
Macros And Standard Library Modules
import should suffice

Document #: P2654R0
Date: 2023-05-15
Project: Programming Language C++
Audience: Evolution Incubator
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 1
2.1 R0: Varna 2023 . 1

3 Introduction 2

4 Scoping the problem 2
4.1 Literal values . 2
4.2 assert . 2
4.3 offsetof . 2
4.4 setjmp . 3
4.5 va_arg and friends . 3
4.6 errno . 3
4.7 ATOMIC_scalar_LOCK_FREE . 3
4.8 ATOMIC_FLAG_INIT . 3

5 Tracking Paper Progress 3

6 Acknowledgements 3

7 References 3

1 Abstract
C++23 introduces the notion of library modules that export the whole content of the C++ Standard Library,
except for any parts that are defined as macros. This paper reviews the library macros that are therefore not
exported, and looks for ways to export that same functionality without requiring the modules language feature
to become aware of macros.

2 Revision history
2.1 R0: Varna 2023
Initial draft of the paper.

1

mailto:ameredith1@bloomberg.net

3 Introduction
Modules, introduced in C++20, are the preferred way to export and import libraries in modern C++. They
offer benefits to efficient translation of C++ source code, and isolation against unexpected use of macros. As
such, they do not allow for exporting of macros, so libraries with macro interfaces are not directly supported,
which is most typically (but not exclusively) an issue for libraries interoperating with C.

When a library interface does require use of macros, the next best alternative is for consumers to import a
header module. In this mode, the compiler tries to parse a header as a module interface, but also allows macros
to escape as-if it were #include-ed. Not all headers are suitable for use as header modules, and in particular,
while the standard C++ library headers are mandated to be compatible, there is no such guarantee for the C
standard library headers nor for the C compatibility headers such as <cstddef>.

Finally, where a header is not an importable header module, the user must fall back on the traditional prepro-
cessor #include. The C++ library requirements ensure that the same functionality can be both imported and
#include-ed as long as there is no devious use of the preprocessor to cause their behavior to differ. Note that
such abuse is highly irregular and unlikely to be encountered in practice.

This paper observes that several parts of the C language are exposed as macros, rather than straight language
facilities, and so are not usable in a modern C++ code base without resorting all the way back to the direct use
of #include. It explores some alternative designs that could remove this limitation.

4 Scoping the problem
There are a number of language and library facilities expressed through macros in the C++23 standard. Here
we provide a quick overview of each, and delegate deeper analysis to a separate paper for each case, where a
variety of resolutions are proposed.

4.1 Literal values
The most commonly encountered macros in the standard are amacros substituting for literal values. In many
cases, that is so these macros can be evaluated during preprocessor logic, such as #if directives, so they are not
easily replaced by constexpr literals in C++. Likewise, macros corresponding to string literals must continue
to support string literal concatenation, which would not be the case for a const char * literal.

The resolution proposed by (paper pending) will be a new preprocessor directive that does not do text replace-
ment, and is suitable for use in module interfaces.

4.2 assert
The second most commonly encountered macro is likely to be assert. This macro already suffers a variety of
problems in C++ due to C++ having a larger set of balanced bracket tokens than C, leading to problems with
comma-separated lists, e.g., template arguments.

Paper [P2884R0] takes a close look at this macro, and whether it could be defined as an operator in C++26 by
taken assert as a reserved word. There are a variety of concerns pursuing this direction that are addressed in
that paper.

In a separate line of development, SG21 are working on a contracts facility for C++26 that will include an
improved assertion facility. The syntax to express assertions, and contract checks in general, will be the main
topic for SG21 following the Varna meeting, so it would be good to know early if there is any likelihood of
adopting assert as a keyword token that would be available to them. Note that SG21 has not requested this
token, the observation arises only as I am preparing this set of papers.

4.3 offsetof
See paper [P2883R0].

2

4.4 setjmp
The setjmp/longjmp facility interacts directly with the C++ object model and the notion of object lifetimes.
It really should be adopted into the core language, turning the parts expressed through macros today into
keywords.

4.5 va_arg and friends
This is a fundaC++.mental language feature, so should be accessible through import. Suggests defining the
macro behavior with keywords in

4.6 errno
This is a tricky one, no ideas for progress yet.

4.7 ATOMIC_scalar_LOCK_FREE
These macros should be predefined by the compiler as part of the platform support.

4.8 ATOMIC_FLAG_INIT
Resolve by removing macro when adopting the C23 library that has already removed it.

5 Tracking Paper Progress
Here we provide a checklist to track to progress of the separate papers that will resolve each of the specific
concerns of this larger paper.

Feature By Paper Owner
offsetof macro [P2883R0] EWGI
assert macro [P2884R0] EWGI
Macros as literal values Pending EWGI
Accessing variadic function
arguments

Pending EWGI

Enabling longjmp Pending EWGI
errno is a macro Pending EWGI

6 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

7 References
[P2883R0] Alisdair Meredith. 2023-05-15. offsetof Should Be A Keyword In C++26.

https://wg21.link/p2883r0

[P2884R0] Alisdair Meredith. 2023-05-15. assert Should Be A Keyword In C++26.
https://wg21.link/p2884r0

3

https://wg21.link/p2883r0
https://wg21.link/p2884r0

	Abstract
	Revision history
	R0: Varna 2023

	Introduction
	Scoping the problem
	Literal values
	assert
	offsetof
	setjmp
	va_arg and friends
	errno
	ATOMIC_scalar_LOCK_FREE
	ATOMIC_FLAG_INIT

	Tracking Paper Progress
	Acknowledgements
	References

