
 

Document P2148R0 

Date 2020-09-23 

Authors CJ Johnson <​johnsoncj@google.com​> 
Bryce Adelstein Lelbach <​brycelelbach@gmail.com​> 

Audience Library Evolution Working Group, Library Evolution Incubator 

Prior Art P0705, P1655, P1656, P1851 

Contributors Titus Winters <​titus@google.com​> 
Jonathan Müller <​jonathan.mueller@foonathan.net​> 
Agustín Bergé <​agustinberge@gmail.com​> 
Zach Laine <​whatwasthataddress@gmail.com​> 
Tony van Eerd <​tvaneerd@gmail.com​> 

Preamble 
We propose the following text be adopted as the basis for a new standing document. The 
document will serve as non-normative design guidelines relating to the evolution of the C++ 
Standard Library. While SD-8, as an example, is intended for end-users, this information targets 
contributors to WG21's Library Evolution Working Group and Library Evolution Incubator, 
guiding proposals and technical discussion. 

Library Evolution Design Guidelines 
 

1 Naming 
In general, the Standard Library prefers Snake Case spellings (​such_as_this ​) using 

English words with the American-English spelling. This applies to variables, functions, types and 
concepts. 

1.1 Types 
As types are introduced to the standard library, take caution in deciding on a name that 

accurately captures the type. If the type is a concrete implementation for what is a general 
concept, consider introducing the concept under the primary name and specifying in the name 
of the type what sets the given implementation apart from other implementations. 

mailto:johnsoncj@google.com
mailto:brycelelbach@gmail.com
mailto:titus@google.com
mailto:jonathan.mueller@foonathan.net
mailto:agustinberge@gmail.com
mailto:whatwasthataddress@gmail.com
mailto:tvaneerd@gmail.com


1.1 Concepts 
Concepts need not have a unifying suffix and instead should be named according to 

their category. Concepts are also quite sensitive to context. Consider how the concept will be 
used, such as in a function parameter, before deciding on a name. 

1.1.1 Abstractions 
Abstractions are high level concepts like ​ForwardIterator ​, ​View ​ or ​Sentinel ​ and 

should be named as such using generic nouns. 

1.1.2 Capabilities 
Capabilities impose a single requirement like ​Swappable ​ or ​Constructible ​ and as 

such should be named with adjectives including an -​able ​ or -​ible ​ suffix. 

1.1.3 Other 
There exist concepts that do not fit within the Abstractions or Capabilities categories. If 

such a concept is mainly used as a type constraint and requires more than one argument, the 
name should end in a preposition. If a concept is often used in requires or in the definition of 
another concept, the name should not end in a preposition. Specifically as it relates to predicate 
concepts, the name should match the logically equivalent predicate type trait that already exists 
in the standard library but the ​is_ ​ prefix should be removed. 

1.2 Erasure 
To best reflect the substitutability relationship that must exist between a type used to 

construct an erased type and the erased type itself, prefer the ​any_concept ​ naming 
convention where ​concept ​ is the name of the concept that must be satisfied by contained 
types and ​any_ ​ denoting the erasure semantics. 

1.3 Predicate Functions 
Predicate functions, be they methods on a class or stand-alone, should adhere to the 

naming convention of ​is_condition ​ where ​condition ​ is the name of the condition being 
checked for and ​is_ ​ denoting its predicate semantics to best convey the logical constness at 
the callsite. 

2 Functions 
2.1 Overload Sets 

As overload sets grow over time, new parameters should be appended to the end of the 
list, even if adding parameters elsewhere would be a backwards-compatible change. Following 
this suggestion will allow existing call sites to retain their existing level of readability. 



3 Types 
3.1 Data Methods 

A method commonly found in standard library types is ​.data() ​. Any such method 
added to new or existing types should return a pointer type pointing to a contiguous range of 
memory. Such methods should also come with a companion ​.size() ​ to denote the number of 
contiguous, living objects in that memory. 

3.2 Conversions 
Conversions, be they operators or single-argument constructors, should be marked 

explicit ​ unless all of the following conditions are satisfied. The conversion must... 
● be between two types that are logically equivalent. 
● preserve all logical state in the destination type that was present in the source type. 
● impose little or no performance penalty. 
● always succeed. 
● result in a memory-safe value. 

3.3 Exceptions 
● No library destructor should throw. They shall use the implicitly supplied (non-throwing) 

exception specification. 
● Each library function having a wide contract (i.e., does not specify undefined behavior 

due to a precondition) that the LWG agree cannot throw, should be marked as 
unconditionally ​noexcept ​. 

● Each library function having a narrow contract that the LWG agree cannot throw, when 
called with arguments satisfying function preconditions (and its own object state 
invariants), should be marked as unconditionally ​noexcept ​. 

● If a library swap function, move-constructor, or move-assignment operator is 
conditionally-wide (i.e. can be proven to not throw by applying the ​noexcept ​ operator) 
then it should be marked as conditionally ​noexcept ​. 

● If a library type has wrapping semantics to transparently provide the same behavior as 
the underlying type, then default constructor, copy constructor, and copy-assigment 
operator should be marked as conditionally ​noexcept ​ the underlying exception 
specification still holds. 

● No other function should use a conditional ​noexcept ​ specification. 
● Library functions designed for compatibility with "C" code (such as the atomics facility), 

may be marked as unconditionally ​noexcept ​. 


