
Document Number: N4953
Date: 2023-05-15
Revises: N4895
Reply to: Michael Wong

Codeplay
fraggamuffin@gmail.com

Working Draft, Extensions to C++for
Concurrency Version 2

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

© ISO/IEC N4953

Contents
Foreword iii

1 Scope 1

2 Normative references 2

3 Terms and definitions 3

4 General 4
4.1 Implementation compliance . 4
4.2 Namespaces and headers and modifications to standard classes 4
4.3 Feature-testing recommendations (Informative) . 4
4.4 Future plans (Informative) . 5
4.5 Acknowledgments . 5

5 Safe reclamation 6
5.1 General . 6
5.2 Hazard pointers . 7
5.3 Read-copy update (RCU) . 12

6 Bytewise Atomic Memcpy 15
6.1 General . 15
6.2 Header <bytewiseatomicmemcpy> synopsis . 15
6.3 atomic_load_per_byte_memcpy . 15
6.4 atomic_store_per_byte_memcpy . 15

7 Asymmetric Fence 17
7.1 General . 17
7.2 Header <experimental/asymmetric_fence> synopsis . 17
7.3 asymmetric_thread_fence_heavy . 17
7.4 asymmetric_thread_fence_light . 17

8 Synchronized Value 19
8.1 General . 19
8.2 Header <experimental/synchronized_value> synopsis . 19
8.3 Class template synchronized_value . 19
8.4 apply function . 20

33 Concurrency support library 21
33.5 Atomic operations . 21

Contents ii

© ISO/IEC N4953

Foreword [foreword]
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work.
The procedures used to develop this document and those intended for its further maintenance are described in
the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC
Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations
received (see http://patents.iec.ch).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expres-
sions related to conformity assessment, as well as information about ISO’s adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

Foreword iii

© ISO/IEC N4953

1 Scope [scope]
1 This document describes requirements for implementations of an interface that computer programs written

in the C++ programming language may use to invoke algorithms with concurrent execution. The algorithms
described by this document are realizable across a broad class of computer architectures.

2 ISO/IEC 14882:2020 provide important context and specification for this document. This document is
written as a set of changes against that specification. Instructions to modify or add paragraphs are written as
explicit instructions. Modifications made directly to existing text from ISO/IEC 14882:2020 use underlining
to represent added text and strikethrough to represent deleted text.

3 This document is non-normative. Some of the functionality described by this document may be considered
for standardization in a future version of C++, but it is not currently part of any C++ standard. Some of
the functionality in this document may never be standardized, and other functionality may be standardized
in a substantially changed form.

4 The goal of this document is to build widespread existing practice for concurrency in the C++ standard
algorithms library. It gives advice on extensions to those vendors who wish to provide them.

Scope 1

© ISO/IEC N4953

2 Normative references [refs]
1 The following referenced document is indispensable for the application of this document. For dated references,

only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

—(1.1) ISO/IEC 14882:2020, Programming Languages — C++
2 ISO/IEC 14882:2020 is herein called the C++ Standard. References to clauses within the C++ Standard are

written as “C++20 §3.2”. The library described in C++20 §16-32 is herein called the C++ Standard Library.
3 Unless otherwise specified, the whole of the C++ Standard’s Library introduction (C++20 §16) is included

into this Technical Specification by reference.

Normative references 2

© ISO/IEC N4953

3 Terms and definitions [defs]
1 No terms and definitions are listed in this document. ISO and IEC maintain terminological databases for use

in standardization at the following addresses:
—(1.1) IEC Electropedia: available at https://www.electropedia.org/
—(1.2) ISO Online browsing platform: available at https://www.iso.org/obp

Terms and definitions 3

© ISO/IEC N4953

4 General [general]
4.1 Implementation compliance [general.compliance]

1 Conformance requirements for this document are those defined in C++20 §4.1, as applied to a merged
document consisting of C++20 amended by this document.
[Note 1 : Conformance is defined in terms of the behavior of programs. — end note]

4.2 Namespaces and headers and modifications to standard classes
[general.namespaces]

1 Since the extensions described in this technical specification are experimental and not part of the C++
standard library, they are not declared directly within namespace std. Unless otherwise specified, all
components described in this technical specification either:

—(1.1) modify an existing interface in the C++ Standard Library in-place,
—(1.2) are declared in a namespace whose name appends ::experimental::concurrency_v2 to a namespace

defined in the C++ Standard Library, such as std, or
—(1.3) are declared in a subnamespace of a namespace described in the previous bullet, whose name is not the

same as an existing subnamespace of namespace std.
2 Whenever an unqualified name is used in the specification of a declaration D, its meaning is established as-if

by performing unqualified name lookup in the context of D.
[Note 1 : Argument-dependent lookup is not performed. — end note]

Similarly, the meaning of a qualified-id is established as-if by performing qualified name lookup in the context
of D.
[Note 2 : Operators in expressions are not so constrained. — end note]

3 These are the headers described in this document (see Table 1)

Table 1: C++ library headers

<experimental/rcu>
<experimental/hazard_pointer>
<experimental/bytewise_atomic_memcpy>
<experimental/asymmetric_fence>
<experimental/synchronized_value>

4.3 Feature-testing recommendations (Informative) [general.feature.test]
1 An implementation that provides support for this document should define each feature test macro defined

in Table 2 and Table 3 if no associated headers are indicated for that macro, and if associated headers are
indicated for a macro, that macro is defined after inclusion of one of the corresponding headers specified in
the table.

Table 2: Feature-test macros name

Title Subclause Macro name
Hazard pointers 5.2 __cpp_lib_experimental_hazard_pointer
Read-copy update(RCU) 5.3 __cpp_lib_experimental_rcu
bytewise atomic memcpy 6 __cpp_lib_experimental_bytewise_atomic_memcpy
Asymmetric Fence 7 __cpp_lib_experimental_asymmetric_fence
Synchronized Value 8 __cpp_lib_experimental_synchronized_value

§ 4.3 4

© ISO/IEC N4953

Table 3: Feature-test macros header

Title Value Header
Hazard pointers 202108 <experimental/hazard_pointer>
Read-copy update(RCU) 202108 <experimental/rcu>
bytewise atomic memcpy 202108 <experimental/bytewise_atomic_memcpy>
Asymmetric Fence 202108 <experimental/asymmetric_fence>
Synchronized Value 202108 <experimental/synchronized_value>

4.4 Future plans (Informative) [general.plans]
1 This section describes tentative plans for future versions of this technical specification and plans for moving

content into future versions of the C++ Standard.
2 The C++ committee intends to release a new version of this technical specification approximately ev-

ery few years, containing the concurrency extensions we hope to add to a near-future version of the
C++ Standard. Future versions will define their contents in std::experimental::concurrency_v3,
std::experimental::concurrency_v4, etc., with the most recent implemented version inlined into std::ex-
perimental.

3 When an extension defined in this or a future version of this technical specification represents enough existing
practice, it will be moved into the next version of the C++ Standard by removing the experimental::con-
currency_vN segment of its namespace and by removing the experimental/ prefix from its header’s
path.

4.5 Acknowledgments [general.ack]
This work is the result of a collaboration of researchers in industry and academia. We wish to thank the
original authors of this document, Michael Wong, Paul McKenney, and Maged Michael, and the editing
review team of Jonathan Wakely, Daniel Krügler, and Bryan St. Amour. We also wish to thank people who
made valuable contributions within and outside these groups, including Jens Maurer, and many others not
named here who contributed to the discussion.

§ 4.5 5

© ISO/IEC N4953

5 Safe reclamation [saferecl]
5.1 General [saferecl.general]
This clause adds safe-reclamation techniques, which are most frequently used to straightforwardly resolve
access-deletion races.

§ 5.1 6

© ISO/IEC N4953

5.2 Hazard pointers [saferecl.hp]
5.2.1 General [saferecl.hp.general]

1 A hazard pointer is a single-writer multi-reader pointer that can be owned by at most one thread at any
time. Only the owner of the hazard pointer can set its value, while any number of threads may read its value.
The owner thread sets the value of a hazard pointer to point to an object in order to indicate to concurrent
threads—that may delete such an object—that the object is not yet safe to delete.

2 A class type T is hazard-protectable if it has exactly one public base class of type hazard_pointer_-
obj_base<T,D> for some D and no base classes of type hazard_pointer_obj_base<T’,D’> for any other
combination T’, D’. An object is hazard-protectable if it is of hazard-protectable type.

3 The span between creation and destruction of a hazard pointer h is partitioned into a series of protection
epochs; in each protection epoch, h either is associated with a hazard-protectable object, or is unassociated.
Upon creation, a hazard pointer is unassociated. Changing the association (possibly to the same object)
initiates a new protection epoch and ends the preceding one.

4 A hazard pointer belongs to exactly one domain.
5 An object of type hazard_pointer is either empty or owns a hazard pointer. Each hazard pointer is owned

by exactly one object of type hazard_pointer.
[Note 1 : An empty hazard_pointer object is different from a hazard_pointer object that owns an unassociated
hazard pointer. An empty hazard_pointer object does not own any hazard pointers. — end note]

6 An object x of hazard-protectable type T is retired to a domain with a deleter of type D when the member
function hazard_pointer_obj_base<T,D>::retire is invoked on x. Any given object x shall be retired at
most once.

7 A retired object x is reclaimed by invoking its deleter with a pointer to x.
8 A hazard-protectable object x is definitely reclaimable in a domain dom with respect to an evaluation A if:

—(8.1) x is not reclaimed, and
—(8.2) x is retired to dom in an evaluation that happens before A, and
—(8.3) for all hazard pointers h that belong to dom, the end of any protection epoch where h is associated

with x happens before A.
9 A hazard-protectable object x is possibly reclaimable in domain dom with respect to an evaluation A if:

—(9.1) x is not reclaimed; and
—(9.2) x is retired to dom in an evaluation R and A does not happen before R; and
—(9.3) for all hazard pointers h that belong to dom, A does not happen before the end of any protection epoch

where h is associated with x; and
—(9.4) for all hazard pointers h belonging to dom and for every protection epoch E of h during which h is

associated with x:
—(9.4.1) A does not happen before the end of E, and
—(9.4.2) if the beginning of E happens before x is retired, the end of E strongly happens before A, and
—(9.4.3) if E began by an evaluation of try_protect with argument src, label its atomic load operation

L. If there exists an atomic modification B on src such that L observes a modification that is
modification-ordered before B, and B happens before x is retired, the end of E strongly happens
before A.
[Note 2 : In typical use, a store to src sequenced before retiring x will be such an atomic operation B.

— end note]
[Note 3 : The latter two conditions convey the informal notion that a protection epoch that began before retiring
x, as implied either by the happens-before relation or the coherence order of some source, delays the reclamation
of x. — end note]

[Example 1 : The following example shows how hazard pointers allow updates to be carried out in the presence of
concurrent readers. The object of type hazard_pointer in print_name protects the object *ptr from being reclaimed
by ptr->retire until the end of the protection epoch.

struct Name : public hazard_pointer_obj_base<Name> { /∗ details ∗/ };
atomic<Name*> name;

§ 5.2.1 7

© ISO/IEC N4953

// called often and in parallel!
void print_name() {

hazard_pointer h = make_hazard_pointer();
Name* ptr = h.protect(name); /∗ Protection epoch starts ∗/
/∗ ... safe to access ∗ptr ... ∗/

} /∗ Protection epoch ends. ∗/

// called rarely, but possibly concurrently with print_name
void update_name(Name* new_name) {

Name* ptr = name.exchange(new_name);
ptr->retire();

}

— end example]

5.2.2 Header <experimental/hazard_pointer> synopsis [saferecl.hp.syn]
namespace std::experimental::inline concurrency_v2 {

// 5.2.3, class hazard_pointer_domain
class hazard_pointer_domain;

// 5.2.4, Default hazard_pointer_domain
hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

// 5.2.5, Clean up
void hazard_pointer_clean_up(hazard_pointer_domain& domain = hazard_pointer_default_domain())

noexcept;

// 5.2.6, class template hazard_pointer_obj_base
template <typename T, typename D = default_delete<T>> class hazard_pointer_obj_base;

// 5.2.7, class hazard_pointer
class hazard_pointer;

// 5.2.8, Construct non-empty hazard_pointer
hazard_pointer make_hazard_pointer(

hazard_pointer_domain& domain = hazard_pointer_default_domain());

// 5.2.9, Hazard pointer swap
void swap(hazard_pointer&, hazard_pointer&) noexcept;

}

5.2.3 Class hazard_pointer_domain [saferecl.hp.domain]
5.2.3.1 General [saferecl.hp.domain.general]

1 The number of unreclaimed possibly-reclaimable objects retired to a domain is bounded. The bound is
implementation-defined.
[Note 1 : The bound can be independent of other domains and can be a function of the number of hazard pointers
belonging to the domain, the number of threads that retire objects to the domain, and the number of threads that use
hazard pointers belonging to the domain. — end note]

2 Concurrent access to a domain does not incur a data race (C++20 §6.9.2.1).
class hazard_pointer_domain {
public:

hazard_pointer_domain() noexcept;
explicit hazard_pointer_domain(pmr::polymorphic_allocator<byte> poly_alloc) noexcept;

hazard_pointer_domain(const hazard_pointer_domain&) = delete;
hazard_pointer_domain& operator=(const hazard_pointer_domain&) = delete;

~hazard_pointer_domain();
};

§ 5.2.3.1 8

© ISO/IEC N4953

5.2.3.2 Member functions [saferecl.hp.domain.mem]

hazard_pointer_domain() noexcept;

1 Effects: Equivalent to hazard_pointer_domain({}).

explicit hazard_pointer_domain(pmr::polymorphic_allocator<byte> poly_alloc) noexcept;}

2 Remarks: All allocation and deallocation related to hazard pointers belonging to this domain use a
copy of poly_alloc.

~hazard_pointer_domain();

3 Preconditions: All hazard pointers belonging to *this have been destroyed.
4 Effects: Reclaims all objects retired to this domain that have not yet been reclaimed.

5.2.4 Default hazard_pointer_domain [saferecl.hp.domain.default]
hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

1 Returns: A reference to the default hazard_pointer_domain.
2 Remarks: The default domain has an unspecified allocator and has static storage duration. The

initialization of the default domain strongly happens before this function returns; the sequencing is
otherwise unspecified.

5.2.5 Clean up [saferecl.hp.cleanup]
void hazard_pointer_clean_up(hazard_pointer_domain& domain = hazard_pointer_default_domain())

noexcept;

1 Effects: May reclaim possibly-reclaimable objects retired to domain.
2 Postconditions: All definitely-reclaimable objects retired to domain have been reclaimed.
3 Synchronization: The completion of the deleter for each reclaimed object synchronizes with the return

from this function call.

5.2.6 Class template hazard_pointer_obj_base [saferecl.hp.base]
template <typename T, typename D = default_delete<T>>
class hazard_pointer_obj_base {
public:

void retire(
D d = D(),
hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;

void retire(hazard_pointer_domain& domain) noexcept;
protected:

hazard_pointer_obj_base() = default;
private:

D deleter ; // exposition only
};

1 A client-supplied template argument D shall be a function object type (C++20 §20.14) for which, given a
value d of type D and a value ptr of type T*, the expression d(ptr) is valid and has the effect of disposing of
the pointer as appropriate for that deleter.

2 The behavior of a program that adds specializations for hazard_pointer_obj_base is undefined.
3 D shall meet the requirements for Cpp17DefaultConstructible and Cpp17MoveAssignable.
4 T may be an incomplete type.

void retire(D d = D(), hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;

5 Mandates: T is a hazard-protectable type.
6 Preconditions: *this is a base class subobject of an object x of type T. x is not retired. Move-assigning

D from d does not throw an exception. The expression d(addressof(x)) has well-defined behavior and
does not throw an exception.

7 Effects: Move-assigns d to deleter , thereby setting it as the deleter of x, then retires x to domain.

§ 5.2.6 9

© ISO/IEC N4953

8 Invoking the retire function may reclaim possibly-reclaimable objects retired to domain.

void retire(hazard_pointer_domain& domain) noexcept;

9 Effects: Equivalent to retire(D(), domain).

5.2.7 Class hazard_pointer [saferecl.hp.holder]
5.2.7.1 Synopsis [saferecl.hp.holder.syn]

class hazard_pointer {
public:

hazard_pointer() noexcept;
hazard_pointer(hazard_pointer&&) noexcept;
hazard_pointer& operator=(hazard_pointer&&) noexcept;
~hazard_pointer();

[[nodiscard]] bool empty() const noexcept;
template <typename T> T* protect(const atomic<T*>& src) noexcept;
template <typename T> bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;
template <typename T> void reset_protection(const T* ptr) noexcept;
void reset_protection(nullptr_t = nullptr) noexcept;
void swap(hazard_pointer&) noexcept;

};

5.2.7.2 Constructors [saferecl.hp.holder.ctor]

hazard_pointer() noexcept;

1 Postconditions: *this is empty.

hazard_pointer(hazard_pointer&& other) noexcept;

2 Postconditions: If other is empty, *this is empty. Otherwise, *this owns the hazard pointer originally
owned by other; other is empty.

5.2.7.3 Destructor [saferecl.hp.holder.dtor]

~hazard_pointer();

1 Effects: If *this is not empty, destroys the hazard pointer owned by *this, thereby ending its current
protection epoch.

5.2.7.4 Assignment [saferecl.hp.holder.assign]

hazard_pointer& operator=(hazard_pointer&& other) noexcept;

1 Effects: If this == &other is true, no effect. Otherwise, if *this is not empty, destroys the hazard
pointer owned by *this, thereby ending its current protection epoch.

2 Postconditions: If other was empty, *this is empty. Otherwise, *this owns the hazard pointer
originally owned by other. If this != &other is true, other is empty.

3 Returns: *this.

5.2.7.5 Member functions [saferecl.hp.holder.mem]

[[nodiscard]] bool empty() const noexcept;

1 Returns: true if and only if *this is empty.

template <typename T> T* protect(const atomic<T*>& src) noexcept;

2 Effects: Equivalent to
T* ptr = src.load(memory_order_relaxed);
while (!try_protect(ptr, src)) {}
return ptr;

§ 5.2.7.5 10

© ISO/IEC N4953

template <typename T> bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

3 Mandates: T is a hazard-protectable type.
4 Preconditions: *this is not empty.
5 Effects:

—(5.1) Initializes a variable old of type T* with the value of ptr.
—(5.2) Evaluates the function call reset_protection(old).
—(5.3) Assigns the value of src.load(std::memory_order_acquire) to ptr.
—(5.4) If old == ptr is false, evaluates the function call reset_protection().

6 Returns: old == ptr.
[Note 1 : It is possible for try_protect to return true when ptr is a null pointer. — end note]

7 Complexity: Constant.

template <typename T> void reset_protection(const T* ptr) noexcept;

8 Mandates: T is a hazard-protectable type.
9 Preconditions: *this is not empty.

10 Effects: If ptr is a null pointer value, invokes reset_protection(). Otherwise, associates the hazard
pointer owned by *this with *ptr, thereby ending the current protection epoch.

void reset_protection(nullptr_t = nullptr) noexcept;

11 Preconditions: *this is not empty.
12 Postconditions: The hazard pointer owned by *this is unassociated.

void swap(hazard_pointer& other) noexcept;

13 Effects: Swaps the hazard pointer ownership of this object with that of other.
[Note 2 : The owned hazard pointers, if any, remain unchanged during the swap and continue to be associated
with the respective objects that they were protecting before the swap, if any. No protection epochs are ended or
initiated. — end note]

14 Complexity: Constant.

5.2.8 make_hazard_pointer [saferecl.hp.make]
hazard_pointer make_hazard_pointer(

hazard_pointer_domain& domain = hazard_pointer_default_domain());

1 Effects: Constructs a hazard pointer belonging to domain.
2 Returns: A hazard_pointer object that owns the newly-constructed hazard pointer.
3 Throws: Any exception thrown by the allocator of domain.

5.2.9 hazard_pointer specialized algorithms [saferecl.hp.special]
void swap(hazard_pointer& a, hazard_pointer& b) noexcept;

1 Effects: Equivalent to a.swap(b).

§ 5.2.9 11

© ISO/IEC N4953

5.3 Read-copy update (RCU) [saferecl.rcu]
5.3.1 General [saferecl.rcu.general]

1 RCU is a synchronization mechanism that can be used for linked data structures that are frequently read, but
seldom updated. RCU does not provide mutual exclusion, but instead allows the user to schedule specified
actions such as deletion at some later time.

2 A class type T is rcu-protectable if it has exactly one public base class of type rcu_obj_base<T,D> for some D
and no base classes of type rcu_obj_base<X,Y> for any other combination X, Y. An object is rcu-protectable
if it is of rcu-protectable type.

3 An invocation of unlock U on an rcu_domain dom corresponds to an invocation of lock L on dom if L is
sequenced before U and either

—(3.1) no other invocation of lock on dom is sequenced after L and before U or
—(3.2) every invocation of unlock U ′ on dom such that L is sequenced before U ′ and U ′ is sequenced before U

corresponds to an invocation of lock L′ on dom such that L is sequenced before L′ and L′ is sequenced
before U ′.

[Note 1 : This pairs nested locks and unlocks on a given domain in each thread. — end note]
4 A region of RCU protection on a domain dom starts with a lock L on dom and ends with its corresponding

unlock U .
5 Given a region of RCU protection R on a domain dom and given an evaluation E that scheduled another

evaluation F in dom, if E does not strongly happen before the start of R, the end of R strongly happens
before evaluating F .

6 The evaluation of a scheduled evaluation is potentially concurrent with any other such evaluation. Each
scheduled evaluation is evaluated at most once.

5.3.2 Header <experimental/rcu> synopsis [saferecl.rcu.syn]
namespace std::experimental::inline concurrency_v2 {

// 5.3.3, class template rcu_obj_base
template<class T, class D = default_delete<T>>

class rcu_obj_base;

// 5.3.4, class rcu_domain
class rcu_domain;

// 5.3.5, rcu_default_domain
rcu_domain& rcu_default_domain() noexcept;

// 5.3.6, rcu_synchronize
void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;

// 5.3.7, rcu_barrier
void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;

// 5.3.8, rcu_retire
template<class T, class D = default_delete<T>>

void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());
}

5.3.3 Class rcu_obj_base [saferecl.rcu.base]
Objects of type T to be protected by RCU inherit from a specialization of rcu_obj_base<T,D>.

template<class T, class D = default_delete<T>>
class rcu_obj_base {
public:

void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;
protected:

rcu_obj_base() = default;
private:

D deleter ; // exposition only
};

§ 5.3.3 12

© ISO/IEC N4953

1 A client-supplied template argument D shall be a function object type C++20 §20.14 for which, given a value
d of type D and a value ptr of type T*, the expression d(ptr) is valid and has the effect of disposing of the
pointer as appropriate for that deleter.

2 The behavior of a program that adds specializations for rcu_obj_base is undefined.
3 D shall meet the requirements for Cpp17DefaultConstructible and Cpp17MoveAssignable.
4 T may be an incomplete type.
5 If D is trivially copyable, all specializations of rcu_obj_base<T,D> are trivially copyable.

void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;

6 Mandates: T is an rcu-protectable type.
7 Preconditions: *this is a base class subobject of an object x of type T. The member function rcu_-

obj_base<T,D>::retire was not invoked on x before. The assignment to deleter does not throw an
exception. The expression deleter (addressof(x)) has well-defined behavior and does not throw an
exception.

8 Effects: Evaluates deleter = std::move(d) and schedules the evaluation of the expression delet-
er(addressof(x)) in the domain dom.

9 Remarks: It is implementation-defined whether or not scheduled evaluations in dom can be invoked by
the retire function.
[Note 1 : If such evaluations acquire resources held across any invocation of retire on dom, deadlock can occur.

— end note]

5.3.4 Class rcu_domain [saferecl.rcu.domain]
This class meets the requirements of Cpp17BasicLockable C++20 §32.2.5.2 and provides regions of RCU
protection.
[Example 1 :

std::scoped_lock<rcu_domain> rlock(rcu_default_domain());

— end example]
class rcu_domain {
public:

rcu_domain(const rcu_domain&) = delete;
rcu_domain& operator=(const rcu_domain&) = delete;

void lock() noexcept;
void unlock() noexcept;

};

The functions lock and unlock establish (possibly nested) regions of RCU protection.

5.3.4.1 rcu_domain::lock [saferecl.rcu.domain.lock]

void lock() noexcept;

1 Effects: Opens a region of RCU protection.
2 Remarks: Calls to the function lock do not introduce a data race (C++20 §6.9.2.1) involving *this.

5.3.4.2 rcu_domain::unlock [saferecl.rcu.domain.unlock]

void unlock() noexcept;

1 Preconditions: A call to the function lock that opened an unclosed region of RCU protection is
sequenced before the call to unlock.

2 Effects: Closes the unclosed region of RCU protection that was most recently opened.
3 Remarks: It is implementation-defined whether or not scheduled evaluations in *this can be invoked

by the unlock function.
[Note 1 : If such evaluations acquire resources held across any invocation of unlock on *this, deadlock can
occur. — end note]

Calls to the function unlock do not introduce a data race involving *this.

§ 5.3.4.2 13

© ISO/IEC N4953

[Note 2 : Evaluation of scheduled evaluations can still cause a data race. — end note]

5.3.5 rcu_default_domain [saferecl.rcu.default.domain]
rcu_domain& rcu_default_domain() noexcept;

1 Returns: A reference to the default object of type rcu_domain. A reference to the same object is
returned every time this function is called.

5.3.6 rcu_synchronize [saferecl.rcu.synchronize]
void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;

1 Effects: If the call to rcu_synchronize does not strongly happen before the lock opening an RCU
protection region R on dom, blocks until the unlock closing R happens.

2 Synchronization: The unlock closing R strongly happens before the return from rcu_synchronize.

5.3.7 rcu_barrier [saferecl.rcu.barrier]
void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;

1 Effects: May evaluate any scheduled evaluations in dom. For any evaluation that happens before the
call to rcu_barrier and that schedules an evaluation E in dom, blocks until E has been evaluated.

2 Synchronization: The evaluation of any such E strongly happens before the return from rcu_barrier.

5.3.8 Template rcu_retire [saferecl.rcu.retire]
template<class T, class D = default_delete<T>>
void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());

1 Mandates: is_move_constructible_v<D> is true.
2 Preconditions: D meets the Cpp17MoveConstructible and Cpp17Destructible requirements. The ex-

pression d1(p), where d1 is defined below, is well-formed and its evaluation does not exit via an
exception.

3 Effects: May allocate memory. It is unspecified whether the memory allocation is performed by invoking
operator new. Initializes an object d1 of type D from std::move(d). Schedules the evaluation of
d1(p) in the domain dom.
[Note 1 : If rcu_retire exits via an exception, no evaluation is scheduled. — end note]

4 Throws: Any exception that would be caught by a handler of type bad_alloc. Any exception thrown
by the initialization of d1.

5 Remarks: It is implementation-defined whether or not scheduled evaluations in dom can be invoked by
the rcu_retire function.
[Note 2 : If such evaluations acquire resources held across any invocation of rcu_retire on dom, deadlock can
occur. — end note]

§ 5.3.8 14

© ISO/IEC N4953

6 Bytewise Atomic Memcpy
[byteatomicmemcpy]
6.1 General [byteatomicmemcpy.general]
This clause describes bytewise atomic memcpy access.

6.2 Header <bytewiseatomicmemcpy> synopsis [byteeatomicmemcpy.syn]
namespace std::experimental::inline concurrency_v2 {

void* atomic_load_per_byte_memcpy(void* dest, const void* source, size_t count, memory_order order);

void* atomic_store_per_byte_memcpy(void* dest, const void* source, size_t count, memory_order order);

}

1 The atomic_load_per_byte_memcpy() and atomic_store_per_byte_memcpy() functions support concur-
rent programming idioms in which values may be read while being written, but the value is trusted only
when it can be determined after the fact that a race did not occur.
[Note 1 : So-called "seqlocks" are the canonical example of such an idiom. — end note]

6.3 atomic_load_per_byte_memcpy [byteatomicmemcpy.load]
1 The atomic_load_per_byte_memcpy / atomic_store_per_byte_memcpy functions behave as if the source

and dest bytes respectively were individual atomic objects.
void* atomic_load_per_byte_memcpy(void* dest, const void* source, size_t count, memory_order
order);

2 Preconditions:
order is memory_order::acquire or memory_order::relaxed. (char*)dest + [0, count) and
(const char*)source + [0, count) are valid ranges that do not overlap.

3 Effects: Copies count consecutive bytes pointed to by source into consecutive bytes pointed to by
dest. Each individual load operation from a source byte is atomic with memory order order. These
individual loads are unsequenced with respect to each other. The function implicitly creates objects
([intro.object]) in the destination region of storage immediately prior to copying the sequence of bytes
to the destination.
[Note 1 : There is no requirement that the individual bytes be copied in order, or that the implementation must
operate on individual bytes. — end note]

4 Returns: dest.

6.4 atomic_store_per_byte_memcpy [byteatomicmemcpy.store]
void* atomic_store_per_byte_memcpy(void* dest, const void* source, size_t count, memory_order
order);

1 Preconditions: order is memory_order::release or memory_order::relaxed. (char*)dest + [0,
count) and (const char*)source + [0, count) are valid ranges that do not overlap.

2 Effects: Copies count consecutive bytes pointed to by source into consecutive bytes pointed to by
dest. Each individual store operation to a destination byte is atomic with memory order order. These
individual stores are unsequenced with respect to each other. The function implicitly creates objects
([intro.object]) in the destination region of storage immediately prior to copying the sequence of bytes
to the destination.

3 Returns:
dest.

§ 6.4 15

© ISO/IEC N4953

[Note 1 : If any of the atomic byte loads performed by an atomic_load_per_byte_memcpy() call A with memory_-
order::acquire argument take their value from an atomic byte store performed by atomic_store_per_byte_memcpy()
call B with memory_order::release argument, then the start of B strongly happens before the completion of A.

— end note]

§ 6.4 16

© ISO/IEC N4953

7 Asymmetric Fence [asymmetric]
7.1 General [asymmetric.general]
This clause describes Asymmetric Fence access.

7.2 Header <experimental/asymmetric_fence> synopsis [asymmetric.syn]
namespace std::experimental::inline concurrency_v2 {

// 7.3 asymmetric_thread_fence_heavy
void asymmetric_thread_fence_heavy(memory_order order) noexcept;
// 7.4 asymmetric_thread_fence_light
void asymmetric_thread_fence_light(memory_order order) noexcept;

}

1 This subclause introduces synchronization primitives called heavyweight-fences and lightweight-fences. Like
fences, heavyweight-fences and lightweight-fences can have acquire semantics, release semantics, or both, and
can be sequentially consistent (in which case they are included in the total order S on memory_order::seq_-
cst operations). A heavyweight-fence with acquire semantics is called an acquire heavyweight-fence. A
heavyweight-fence has all the synchronization effects of a fence (C++20 §33.5.11 [atomics.fences]).
[Note 1 : Heavyweight-fences and lightweight-fences are distinct from fences. — end note]

2 A heavyweight-fence with acquire semantics is called an acquire heavyweight-fence. A heavyweight-fence with
release semantics is called a release heavyweight-fence. A lightweight-fence with acquire semantics is called an
acquire lightweight-fence. A lightweight-fence with release semantics is called a release lightweight-fence.

3 If there are evaluations A and B, and atomic operations X and Y, both operating on some atomic object M,
such that A is sequenced before X, X modifies M, Y is sequenced before B, and Y reads the value written by
X or a value written by any side effect in the hypothetical release sequence X would head if it were a release
operation, and one of the following hold:

—(3.1) A is a release lightweight-fence and B is an acquire heavyweight-fence; or
—(3.2) A is a release heavyweight-fence and B is an acquire lightweight-fence

then any evaluation sequenced before A strongly happens before any evaluation that B is sequenced before.

7.3 asymmetric_thread_fence_heavy [asymmetric.heavy]
void asymmetric_thread_fence_heavy(memory_order order) noexcept;

1 Effects: Depending on the value of order, this operation:
—(1.1) has no effects, if order == memory_order::relaxed;
—(1.2) is an acquire heavyweight-fence, if order == memory_order::acquire or order == memory_-

order::consume;
—(1.3) is a release heavyweight-fence, if order == memory_order::release;
—(1.4) is both an acquire heavyweight-fence and a release heavyweight-fence, if order == memory_-

order::acq_rel;
—(1.5) is a sequentially consistent acquire and release heavyweight-fence, if order == memory_order::seq_-

cst.

7.4 asymmetric_thread_fence_light [asymmetric.light]
void asymmetric_thread_fence_light(memory_order order) noexcept;

1 Effects: Depending on the value of order, this operation:
—(1.1) has no effects, if order == memory_order::relaxed;

§ 7.4 17

© ISO/IEC N4953

—(1.2) is an acquire lightweight-fence, if order == memory_order::acquire or order == memory_-
order::consume;

—(1.3) is a release lightweight-fence, if order == memory_order::release;
—(1.4) is both an acquire lightweight-fence and a release lightweight-fence, if order == memory_order::acq_-

rel;
—(1.5) is a sequentially consistent acquire and release lightweight-fence, if order == memory_order::seq_-

cst.
[Note 1 : : Delegating both heavyweight-fence and lightweight-fence functions to an atomic_thread_fence(order) call
is a valid implementation. Implementations can adopt techniques in which calls to asymmetric_thread_fence_light
execute more quickly than calls to atomic_thread_fence with the same memory_order, at the cost of asymmetric_-
thread_fence_heavy executing more slowly than calls to atomic_thread_fence with the same memory_order — end
note]

§ 7.4 18

© ISO/IEC N4953

8 Synchronized Value [synchronizedvalue]
8.1 General [synchronizedvalue.general]
This section describes a class template to provide locked access to a value in order to facilitate the construction
of race-free programs.

8.2 Header <experimental/synchronized_value> synopsis [synchronizedvalue.syn]
namespace std::experimental::inline concurrency_v2 {

template<class T>
class synchronized_value;

template<class F,class ... ValueTypes>
invoke_result_t<F, ValueTypes&...> apply(

F&& f,synchronized_value<ValueTypes>&... values);
}

8.3 Class template synchronized_value [synchronizedvalue.class]
namespace std::experimental::inline concurrency_v2 {

template<class T>
class synchronized_value
{
public:

synchronized_value(synchronized_value const&) = delete;
synchronized_value& operator=(synchronized_value const&) = delete;

template<class ... Args>
synchronized_value(Args&& ... args);

private:
T value; // exposition only
mutex mut; // exposition only

};

template<class T>
synchronized_value(T)
-> synchronized_value<T>;
}

1 An object of type synchronized_value<T> wraps an object of type T. The wrapped object can be accessed
by passing a callable object or function to apply. All such accesses are done with a lock held to ensure that
only one thread may be accessing the wrapped object for a given synchronized_value at a time.

template<class ... Args>
synchronized_value(Args&& ... args);

2 Constraints:
—(2.1) (sizeof...(Args) != 1) is true or (!same_as<synchronized_value,remove_cvref_t<Args>>

&&...) is true

—(2.2) is_constructible_v<T,Args...> is true
3 Effects: Direct-non-list-initializes value with std::forward<Args>(args)....
4 Throws: Any exceptions emitted by the initialization of value.

system_error if any necessary resources cannot be acquired.

§ 8.3 19

© ISO/IEC N4953

8.4 apply function [synchronizedvalue.fn]
template<class F,class ... ValueTypes>
invoke_result_t<F, ValueTypes&...> apply(

F&& f,synchronized_value<ValueTypes>&... values);

1 Constraints: sizeof...(values) != 0 is true.
2 Effects: Equivalent to:

scoped_lock lock(values.mut...);
return invoke(std::forward<F>(f),values.value...);

[Note 1 : A single instance of synchronized_value can not be passed more than once to the same invocation of
apply.
[Example 1 :

synchronized_value<int> sv;
void f(int,int);
apply(f,sv,sv); // undefined behaviour, sv passed more than once to same call

— end example]
— end note]
[Note 2 : The invocation of f can not call apply directly or indirectly passing any of values.... — end note]

§ 8.4 20

© ISO/IEC N4953

33 Concurrency support library [thread]
33.5 Atomic operations [atomics]
33.5.4 Order and consistency [atomics.order]
Change in C++20 §33.5.4 paragraph 4 as indicated:

4 There is a single total order S on all memory_order::seq_cst operations, including fences, that
satisfies the following constraints. First, if A and B are memory_order::seq_cst operations and
A strongly happens before B, then A precedes B in S. Second, for every pair of atomic operations
A and B on an object M , where A is coherence-ordered before B, the following four conditions
are required to be satisfied by S:

Add the following two bullets to the list:

—(4.1) ...
—(4.2) if a memory_order::seq_cst lightweight-fence X happens before A and B happens before

a memory_order::seq_cst heavyweight-fence Y , then X precedes Y in S; and
—(4.3) if a memory_order::seq_cst heavyweight-fence X happens before A and B happens before

a memory_order::seq_cst lightweight-fence Y , then X precedes Y in S.

§ 33.5.4 21

	Foreword
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General
	4.1 Implementation compliance
	4.2 Namespaces and headers and modifications to standard classes
	4.3 Feature-testing recommendations (Informative)
	4.4 Future plans (Informative)
	4.5 Acknowledgments

	5 Safe reclamation
	5.1 General
	5.2 Hazard pointers
	5.2.1 General
	5.2.2 Header <experimental/hazard_pointer> synopsis
	5.2.3 Class hazard_pointer_domain
	5.2.3.1 General
	5.2.3.2 Member functions

	5.2.4 Default hazard_pointer_domain
	5.2.5 Clean up
	5.2.6 Class template hazard_pointer_obj_base
	5.2.7 Class hazard_pointer
	5.2.7.1 Synopsis
	5.2.7.2 Constructors
	5.2.7.3 Destructor
	5.2.7.4 Assignment
	5.2.7.5 Member functions

	5.2.8 make_hazard_pointer
	5.2.9 hazard_pointer specialized algorithms

	5.3 Read-copy update (RCU)
	5.3.1 General
	5.3.2 Header <experimental/rcu> synopsis
	5.3.3 Class rcu_obj_base
	5.3.4 Class rcu_domain
	5.3.4.1 rcu_domain::lock
	5.3.4.2 rcu_domain::unlock

	5.3.5 rcu_default_domain
	5.3.6 rcu_synchronize
	5.3.7 rcu_barrier
	5.3.8 Template rcu_retire

	6 Bytewise Atomic Memcpy
	6.1 General
	6.2 Header <bytewiseatomicmemcpy> synopsis
	6.3 atomic_load_per_byte_memcpy
	6.4 atomic_store_per_byte_memcpy

	7 Asymmetric Fence
	7.1 General
	7.2 Header <experimental/asymmetric_fence> synopsis
	7.3 asymmetric_thread_fence_heavy
	7.4 asymmetric_thread_fence_light

	8 Synchronized Value
	8.1 General
	8.2 Header <experimental/synchronized_value> synopsis
	8.3 Class template synchronized_value
	8.4 apply function

	33 Concurrency support library
	33.5 Atomic operations
	33.5.4 Order and consistency

