
Document Number: P2659R1
Date: 2022-10-27
Revises: P2659R0
Audience: EWG, SG21 (Contracts)
Reply to: Brian Bi <bbi10@bloomberg.net>

Alisdair Meredith <ameredith1@bloomberg.net>

A Proposal to Publish a Technical Specification
for Contracts

Abstract
We propose that the Committee should publish a Technical Specification on
Extensions to C++ for Contracts based on three sources of wording.

1. [P0542R5] and [P1323R2], which were incorporated into the C++20
Working Draft before being removed by [P1823R0], plus minor changes
introduced by the project editor

2. [P1607R1], which was approved by EWG and was subsequently in the
process of being reviewed by CWG when Contracts was pulled from
C++20

3. [P1344R1], which was approved by CWG but not yet applied at the
time when Contracts was pulled from C++20

To support a lightweight process that does not distract from ongoing SG21
work, the design for the proposed TS relies exclusively on a feature set
previously approved by EWG and reviewed by Core.

Revision History
R1

• Added an overview section

• Added more detailed background as a separate section

1



• Expanded and clarified the motivation

• Added a section stating what questions we expect the TS to answer

• Added a section delineating the schedule on which we hope the TS will
proceed

• Added a conclusion

• Added an appendix addressing the questions posed by P2000R3

Overview of Our Objectives
Our overarching goal is to enable the Committee to ship a useful runtime
contract checking (a.k.a. Contracts) feature in C++26. We argue that the
Committee can best achieve this goal by quickly publishing in parallel a TS
based on a design previously approved by EWG and consisting mostly of
CWG-approved wording. We deliberately chose this design (1) to facilitate
Committee votes on this TS with minimal delay and thus to maximize
the information-gathering potential of the TS and (2) to minimize the
time required of SG21, EWG, and CWG for technical debate and to avoid
interfering with their ability to deliver the full feature in C++26. This
proposal is intended to complement and inform SG21’s work, not to compete
with or bypass it. Contracts as a whole, including features shared with
the MVP (e.g., varying build modes) and potential future evolution (e.g.,
violation-handler configuration) will gain valuable real-world experience,
whereas they have hitherto been left largely unexplored.

Background
The attempt to add support for Contracts to C++ has a long history, yet
that collective effort has failed to make a specification available to the wider
community.

1. The first proposal for C++11, [N1773], did not make the feature-
complete cut-off, and work ceased.

2. The second major attempt, [N4075], comprised improved precondition
checking with a better assert facility, targeted for Library Fundamen-
tals TS v2. This effort died in plenary because the Committee did not
reach consensus to add a new macro-based facility.

2



3. The third major attempt, [P0542R5], was incorporated into the C++20
Working Draft after the Rapperswil meeting in June 2018; however,
the point was made in [P1823R0] that EWG was still approving major
design changes as late as July 2019, and that the active work at the
very end of the release cycle made it unclear whether the changes were
ready for release. Consensus was reached to remove Contracts from
C++20.

With the formation of SG21, a fourth major attempt to produce a working
proposal for Contracts was born. SG21 is struggling to make progress in
an area with many competing interests and, although consensus has been
reached on several points (e.g., [P2521R2]), a full initial proposal has not
materialized after an entire three-year Standard development cycle.

Motivation
To obtain feedback based on real-world experience, we propose turning the
work that was approved for C++20 into a TS, which could then inform SG21’s
work toward a concrete proposal for C++26. This approach would be the
same as that used for three other successful efforts: Modules, Concepts, and
Coroutines. In some cases, the TS feedback led to substantial modifications,
resulting in those features being successfully adopted late in the Standard
cycle with a high degree of confidence.

Publishing a Contracts TS would allow users to begin using a contract-
checking facility, thus providing much wider real-world experience than has
been possible to date. Such experience will likely result in consensus about
what features belong to a first incarnation of the C++ contracts facility
and maximize its usefulness to a wide range of C++ programmers. To date,
any such consensus has been manifestly difficult to achieve, and the lack
of real-world experience has been a stumbling block to the resolution of
perennial disputes over the syntax and semantics of Contracts.

When Contracts was pulled from C++20, a full GCC implementation of
Contracts, supporting the behavior that had been approved by EWG, had
already been produced (see [P1680R0]) and was in final review for inclusion
in GCC 10.0; however, because the Committee has been unable to reach
consensus to publish a specification, GCC will not release a feature that
would become its own proprietary language extension. Other compilers, such
as Clang, have a similar approach toward merging features that lack an
official specification. Thus, the removal of Contracts has prevented that

3



implementation from becoming available to practicing C++ programmers.
Since our proposal is deliberately close to the work that was included in (but
later removed from) C++20, we expect that a full GCC implementation
can be completed and reviewed by the time the proposed Contracts TS is
published and would, therefore, be ready for release soon after publication.

Due to the slow progress thus far in SG21, publishing a TS would be
of enormous value in advancing the state of Contracts so that a useful
product can be delivered by C++26. Although the proposed TS and its
implementation provide strong support for runtime validation of preconditions
and assertions, their support for postconditions is known to be inadequate
for a complete proposal that would fully support static analysis and other
tooling. Gaining real-world experience will provide a better understanding
of the shortcomings of this specific model, which will in turn allow users to
better inform SG21 about any unpredicted issues that were experienced and
about predicted issues that turned out to be illusory.

The motivation for a Contracts TS is very similar to the motivation for the
Coroutines TS, in which a working specification existed but some members
of the Committee wanted to explore a different direction. Publishing a TS
will allow progress in the direction already approved by EWG, while work
on the second direction can continue in parallel.

The initial draft of the proposed Contracts TS has been published as a
separate paper, [P2660R0]. An explicit goal was for this TS to conform as
closely as possible to the aforementioned sources, with changes only where
strictly necessary to produce a coherent whole that is based on the C++23
DIS. This way, the Committee can guarantee an objective starting point that
consists of only those features that were already approved by EWG.1 We
hope that this clean, objective approach will facilitate having the TS ready
for balloting at the meeting after C++23 is published, thereby giving the
TS the longest possible lead time for C++26.

We have also produced a third paper, [P2661R0], which proposes amendments
to the TS that capture the evolution that has successfully gained consensus in
SG21. Note that the proposed amendments aim to capture the improvements
in understanding that have stemmed from continued discussion but do not
attempt to reduce the scope of the TS to a minimal product.

1One notable exception is that the inform contract behavior was renamed to observe
so that each of the four contract behavior names is a verb that now has the contract as its
direct object, reflecting an informal consensus that was not brought to a vote in EWG
because of the removal of Contracts.

4



Questions for a TS to Answer
We expect that publishing this TS will inform future work on a variety of
questions, particularly those listed below, using real-world implementation
experience that cannot be obtained without a TS.

• How will implementations support a language feature that requires
users to be provided with the ability to supply compiler switches? What
changes are needed to the specification to maximize the implementabil-
ity and usefulness of such features?

• What ABI-compatibility challenges will Contracts pose, and how well
will implementations handle them? In particular, is there a viable
implementation strategy that enables introducing the use of Contracts
to an ABI-frozen library, and how will implementations evolve to
support mixed-mode executables?

• To what extent will contract checks, expressed as attributes, be mis-
takenly perceived as possibly being ignored by a conforming compiler?

• Contract conditions are not part of function types and cannot be applied
to function pointers. To what extent is the anticipated usefulness of
Contracts limited by these restrictions?

• What are the security implications of failed contract checks and par-
ticularly of executing a user-supplied violation handler? How can we
mitigate any perceived security risks that might be introduced by the
use of Contracts?

• Is the interaction of Contracts with virtual functions, dynamic dispatch,
and calls to function pointers and pointers to member functions as
specified by the TS implementable and useful? What changes are
desirable to improve the specification of Contracts in these regards?

5



Proposed Schedule
We believe a tight schedule is essential to achieve a lightweight process
with minimal distraction to other working groups; otherwise, the exercise
of producing the TS will interfere with its goal of efficient and rapid, useful
feedback.

• 2022 November meeting (Kona):
SG21 forwards design of Contracts TS to EWG.

• 2023 February meeting (location TBD):
C++23 DIS is balloted.
EWG forwards Contracts TS wording to Core.

• 2023 summer meeting (location and time TBD):
Core approves Contracts TS wording; Contracts TS is balloted.

• 2023 autumn meeting (location and time TBD):
C++23 is about to be published.
Contracts TS ballot resolution takes place.
Contracts TS is forwarded to ISO for publication.

Conclusion
The enormous effort made in previous attempts to adopt support for Con-
tracts into the language makes clear that this feature is ardently desired.
Participants in SG21 have brought together various viewpoints on distinct
aspects of the problem, but data from real-world use of standardized Con-
tracts by a wide audience is lacking. Let’s allow previous success with the
Coroutines, Modules, and Concepts TSs to guide us toward achieving similar
success with Contracts.

Again, this proposal is intended to complement and inform SG21’s work,
not to compete with or bypass it. The proposed TS will provide valuable
feedback from real-world experience with adoption of a truly useful product,
and this feedback will assist SG21 in reaching consensus regarding timely
incorporation into the International Standard. The risk of releasing the
proposed TS is low, and the benefits for the wider C++ community are
potentially vast.

6



Appendix: Why a TS Is Appropriate for Contracts
The direction group maintains [P2000R3] as the document providing guidance
for the evolution of the language. Subsection 7.3 describes the role TSs serve
and a list of questions that should essentially be answered by any TS proposal.
We have copied that list and pasted it below, providing answers to each
question.

• Use TSs for library components.

Not applicable

• Don’t use TSs for a language feature unless the feature is a
mostly self-contained unit.

We believe the proposed TS is entirely self-contained.

• Never use a TS simply to delay; it doesn’t simplify later de-
cision making.

The goal of this TS is specifically to answer essential relevant questions
within the timeframe of the next Standard and thereby speed adoption
of this feature, not delay it.

• When proposing a TS, specify the “aim”: what the TS is
supposed to learn or achieve.

The aim is to mitigate technical risk to the Minimum Viable Product
(MVP) under development in SG21 so that it can land with confidence
even late in the C++26 design cycle.

• List “exit criteria” (TS to IS or whatever target) to allow peo-
ple to determine whether the work is complete and whether
it succeeded.

The work is complete when SG21 lands a Contracts feature into the
C++ working draft. This TS is expected to inform that work, not be
that work.

• Consider other vehicles such as SG (Study Groups), IS, and
not just TS.

The ongoing work in the current study group is proceeding more slowly
than anticipated. The proposed TS will provide practical feedback in
time to be useful. Moreover, much of the implementation work for the
TS is already complete in various compilers but, for procedural reasons

7



only, is blocked from general release until a TS codifying the intended
behavior is approved by the committee.

• Consider some or all the following incomplete list of fre-
quently asked questions in your deliberations and TS pro-
posal and record their answers along with the aim and exit
criteria:

– Is there an implementation?

Yes, but by policy, that implementation cannot ship in current
compilers in the absence of a TS

– Is it a Library or Language proposal, or does it involve
both aspects?

Language, with a tiny library portion consistent with other core
features having small library parts, such as runtime type identifi-
cation and brace initialization.

– Is the proposal a foundational proposal, meaning many
other C++ aspects/proposal depend on it, and/or it de-
pends on many other C++ aspects/proposals?

Nothing in C++23 or C++26 is anticipated to depend on this
language feature, nor does this TS depend on other proposals; all
necessary and interesting language features with which this feature
might interact are landed in C++23. This TS does, however,
inform the common design and implementation space of a number
of proposals competing with each other. This TS is not intended to
compete directly with such proposals but instead to help advance
aspects of them, independently of the TS itself.

– Is it independent of aspects of the language?

Yes, it is generally independent of other aspects of language design.

– Are there competing design proposals?

There are multiple competing design proposals, which is why
progress on the feature has been blocked for so long. This TS will
provide field experience to answer questions common to many,
perhaps all, proposals in this space.

8



– Is the proposal [so] complicated or large that you fear
there will be error in design decision?

No. Although the design space is large, and has many competing
perspectives, our concern is that most discussion has focused
on where such designs diverge; without field experience, we risk
missing basic flaws in our foundations.

– Is it a research idea?

No. All the ideas present have been approved by EWG with the
superconsensus mandate to make a change during ballot resoluton.

– Is there substantial invention?

No. All the ideas present have been approved by EWG with the
superconsensus mandate to make a change during ballot resoluton.

– Can it be staged?

This is the staging part, to inform the IS process.

– Is there a subpart that deserves to be in IS?

The goal is to reinforce landing parts already in progress into the
current IS, not to directly replace them with this work.

– Is the wording complicated or unconventional?

Mostly no. However, we are specifically seeking feedback on how
the Standard specification can respond to a feature that is ex-
pressed through compiler switches. The TS will provide critically
important feedback to address those concerns in the regular SG21
process for the proposed MVP, which is aimed at C++26.

– Will the proposal benefit from early integration (can be
applied to a WP)?

No. This proposal is not intended to land in the WP but instead
provide early feedback to guide the existing de novo work for the
next Standard.

– Will you get feedback/testing only after TS publication
or IS publication?

We expect the majority of feedback after an implementation
becomes publicly available; said availability is blocked on the

9



publication of the TS.

– Is there a motivation to slow down a proposal?

No! This TS is motivated by a strong desire to accelerate the
adoption of the feature into the WP by gaining feedback to unblock
existing proposals within the timeframe of the next Standard.

– What would it take to turn the TS into an IS?

Consensus, but we do not expect to adopt the feature set of this
TS wholesale. Instead we expect practical experience gained from
publishing this TS will quickly help us to reach consensus in the
ongoing feature development within SG21.

– Are you juggling a large number of related or depen-
dent proposals (other proposals that depend on this pro-
posal)?

No. There are a number of proposals competing in this space, but
the intent of quickly publishing this TS is to gain useful feedback
that will inform all of them.

– Are you aiming for user feedback?

Yes. We have an implementation ready for review in a major
compiler so that early adopters can give urgently needed critical
feedback in time for developing the MVP of the feature for C++26.

– Are you aiming for implementation feedback?

Yes, there are a variety of implementation specific questions,
notably around ABI.

– Is there a scheduling concern to make C++xx for it or
its dependents?

Yes! The scheduling concern is to ship early enough to provide
feedback within the next Standard development cycle. The imple-
mentation of the feature in at least one major compiler is largely
complete, making a quick delivery practicable, but if the TS does
not proceed promptly toward publication, it will have missed its
window to provide useful feedback in time to publish an MVP for
the feature in C++26.

10



References
[N1773] David Abrahams, Lawrence Crown, Thorsten Ottosen, and

James Widman, Proposal to add Contract Programming to C++
(revision 2)
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2005/n1773.html

[N4075] John Lakos, Alexei Zakharov, and Alexander Beels, Centralized
Defensive-Programming Support for Narrow Contracts (Revi-
sion 6)
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2014/n4075.pdf

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and
B. Stroustrup, Support for contract based programming in C++
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2018/p0542r5.html

[P1323R2] Hubert S.K. Tong, Contract postconditions and return type
deduction
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1323r2.html

[P1344R1] Nathan Myers, Pre/Post vs. Expects/Ensures
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1344r1.md

[P1607R1] Joshua Berne, Jeff Snyder, and Ryan McDougall, Minimizing
Contracts
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1607r1.pdf

[P1680R0] Andrew Sutton and Jeff Chapman, Implementing Contracts in
GCC
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1680r0.pdf

[P1823R0] Nicolai Josuttis, Ville Voutilainen, Roger Orr, Daveed Vandevo-
orde, John Spicer, and Christopher Di Bella, Remove Contracts
from C++20
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1823r0.pdf

11

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1773.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1773.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1323r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1323r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1344r1.md
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1344r1.md
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1823r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1823r0.pdf


[P2000R3] H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, M. Wong,
Direction for ISO C++
https://open-std.org/jtc1/sc22/wg21/docs/papers/2022/
p2000r3.pdf

[P2521R2] Gašper Ažman, Joshua Berne, Bronek Kozicki, Andrzej
Krzemieński, Ryan McDougall, Caleb Sunstrum, Contract
support — Working Paper
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p2521r2.html

[P2660R0] Brian Bi, Proposed Contracts TS
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p2660r0.pdf

[P2661R0] Brian Bi, Miscellaneous amendments to the Contracts TS
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p2661r0.pdf

12

https://open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2000r3.pdf
https://open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2000r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2660r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2660r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2661r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2661r0.pdf

