Document P2148R0

Date 2020-09-23

Authors CJ Johnson <johnsoncj@google.com>
Bryce Adelstein Lelbach <brycelelbach@gmail.com>

Audience Library Evolution Working Group, Library Evolution Incubator

Prior Art P0705, P1655, P1656, P1851

Contributors | Titus Winters <titus@google.com>

Jonathan Mdller <jonathan.mueller@foonathan.net>
Agustin Bergé <agustinberge@gmail.com>

Zach Laine <whatwasthataddress@gmail.com>
Tony van Eerd <tvaneerd@gmail.com>

Preamble

We propose the following text be adopted as the basis for a new standing document. The
document will serve as non-normative design guidelines relating to the evolution of the C++
Standard Library. While SD-8, as an example, is intended for end-users, this information targets
contributors to WG21's Library Evolution Working Group and Library Evolution Incubator,
guiding proposals and technical discussion.

Library Evolution Design Guidelines

1 Naming

In general, the Standard Library prefers Snake Case spellings (such_as this) using
English words with the American-English spelling. This applies to variables, functions, types and
concepts.

1.1 Types

As types are introduced to the standard library, take caution in deciding on a name that
accurately captures the type. If the type is a concrete implementation for what is a general
concept, consider introducing the concept under the primary name and specifying in the name
of the type what sets the given implementation apart from other implementations.


mailto:johnsoncj@google.com
mailto:brycelelbach@gmail.com
mailto:titus@google.com
mailto:jonathan.mueller@foonathan.net
mailto:agustinberge@gmail.com
mailto:whatwasthataddress@gmail.com
mailto:tvaneerd@gmail.com

1.1 Concepts

Concepts need not have a unifying suffix and instead should be named according to
their category. Concepts are also quite sensitive to context. Consider how the concept will be
used, such as in a function parameter, before deciding on a name.

1.1.1 Abstractions

Abstractions are high level concepts like ForwardIterator, View or Sentinel and
should be named as such using generic nouns.

1.1.2 Capabilities

Capabilities impose a single requirement like Swappable or Constructible and as
such should be named with adjectives including an -able or -ible suffix.

1.1.3 Other

There exist concepts that do not fit within the Abstractions or Capabilities categories. If
such a concept is mainly used as a type constraint and requires more than one argument, the
name should end in a preposition. If a concept is often used in requires or in the definition of
another concept, the name should not end in a preposition. Specifically as it relates to predicate
concepts, the name should match the logically equivalent predicate type trait that already exists
in the standard library but the is_ prefix should be removed.

1.2 Erasure

To best reflect the substitutability relationship that must exist between a type used to
construct an erased type and the erased type itself, prefer the any concept naming
convention where concept is the name of the concept that must be satisfied by contained
types and any denoting the erasure semantics.

1.3 Predicate Functions

Predicate functions, be they methods on a class or stand-alone, should adhere to the
naming convention of is condition where condition is the name of the condition being
checked for and is denoting its predicate semantics to best convey the logical constness at
the callsite.

2 Functions
2.1 Overload Sets

As overload sets grow over time, new parameters should be appended to the end of the
list, even if adding parameters elsewhere would be a backwards-compatible change. Following
this suggestion will allow existing call sites to retain their existing level of readability.



3 Types
3.1 Data Methods

A method commonly found in standard library types is .data (). Any such method
added to new or existing types should return a pointer type pointing to a contiguous range of
memory. Such methods should also come with a companion .size () to denote the number of
contiguous, living objects in that memory.

3.2 Conversions

Conversions, be they operators or single-argument constructors, should be marked
explicit unless all of the following conditions are satisfied. The conversion must...
e be between two types that are logically equivalent.
preserve all logical state in the destination type that was present in the source type.
impose little or no performance penalty.
always succeed.
result in a memory-safe value.

3.3 Exceptions

e No library destructor should throw. They shall use the implicitly supplied (non-throwing)
exception specification.

e Each library function having a wide contract (i.e., does not specify undefined behavior
due to a precondition) that the LWG agree cannot throw, should be marked as
unconditionally noexcept.

e Each library function having a narrow contract that the LWG agree cannot throw, when
called with arguments satisfying function preconditions (and its own object state
invariants), should be marked as unconditionally noexcept.

e |If a library swap function, move-constructor, or move-assignment operator is
conditionally-wide (i.e. can be proven to not throw by applying the noexcept operator)
then it should be marked as conditionally noexcept.

e |If a library type has wrapping semantics to transparently provide the same behavior as
the underlying type, then default constructor, copy constructor, and copy-assigment
operator should be marked as conditionally noexcept the underlying exception
specification still holds.

e No other function should use a conditional noexcept specification.

e Library functions designed for compatibility with "C" code (such as the atomics facility),
may be marked as unconditionally noexcept.



