
p0448r3 - A strstream replacement using span<charT> as buffer

Peter Sommerlad (peter.cpp@sommerlad.ch)

2021-02-16

Document Number: p0448r3 (N2065 done right?)
Date: 2021-02-16
Project: Programming Language C++
Audience: LEWG/LWG

1 History

Streams have been the oldest part of the C++ standard library and especially strstreams that can
use pre-allocated buffers have been deprecated for a long time now, waiting for a replacement. p0407
and p0408 provide the efficient access to the underlying buffer for stringstreams that strstream
provided solving half of the problem that strstreams provide a solution for. The other half is using a
fixed size pre-allocated buffer, e.g., allocated on the stack, that is used as the stream buffers internal
storage.
A combination of external-fixed and internal-growing buffer allocation that strstreambuf provides is
IMHO a doomed approach and very hard to use right.
There had been a proposal for the pre-allocated external memory buffer streams in N2065 but
that went nowhere. Today, with span<T> we actually have a library type representing such buffers
views we can use for specifying (and implementing) such streams. They can be used in areas where
dynamic (re-)allocation of stringstreams is not acceptable but the burden of caring for a pre-existing
buffer during the lifetime of the stream is manageable.

1.1 Changes from p0448r2
Based on the review of p0408 in Cologne 2019, some adjustments were made here accordingly to
the feedback given there.
— update editorial advise to include header and feature test macro, as well as the section number

to 29.
— made wording adjustments like suggested for p0408 in Cologne 2019 by LWG in the hope to

make reviewing it faster.
— removed mentioning a template parameter Extent in all uses of span.

1

2 p0448r3 2021-02-16

— fix the adopted wording (from basic_stringbuf) wrt seekoff by removing tables in favor of
words.

— removed impossible to achieve noexcept from move and swap operations.
— some more email and review feedback from LWG telecon (spelling, spacing, etc).
— rephrased constructor wording to read more modern (Initializes vs constructs).
— added author email.
— fixed uses of correct macros to guarantee "Preconditions" and "Postconditions" wording vs.

requires/ensures.
— added potential future change (not in the wording part) to provide ispanstream for charT

const* arguments (this should be put in, before the next release, it is a kind of design bug
fix.).

1.2 Changes from p0448r1
There was email discussion (Alisdair, Marshall, Titus and library mailing list) on semantics of move,
timing and wording of strstream removal. Therefore, this paper needs to be reconsidered with that
design respect by LEWG. I also acquired an additional paper number for a paper to propose the
strstream removal, so I drop it from here.
Marshall gave a list of review comments, I’d like to answer below:
— The synopsis shows these classes in std::experimental, while the class descriptions show std::

only. fixed, copy relict.
— The synopsis should probably #include and <string>, since that’s where span and

char_traits come from. yes to not to <string> since the base class basic_streambuf
already has a dependency to char_traits, so no gain from mentioning <string>, but including
<streambuf> might be shown. Fixed. However, I found no precedence to such include directives
for stream classes in n4791 (may be a more modern style of specification introduced with
C++11. I guess mentioning a required identifier encourages implementors to make its definition
available.

— Why a separate <spanstream> header? why not just put it in one of the existing ones? (we’re
adding headers at a surprising - to me - rate) First, because strstreams are also in their
separate header. Second, LEWG blessed/asked for it. Third, the base class already has the
dependency to char_traits.

— 7.4.2/1 is really generic: "Move assigns the base and members of *this from the base and
corresponding members of rhs." These words are almost identical to basic_istringstream move
assignment. Took the challenge and now use (more) code.

— 7.4.2/2 is mixing prose and code; I suspect it would be better just as code. "Effects Equivalent
to: <two lines of code>" almost identical to basic_istringstream::swap wording. see above.

— Is the span that you pass to the constructors required to be non-empty? setbuf does have that
requirement. The latter is not really true: setbuf() is defined per streambuf subclass and we
are free to define it any way. most subclasses say that setbuf(0,0) has no effect, filebuf makes
I/O unbuffered and all say any other combination has implementation defined behavior. I do

p0448r3 2021-02-16 3

not require a non-empty span, the stream is then just not particularly useful, except to behave
as a null object.

Alisdair raised the question if the spanbuf move operations should actually disassociate the buffer-
/stream from the original span, like (all?) other streambuf subclasses to when moved from.

"I have a huge concern about the definition of move construction and move assignment
for basic_spanbuf. The reason is that this is simply a copy operation, but we allowed
move semantics on streams/buffers following the unique ownership principle. In other
words, it would be very surprising that writing to the move-from stream would have any
impact on the moved-to stream."

Titus had the counter argument that one should not spend cycles on cleaning up moved from
objects.
The streambuf base class can only be copied. filebuf and stringbuf both disassociate the right hand
side from its underlying data source that they both own. strstreambuf does neither support move
or copy.
I am torn, so I made that implementation defined.
Now to what really changed...
— rebase to n4791
— removed superfluous experimental namespace from synopsis
— added header includes in header synopsis for <streambuf> and (even so no other

iostream headers seem to do so).
— introduce an exposition-only member span<charT> buf representing the span. This will make

wording, especially of move constructor more clear.
— make the wording of the move constructor more clear instead of hand waving about "locale

and other state of rhs".
— make wording of spanbuf/streams’s members more clear by code instead of weasel wording

obtained from stringbuf/streams.
— TODO

1.3 Changes from p0448r0

— provide explanation why non-copy-ability, while technically feasible, is an OK thing.
— remove wrong Allocator template parameter (we never allocate anything).
— adhere to new section numbering of the standard.
— tried to clarify lifetime and threading issues.

4 p0448r3 2021-02-16

2 Introduction

This paper proposes a class template basic_spanbuf and the corresponding stream class templates
to enable the use of streams on externally provided memory buffers. No ownership or re-allocation
support is given. For those features we have string-based streams.

3 Acknowledgements

— Thanks to those ISO C++ meeting members attending the Oulu meeting encouring me to
write this proposal. I believe Neil and Pablo have been among them, but can’t remember who
else.

— Thanks go to Jonathan Wakely who pointed the problem of strstream out to me and to Neil
Macintosh to provide the span library type specification.

— Thanks to Felix Morgner for proofreading.
— Thanks to Kona LEWG small group discussion suggesting some clarifications and Thomas

Köppe for allowing me to use using type aliases instead of typedef.
— Thanks to remote LWG meeting December 2020 and surrounding email feedback by Jeff

Garland, Tim Song, Jens Maurer, Volle Voutilainen. Special thanks to Tim for pointing out
the const charT* potential for basic_ispanstream.

4 Motivation

To finally get rid of the deprecated strstream in the C++ standard we need a replacement.
p0407/p0408 provide one for one half of the needs for strstream. This paper provides one for the
second half: fixed sized buffers.
[Example: reading input from a fixed pre-arranged character buffer:

char input[] = "10 20 30";
ispanstream is{span<char>{input}};
int i;
is >> i;
ASSERT_EQUAL(10,i);
is >> i;
ASSERT_EQUAL(20,i);
is >> i;
ASSERT_EQUAL(30,i);
is >>i;
ASSERT(!is);

—end example] [Example: writing to a fixed pre-arranged character buffer:
char output[30]{}; // zero-initialize array
ospanstream os{span<char>{output}};
os << 10 << 20 << 30;
auto const sp = os.span();

p0448r3 2021-02-16 5

ASSERT_EQUAL(6,sp.size());
ASSERT_EQUAL("102030",std::string(sp.data(),sp.size()));
ASSERT_EQUAL(static_cast<void*>(output),sp.data()); // no copying of underlying data!
ASSERT_EQUAL("102030",output); // initialization guaranteed NUL termination

—end example]

5 Impact on the Standard

This is an extension to the standard library to enable deletion of the deprecated strstream classes
by providing basic_spanbuf, basic_spanstream, basic_ispanstream, and basic_ospanstream
class templates that take an object of type span<charT> which provides an external buffer to be
used by the stream.
It also proposes to remove the deprecated strstreams [depr.str.strstreams] assuming p0407 is also
included in the standard.

6 Design Decisions

6.1 General Principles
The design follows from the principles of the iostream library. If discussed a person knowledgable
about iostream’s implementation is favorable, because of its many legacy design decisions, that
would no longer be taken by modern C++ class designers. The behavior presented is part of what
"frozen" strstreams provide, namely relying on a pre-allocated buffer, without the idiosynchracy of
(o)strstream that automatically (re-)allocates a new buffer on the C-heap, when the original buffer
is insufficient for the output, which happens when such a buffer is not explicitly marked as "frozen".
This broken design is the reason it has long been deprecated, but its use with pre-allocated buffers
is one of the reasons it has not been banned completely, yet. Together with p0407 this paper gets
rid of it.
As with all existing stream classes, using a stream object or a streambuf object from multiple
threads can result in a data race. Only the pre-defined global stream objects cin/cout/cerr are
exempt from this.

6.2 Older Open Issues (to be) Discussed by LEWG / LWG

— Should arbitrary types as template arguments to span be allowed to provide the underlying
buffer by using the byte sequence representation span provides. (I do not think so and some
people in LEWG inofficially agree with it). You can always get a span of characters from the
underlying byte sequence, so there is no need to put that functionality into spanbuf, it would
break orthogonality and could lead to undefined behavior, because the streambuf would be
aliasing with an arbitrary object.

— Should the basic_spanbuf be copy-able? It doesn’t own any resources, so copying like with
handles or span might be fine. Other concrete streambuf classes in the standard that own
their buffer (basic_stringbuf, basic_filebuf) naturally prohibit copying, where the base
class basic_streambuf provides a protected copy-ctor. I considered providing copyability for

6 p0448r3 2021-02-16

basic_spanbuf, because the implementation is =default. Note, none of the stream classes in
the standard is copyable as are the stream classes provided here. Other streambuf subclasses
are not copyable, mainly because they either represent an external resource (fstreambuf), or
because one usually would not access it via its concrete type and only through its basic_-
streambuf abstraction, i.e., by using an associated stream’s rdbuf() member function. I
speculate that another reason, why basic_stringbuf is not copyable, is that copying its
underlying string and re-establishing a new stream with it is possible and copying a streambuf
felt not natural. Therefore, I stick with my decision to prohibit copying basic_spanbuf.

6.3 Current (r2) Open Issues (to be) Discussed by LEWG / LWG

— Should we keep a separate header <spanstream> ? Where to put it instead? LEWG(Kona2019):
yes!

— Is adding a default constructor for basic_spanbuf OK? LEWG(Kona2019): yes!
— LEWG(Kona2019): Forward to LWG for C++20!

6.4 Future Directions (after p0448 is accepted for the WP: support
span<const charT>

During the finalizing review sessions Tim Song recognized a missing feature that istrstream
supports, namely the use of the stream with a read-only input sequence (char const* in the case
of istrstream). Some thinking it turned out that with a few additions an one change to class
template basic_ispanstream this could be achieved, because an input only basic_spanbuf will
never attempt to modify its underlying character sequence, because pbackfail() is not overridden.
With Tim Song’s help the following extra constructor from a read-only span<charT const> was
provided.
The following changes will be proposed either by a follow-up paper of if LEWG gives immediate
blessing At the LEWG zoom 20210216 the change was supported unanimously. The changes marked
below are applied to section 7 of this paper revision. The change delta is kept here for LWG’s
convenience to see what needs to be re-reviewed.:
LWG question: should the requirement go as code or as text? Mailing list reply was to put it as
text, so the changes to section 7 reflect that and the changes marked below show it.
Change the synopsis of [ispanstream] as follows:

namespace std {
template <class charT, class traits = char_traits<charT>>
class basic_ispanstream

: public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

p0448r3 2021-02-16 7

// [ispanstream.cons], constructors
explicit basic_ispanstream(

std::span<charT> s,
ios_base::openmode which = ios_base::in);

template <ranges::borrowed_range ROS>
explicit basic_ispanstream(ROS&& s);

basic_ispanstream(const basic_ispanstream&) = delete;
basic_ispanstream(basic_ispanstream&& rhs);

// [ispanstream.swap], assign and swap
basic_ispanstream& operator=(const basic_ispanstream&) = delete;
basic_ispanstream& operator=(basic_ispanstream&& rhs);
void swap(basic_ispanstream& rhs);

// [ispanstream.members], members
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<const charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

template <ranges::borrowed_range ROS>
void span(ROS&& s) noexcept ;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,

basic_ispanstream<charT, traits>& y);
}

[Note: Constructing an ispanstream from a string-literal will include the termination character
’\0’ in the underlying spanbuf. —end note]
Add to [ispanstream.cons] the following

template <ranges::borrowed_range ROS>
explicit basic_ispanstream(ROS&& s)

1 Constraints: (not convertible_to<ROS, std::span<charT>>) &&
convertible_to<ROS, std::span<charT const>> is true.

2 Effects: Equivalent to:
basic_ispanstream(std::span(const_cast<charT*>(data(s)),size(s)).

Change [ispanstream.members] as follows

6.4.1 29.x.3.3 Member functions [ispanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:

8 p0448r3 2021-02-16

return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<const charT> span() const noexcept;

2 Effects: Equivalent to:
return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to: rdbuf()->span(s).

template <ranges::borrowed_range ROS>
void span(ROS&& s) noexcept;

4 Constraints: (not convertible_to<ROS, std::span<charT>>) &&
convertible_to<ROS, std::span<charT const>> is true.

5 Effects: Equivalent to:
this->span(std::span(const_cast<charT*>(data(s)),size(s))).

7 Technical Specifications

Introduce a new header <spanstream> in subclause ([headers]): Table 19 ([tab:headers.cpp]).
In section [version.syn] add the feature test macro __cpp_lib_spanstream with the corresponding
value for the header <spanstream>:

#define __cpp_lib_spanstream TBD // also in <spanstream>

Insert a new section 29.x in chapter 29 [input.output] after section 29.8 [string.streams] and adjust
table [tab:iostreams.summary] accordingly.

7.1 29.3.1 Header <iosfwd> synopsis [iosfwd.syn]
In 29.3.1 [iosfwd.syn] add the following forward declarations and type aliases in the appropriate
places.

namespace std {
template <class charT, class traits = char_traits<charT>>

class basic_spanbuf;
template <class charT, class traits = char_traits<charT>>

class basic_ispanstream;
template <class charT, class traits = char_traits<charT>>

class basic_ospanstream;
template <class charT, class traits = char_traits<charT>>

class basic_spanstream;

using spanbuf = basic_spanbuf<char>;
using ispanstream = basic_ispanstream<char>;
using ospanstream = basic_ospanstream<char>;
using spanstream = basic_spanstream<char>;

using wspanbuf = basic_spanbuf<wchar_t>;
using wispanstream = basic_ispanstream<wchar_t>;

p0448r3 2021-02-16 9

using wospanstream = basic_ospanstream<wchar_t>;
using wspanstream = basic_spanstream<wchar_t>;

}

7.2 29.x Span-based Streams [span.streams]
1 This section introduces a stream interface for user-provided fixed-size buffers.

7.2.1 29.x.1 Overview [span.streams.overview]
1 The header <spanstream> defines class templates and types that associate stream buffers with

objects whose types are specializations of span as described in [views.span].
[Note: A user of theses classes is responsible for ensuring that the character sequence represented
by the given span outlives the use of the sequence by objects of the classes in this subclause.
Using multiple basic_spanbuf objects referring to overlapping underlying sequences from different
threads, where at least one basic_spanbuf object is used for writing to the sequence, results in a
data race. —end note]

7.2.2 Header <spanstream> synopsis [span.streams.syn]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_spanbuf;

using spanbuf = basic_spanbuf<char>;
using wspanbuf = basic_spanbuf<wchar_t>;

template <class charT, class traits = char_traits<charT>>
class basic_ispanstream;

using ispanstream = basic_ispanstream<char>;
using wispanstream = basic_ispanstream<wchar_t>;

template <class charT, class traits = char_traits<charT>>
class basic_ospanstream;

using ospanstream = basic_ospanstream<char>;
using wospanstream = basic_ospanstream<wchar_t>;

template <class charT, class traits = char_traits<charT>>
class basic_spanstream;

using spanstream = basic_spanstream<char>;
using wspanstream = basic_spanstream<wchar_t>;

}

7.3 29.x.2 Class template basic_spanbuf [spanbuf]
namespace std {

template <class charT, class traits = char_traits<charT> >
class basic_spanbuf

: public basic_streambuf<charT, traits> {

10 p0448r3 2021-02-16

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [spanbuf.cons], constructors
basic_spanbuf() : basic_spanbuf(ios_base::in | ios_base::out) {}
explicit basic_spanbuf(ios_base::openmode which)

: basic_spanbuf(std::span<charT>(), which) {}
explicit basic_spanbuf(

std::span<charT> s,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_spanbuf(const basic_spanbuf&) = delete;
basic_spanbuf(basic_spanbuf&& rhs);

// [spanbuf.assign], assign and swap
basic_spanbuf& operator=(const basic_spanbuf&) = delete;
basic_spanbuf& operator=(basic_spanbuf&& rhs);
void swap(basic_spanbuf& rhs);

// [spanbuf.members], get and set
std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

protected:
// [spanbuf.virtuals], overridden virtual functions
basic_streambuf<charT, traits>* setbuf(charT*, streamsize) override;

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

private:
ios_base::openmode mode; // exposition only
std::span<charT> buf; // exposition only

};

template <class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x,

basic_spanbuf<charT, traits>& y);
}

1 The class template basic_spanbuf is derived from basic_streambuf to associate possibly the
input sequence and possibly the output sequence with a sequence of arbitrary characters. The
sequence is provided by an object of class span<charT>.

p0448r3 2021-02-16 11

2 For the sake of exposition, the maintained data is presented here as:
—(2.1) ios_base::openmode mode, has in set if the input sequence can be read, and out set if the

output sequence can be written.
—(2.2) std::span<charT> buf is the view to the underlying character sequence.

7.4 29.x.2.1 basic_spanbuf constructors [spanbuf.cons]

explicit basic_spanbuf(
std::span<charT> s,
ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Initializes the base class with basic_streambuf() ([streambuf.cons]), and mode with
which. Initializes the internal pointers as if calling span(s).

basic_spanbuf(basic_spanbuf&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and mode with std::move(rhs.mode)
and buf with std::move(rhs.buf). The sequence pointers in *this (eback(), gptr(),
egptr(), pbase(), pptr(), epptr()) obtain the values which rhs had. It is implementation-
defined whether rhs.buf.empty() returns true after the move.

3 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction.
—(3.1) span().data() == rhs_p.span().data()

—(3.2) span().size() == rhs_p.span().size()

—(3.3) eback() == rhs_p.eback()

—(3.4) gptr() == rhs_p.gptr()

—(3.5) egptr() == rhs_p.egptr()

—(3.6) pbase() == rhs_p.pbase()

—(3.7) pptr() == rhs_p.pptr()

—(3.8) epptr() == rhs_p.epptr()

—(3.9) getloc() == rhs_p.getloc()

7.4.1 29.x.2.2 Assign and swap [spanbuf.assign]

basic_spanbuf& operator=(basic_spanbuf&& rhs);

1 Effects: Equivalent to:
basic_spanbuf tmp{std::move(rhs)};
this->swap(tmp);
return *this;

void swap(basic_spanbuf& rhs);

2 Effects: Equivalent to:
basic_streambuf<charT, traits>::swap(rhs);
std::swap(mode, rhs.mode);
std::swap(buf, rhs.buf);

12 p0448r3 2021-02-16

template <class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x,

basic_spanbuf<charT, traits>& y);

3 Effects: Equivalent to: x.swap(y).

7.4.2 29.x.2.3 Member functions [spanbuf.members]

std::span<charT> span() const;

1 Returns: If ios_base::out is set in mode, returns std::span<charT>(pbase(), pptr()),
otherwise returns buf.
[Note: In contrast to basic_stringbuf, the underlying sequence never grows and is not
owned. An owning copy can be obtained by converting the result to basic_string<charT>.
—end note]

void span(std::span<charT> s);

2 Effects: buf = s. Initializes the input and output sequences according to mode.
3 Postconditions:

—(3.1) If ios_base::out is set in mode, (pbase() == s.data() && epptr() == pbase() +
s.size()) is true;
—(3.1.1) in addition, if ios_base::ate is set in mode, pptr() == pbase() + s.size() is

true,
—(3.1.2) otherwise pptr() == pbase() is true.

—(3.2) If ios_base::in is set in mode, (eback() == s.data() && gptr() == eback() &&
egptr() == eback() + s.size()) is true.

7.4.3 29.x.2.4 Overridden virtual functions [spanbuf.virtuals]
1 [Note: Because the underlying buffer is of fixed size, neither overflow, underflow, nor pbackfail

can provide useful behavior. —end note]

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

2 Effects: Alters the stream position within one or both of the controlled sequences, if possible,
as follows:
—(2.1) if ios_base::in is set in which, positions the input sequence; xnext is gptr(), xbeg is

eback().
—(2.2) if ios_base::out is set in which, positions the output sequence; xnext is pptr(), xbeg

is pbase().
3 If both ios_base::in and ios_base::out are set in which and way is ios_base::cur the

positioning operation fails.
4 For a sequence to be positioned, if its next pointer xnext (either gptr() or pptr()) is a null

pointer and the new offset newoff as computed below is nonzero, the positioning operation

p0448r3 2021-02-16 13

fails. Otherwise, the function determines baseoff as a value of type off_type as follows:
—(4.1) 0 when way is ios_base::beg;
—(4.2) (pptr() - pbase()) for the output sequence, or

(gptr() - eback()) for the input sequence when way is ios_base::cur;
—(4.3) when way is ios_base::end :

—(4.3.1) (pptr() - pbase()) if ios_base::out is set in mode and ios_base::in is not set
in mode,

—(4.3.2) buf.size() otherwise.
5 If baseoff + off would overflow, or if baseoff + off is less than zero, or if baseoff + off

is greater than buf.size(), the positioning operation fails. Otherwise, the function computes
off_type newoff = baseoff + off;

and assigns xbeg + newoff to the next pointer xnext.
6 Returns: pos_type(off_type(-1)) if the positioning operation fails; pos_type(newoff)

otherwise.

pos_type seekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

7 Effects: Equivalent to:
return seekoff(off_type(sp), ios_base::beg, which);

basic_streambuf<charT, traits>* setbuf(charT* s, streamsize n);

8 Effects: Equivalent to: this->span(std::span<charT>(s, n)).
9 Returns: this.

7.5 29.x.3 Class template basic_ispanstream [ispanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_ispanstream

: public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [ispanstream.cons], constructors
explicit basic_ispanstream(

std::span<charT> s,
ios_base::openmode which = ios_base::in);

basic_ispanstream(const basic_ispanstream&) = delete;
basic_ispanstream(basic_ispanstream&& rhs);

14 p0448r3 2021-02-16

template <ranges::borrowed_range ROS>
explicit basic_ispanstream(ROS&& s);

// [ispanstream.swap], assign and swap
basic_ispanstream& operator=(const basic_ispanstream&) = delete;
basic_ispanstream& operator=(basic_ispanstream&& rhs);
void swap(basic_ispanstream& rhs);

// [ispanstream.members], members
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<const charT> span() const noexcept;
void span(std::span<charT> s) noexcept;
template <ranges::borrowed_range ROS>
void span(ROS&& s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,

basic_ispanstream<charT, traits>& y);
}

1 [Note: Constructing an ispanstream from a string-literal will include the termination character
’\0’ in the underlying spanbuf. —end note]

7.5.1 29.x.3.1 basic_ispanstream constructors [ispanstream.cons]

explicit basic_ispanstream(
std::span<charT> s,
ios_base::openmode which = ios_base::in);

1 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) and
sb with basic_spanbuf<charT, traits>(s, which | ios_base::in) ([spanbuf.cons]).

basic_ispanstream(basic_ispanstream&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and sb with std::move(rhs.sb).
Next, basic_istream<charT, traits>::set_rdbuf(addressof(sb)) is called to install the
contained basic_spanbuf.

template <ranges::borrowed_range ROS>
explicit basic_ispanstream(ROS&& s)

3 Constraints: (not convertible_to<ROS, std::span<charT>>) &&
convertible_to<ROS, std::span<charT const>> is true.

4 Effects: Equivalent to:
basic_ispanstream(std::span(const_cast<charT*>(data(s)),size(s)).

p0448r3 2021-02-16 15

7.5.2 29.x.3.2 Swap [ispanstream.swap]

void swap(basic_ispanstream& rhs);

1 Effects: Equivalent to:
basic_istream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,

basic_ispanstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).

7.5.3 29.x.3.3 Member functions [ispanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<const charT> span() const noexcept;

2 Effects: Equivalent to:
return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to: rdbuf()->span(s).

template <ranges::borrowed_range ROS>
void span(ROS&& s) noexcept;

4 Constraints: (not convertible_to<ROS, std::span<charT>>) &&
convertible_to<ROS, std::span<charT const>> is true.

5 Effects: Equivalent to:
this->span(std::span(const_cast<charT*>(data(s)),size(s))).

7.6 29.x.4 Class template basic_ospanstream [ospanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_ospanstream

: public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [ospanstream.cons], constructors
explicit basic_ospanstream(

std::span<charT> s,

16 p0448r3 2021-02-16

ios_base::openmode which = ios_base::out);
basic_ospanstream(const basic_ospanstream&) = delete;
basic_ospanstream(basic_ospanstream&& rhs);

// [ospanstream.swap], assign and swap
basic_ospanstream& operator=(const basic_ospanstream&) = delete;
basic_ospanstream& operator=(basic_ospanstream&& rhs);
void swap(basic_ospanstream& rhs);

// [ospanstream.members], members
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x,

basic_ospanstream<charT, traits>& y);
}

7.6.1 29.x.4.1 basic_ospanstream constructors [ospanstream.cons]

explicit basic_ospanstream(
std::span<charT> s,
ios_base::openmode which = ios_base::out);

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) and
sb with basic_spanbuf<charT, traits>(span, which | ios_base::out) ([spanbuf.cons]).

basic_ospanstream(basic_ospanstream&& rhs) noexcept;

2 Effects: Initializes the base class with std::move(rhs) and sb with std::move(rhs.sb).
Next, basic_ostream<charT, traits>::set_rdbuf(addressof(sb)) is called to install the
contained basic_spanbuf.

7.6.2 29.x.4.2 Swap [ospanstream.swap]

void swap(basic_ospanstream& rhs);

1 Effects: Equivalent to:
basic_ostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template <class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x,

basic_ospanstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).

p0448r3 2021-02-16 17

7.6.3 29.x.4.3 Member functions [ospanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<charT> span() const noexcept;

2 Effects: Equivalent to:
return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to: rdbuf()->span(s).

7.7 29.x.5 Class template basic_spanstream [spanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_spanstream

: public basic_iostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [spanstream.cons], constructors
explicit basic_spanstream(

std::span<charT> s,
ios_base::openmode which = ios_base::out | ios_base::in);

basic_spanstream(const basic_spanstream&) = delete;
basic_spanstream(basic_spanstream&& rhs);

// [spanstream.swap], assign and swap
basic_spanstream& operator=(const basic_spanstream&) = delete;
basic_spanstream& operator=(basic_spanstream&& rhs);
void swap(basic_spanstream& rhs);

// [spanstream.members], members
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};

template <class charT, class traits>
void swap(basic_spanstream<charT, traits>& x,

basic_spanstream<charT, traits>& y);

18 p0448r3 2021-02-16

}

7.7.1 29.x.5.1 basic_spanstream constructors [spanstream.cons]

explicit basic_spanstream(
std::span<charT> s,
ios_base::openmode which = ios_base::out | ios_bas::in);

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb))
and sb with basic_spanbuf<charT, traits>(s, which) ([spanbuf.cons]).

basic_spanstream(basic_spanstream&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and sb with std::move(rhs.sb).
Next, basic_iostream<charT, traits>::set_rdbuf(addressof(sb)) is called to install
the contained basic_spanbuf.

7.7.2 29.x.5.2 Swap [spanstream.swap]

void swap(basic_spanstream& rhs);

1 Effects: Equivalent to:
basic_iostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template <class charT, class traits>
void swap(basic_spanstream<charT, traits>& x,

basic_spanstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).

7.7.3 29.x.5.3 Member functions [spanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<charT> span() const noexcept;

2 Effects: Equivalent to:
return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to: rdbuf()->span(s).

8 Appendix: Example Implementations

An example implementation is available under the author’s github account at: https://github.
com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448

	1 History
	1.1 Changes from p0448r2
	1.2 Changes from p0448r1
	1.3 Changes from p0448r0

	2 Introduction
	3 Acknowledgements
	4 Motivation
	5 Impact on the Standard
	6 Design Decisions
	6.1 General Principles
	6.2 Older Open Issues (to be) Discussed by LEWG / LWG
	6.3 Current (r2) Open Issues (to be) Discussed by LEWG / LWG
	6.4 Future Directions (after p0448 is accepted for the WP: support span<const charT>

	7 Technical Specifications
	7.1 29.3.1 Header <iosfwd> synopsis [iosfwd.syn]
	7.2 29.x Span-based Streams [span.streams]
	7.3 29.x.2 Class template basic_spanbuf [spanbuf]
	7.4 29.x.2.1 basic_spanbuf constructors [spanbuf.cons]
	7.5 29.x.3 Class template basic_ispanstream [ispanstream]
	7.6 29.x.4 Class template basic_ospanstream [ospanstream]
	7.7 29.x.5 Class template basic_spanstream [spanstream]

	8 Appendix: Example Implementations

