concurrent_error_handler;

}

6.2 Type Requirements

6.2.1 ConcurrentSession requirements

A type CS meets the ConcurrentSession requirements of specific types CTX, CB if the following expressions are
well-formed and have specific semantics (cs denotes a value of CS; t denotes a value of concurrent_token<CTX,
CB>) .

cs.start(t)

Effects: Start a concurrent session with the given token and is encouraged to return immediately. The session will be
alive until the given token becomes invalid.

6.2.2 ConcurrentSessionAggregation requirements

A type CSA meets the ConcurrentSessionAggregation requirements of specific types CTX, CB if
- it meets the ConcurrentSession requirements of CTX, CB, or
- it is a "Generic Tuple" or a "Generic Container" of types meeting the ConcurrentSessionAggregation

requirements of CTX, CB.
A "Generic Tuple" is an instantiation of std::tuple, std::pair or std::array. A "Generic Container" is the

type of any range expression that is iterable with a range-based for statement.

6.2.3 ConcurrentContinuation requirements

A type CT meets the ConcurrentContinuation requirements of specific type CTX if the following expressions
are well-formed and have specific semantics (ct denotes a value of CT; ctx denotes a value of CTX
if !is_void_v<CTX>; ex denotes a value of std::vector<std::exception_ptr>).

When is_void_v<CTX> is true:

ct()

Effects: Executing normal control flow.

ct.error(ex)

Effects: Executing error control flow.

19

Otherwise:

ct(ctx)

Effects: Executing normal control flow.

ct.error(ex, ctx)

Effects: Executing error control flow.

6.3 Core Types

There are four core class templates and one core class in this library.
1. Class template concurrent_breakpoint is the data structure for concurrent invocation and has

unspecified constructors.
2. Class template concurrent_invocation_error is thrown during blocking concurrent invocation when

any concurrent session propagates any exception.
3. Class template concurrent_token is the facility for CSA to collaborate in the concurrent invocation.
4. Class template async_concurrent_callback and class sync_concurrent_callback are the

callback types for non-blocking and blocking concurrent invocation.
5. Class template concurrent_context_preparation is designed for in-place construction of the

contextual data.

6.3.1 Class template concurrent_breakpoint

Any value of concurrent_breakpoint shall associate with a concurrent invocation. The constructors and
destructor of any instantiation of the class template concurrent_breakpoint is undefined.

template <class CTX, class CB>

class concurrent_breakpoint {

 public:

 template <class CSA> void spawn(CSA&& csa);

 add_lvalue_reference_t<CTX> context();

};

template <class CSA> void spawn(CSA&& csa);

Effects: Starting each of them with a token associated to *this as if they are part of the initiating concurrent
invocation.

add_lvalue_reference_t<CTX> context();

Returns: An lvalue reference of the context if is_void_v<CTX> is false.

20

6.3.2 Class template concurrent_token

Any well-formed instantiation for concurrent_token is default-constructible, move-constructible and
move-assignable. The default constructor will construct a value of concurrent_token associated with no concurrent
invocation.

template <class CTX, class CB>

class concurrent_token {

 public:

 concurrent_token();

 concurrent_token(concurrent_token&&);

 ~concurrent_token();

 concurrent_token& operator=(concurrent_token&&);

 bool is_valid() const noexcept;

 void reset() noexcept;

 concurrent_breakpoint<CTX, CB>& get() const;

 void set_exception(exception_ptr&& p);

};

~concurrent_token();

Effects: Join the current procedure to the concurrent invocation if the *this associates to a valid value of
concurrent_breakpoint<CTX, CB>, and destroy *this. The last join operation will trigger the execution
of the callback.

bool is_valid() const noexcept;

Returns: true if and only if *this associates with a concurrent invocation.

void reset() noexcept;

Effects: If *this associates with a concurrent invocation, detach from the invocation; otherwise no effect.

concurrent_breakpoint<CTX, CB>& get() const;

Requires: *this associates with a concurrent invocation.
Returns: An lvalue reference of the associated breakpoint.

void set_exception(exception_ptr&& p);

Requires: *this associates with a concurrent invocation.
Effects: Propagate an exception to the associated concurrent invocation and detach from it.

6.3.3 Class template concurrent_context_preparation

template <class T, class... Args>

class concurrent_context_preparation {

21

 public:

 template <class... _Args>

 constexpr explicit concurrent_context_preparation(_Args&&... args);

 constexpr concurrent_context_preparation(

 concurrent_context_preparation&&) = default;

 constexpr concurrent_context_preparation(

 const concurrent_context_preparation &) = default;

 constexpr concurrent_context_preparation& operator=(

 concurrent_context_preparation&&) = default;

 constexpr concurrent_context_preparation& operator=(

 const concurrent_context_preparation&) = default;

 constexpr std::tuple<Args...> get_args() const&;

 constexpr std::tuple<Args...>&& get_args() && noexcept;

};

template <class... _Args>

constexpr explicit concurrent_context_preparation(_Args&&... args);

Effects: Initializes the arguments with the corresponding value in std::forward<_Args>(args).

constexpr std::tuple<Args...> get_args() const&;

Returns: A copy of the stored arguments tuple.

constexpr std::tuple<Args...>&& get_args() && noexcept;

Returns: An rvalue reference of the stored arguments tuple.

6.4 Helper Utilities

Helper utilities are not required for every usage for this library but has the potential for improving engineering
experience with concurrent invocation.

6.4.1 Helper for CSA

There are two class templates and a function template that helps creating asynchronous CSA with a Oneway Executor
and a callable value.

template <class F, class CTX, class CB>

class concurrent_callable {

 public:

 explicit concurrent_callable(F&& f, concurrent_token<CTX, CB>&& token);

 concurrent_callable(concurrent_callable&&);

22

 concurrent_callable& operator=(concurrent_callable&&);

 void operator()() noexcept;

};

Any well-formed instantiation for concurrent_callable is move-constructible and move-assignable. It may

associate with a callable value f of type F and a value token of type concurrent_token<CTX, CB> associating
with a concurrent invocation.

Invoking a value of type concurrent_callable<E_F, CTX, CB> will invoke f of type F and destroy token:
- If std::is_invocable_v<F, concurrent_breakpoint<CTX, CB>> is true, perform

std::invoke(f, token.get()), or
- If std::is_invocable_v<F, std::add_lvalue_reference_t<CTX>> is true, perform

std::invoke(f, token.get().context()), or
- If std::is_invocable_v<F> is true, perform std::invoke(f), or
- Otherwise, the expression is ill-formed.

If a value of concurrent_callable associating with a valid value of concurrent_token is destroyed, an
exception of type unexecuted_concurrent_callable will be attached to the concurrent invocation.

template <class E, class F>

class serial_concurrent_session {

 public:

 template <class _E, class _F>

 explicit serial_concurrent_session(_E&& e, _F&& f);

 serial_concurrent_session(serial_concurrent_session&&);

 serial_concurrent_session(const serial_concurrent_session&);

 serial_concurrent_session& operator=(serial_concurrent_session&&);

 serial_concurrent_session& operator=(const serial_concurrent_session&);

 template <class CTX, class CB>

 void start(concurrent_token<CTX, CB>&& token);

};

template <class _E, class _F>

serial_concurrent_session(_E&&, _F&&)

 -> serial_concurrent_session<decay_t<_E>, decay_t<_F>>;

Any well-formed instantiation for concurrent_callable is copy-constructible, copy-assignable,

move-constructible and move-assignable. It associates with a value e of type E and a value f of type F. The type E shall
meet the Executor requirements.

template <class CTX, class CB>

void start(concurrent_token<CTX, CB>&& token);

Effects: Equivalent to move(e_).execute(concurrent_callable<F, CTX, CB>{move(f_),

move(token)}).

23

6.4.2 Helper for Concurrent Continuation

The class template async_concurrent_continuation is a default async implementation for concurrent
continuation required in non-blocking concurrent invocations. It meets the ConcurrentContinuation requirements
of any potential type. A value of an instantiation of async_concurrent_continuation associates with an
Executor, a callable value indicating normal control flow channel, and an exception handler indicating error control
flow channel. The default implementation for error control flow channel throws concurrent_invocation_error
to the host executor.

template <class E, class F, class EH>

class async_concurrent_continuation {

 public:

 template <class _E, class _F, class _EH = EH>

 explicit async_concurrent_continuation(_E&& e, _F&& f, _EH&& eh = EH{});

 template <class CTX>

 void operator()(CTX&& ctx);

 void operator()();

 template <class CTX>

 void error(vector<exception_ptr>&& ex, CTX&& ctx);

 void error(vector<exception_ptr>&& ex);

};

struct throwing_concurrent_error_handler {

 template <class CTX>

 void operator()(vector<exception_ptr>&& ex, CTX&& ctx) const;

 void operator()(vector<exception_ptr>&& ex) const;

};

template <class _E, class _F, class _EH>

async_concurrent_continuation(_E&&, _F&&, _EH&&)

 -> async_concurrent_continuation<decay_t<_E>, decay_t<_F>, decay_t<_EH>>;

template <class _E, class _F>

async_concurrent_continuation(_E&&, _F&&)

 -> async_concurrent_continuation<decay_t<_E>, decay_t<_F>,

 throwing_concurrent_error_handler>;

6.5 Function templates concurrent_invoke

The "reduced value" of a value ctx of type CTX is defined as:
- If ctx.reduce() is a well-formed expression, the reduced value is the return value of the expression, or
- If CTX is move-constructible, the reduced value is ctx, or

24

- Otherwise, there is no reduced value of ctx.
The "reduced type" of ctx is the type of the reduced value if exist, or void otherwise.

template <class CSA, class CTX_P, class CT>

void concurrent_invoke(CSA&& csa, CTX_P&& ctx, CT&& ct);

Remarks: Let CTX be T if decay_t<CTX_P> is a value of concurrent_context_preparation of some
types T and Args..., or decay_t<CTX_P> otherwise.
Requires: Type CSA meets the ConcurrentSessionAggregation requirements of CTX,
async_concurrent_callback<decat_t<CT>>. Type decay_t<CT> shall meet the
ConcurrentContinuation requirements of the reduced type of CTX.
Effects: Construct a value of concurrent_breakpoint<CTX,

async_concurrent_callback<decat_t<CT>>> and perform non-blocking concurrent invocation with
csa on the breakpoint.

template <class CSA, class CTX_P = concurrent_context_preparation<void>>

decltype(auto) concurrent_invoke(CSA&& csa, CTX_P&& ctx = CTX_P{});

Remarks: Let CTX be T if decay_t<CTX_P> is a value of concurrent_context_preparation of some
types T and Args..., or decay_t<CTX_P> otherwise.
Requires: Type CSA meets the ConcurrentSessionAggregation requirements of CTX,
sync_concurrent_callback.
Effects: Construct a value of concurrent_breakpoint<CTX, sync_concurrent_callback> and
perform blocking concurrent invocation with csa on the breakpoint.
Return type: The reduced type of CTX.
Returns: The reduced value of ctx if the return type is not void.
Throws: concurrent_invocation_error if any associated session propagates an exception.

	The Concurrent Invocation Library
	1 History
	1.1 Changes from P0642R3
	1.2 Changes from P0642R2
	1.3 Changes from P0642R1
	1.4 Changes from P0642R0

	2 Introduction
	3 Motivation and Scope
	3.1 Limitations
	3.1.1 Blocking
	3.1.2 Execution Resource Management
	3.1.3 Exception Handling
	3.1.4 Runtime Extension
	3.1.5 Synchronization
	3.1.6 Supporting Async Libraries

	3.2 The Solution
	3.2.1 Avoiding Blocking
	3.2.2 Managing Execution Resources
	3.2.3 Exception Handling
	3.2.4 Exploring Synchronization
	3.2.5 Exploring Runtime Extension
	3.2.6 Supporting Async Libraries

	4 Impact on the Standard
	5 Design Decisions
	5.1 Execution Structures
	5.2 Comparing with the Sender/Receiver Model
	5.2.1 About Execution Closure
	5.2.2 About spawn and sync_wait
	5.2.3 About Exception
	5.2.4 About the “done” Channel

	5.3 Blocking Algorithms
	5.4 Polymorphism VS Compile-time Routing
	5.5 Variable Parameter VS Single Parameter

	6 Technical Specifications
	6.1 Header <concurrent_invocation> synopsis
	6.2 Type Requirements
	6.2.1 ConcurrentSession requirements
	6.2.2 ConcurrentSessionAggregation requirements
	6.2.3 ConcurrentContinuation requirements

	6.3 Core Types
	6.3.1 Class template concurrent_breakpoint
	6.3.2 Class template concurrent_token
	6.3.3 Class template concurrent_context_preparation

	6.4 Helper Utilities
	6.4.1 Helper for CSA
	6.4.2 Helper for Concurrent Continuation

	6.5 Function templates concurrent_invoke

