
user-generated static_assertmessages
Document #: P2741R3
Date: 2023-06-16
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose that static_assert should accept user-generated string-like objects as their
diagnostic message.

Revisions

R3

Expand the design section to explain how instantiation and recursion work, following BSI
comments.

R2

Following SG-16 review:

• Remove support for char8_t for now.

• Improve wording

R1

• Expand discussion on the encoding of compile time expressions.

• Remove wording for volatile types as they cannot be constant-evaluated per [expr.const]
(Thanks Jens!).

R0

Initial revision

Motivation

We propose that the message of a static_assert could be an arbitrary constant expression
producing a sequence of characters, rather than be limited to string literals. This would allow

1

mailto:corentin.jabot@gmail.com
https://eel.is/c++draft/expr.const#5.9

libraries doing work at compile time to be able to better diagnose the exact problem. This
could be used, for example, to

• Explain why a formatting string in format is invalid

• Explain why as compile time regex in CTRE is invalid. In general, this would be helpful for
any library that generates code at compile time, such as DSL generators (lexy), Unicode
table generators, unit test frameworks, or any other library or DSLwho needs to diagnose
complex constraints.

• Better explain the constraints of compile-times APIs

• Reduce the reliance on the preprocessor and stringification of identifiers

• Avoid duplication in static assert messages

2

https://github.com/hanickadot/compile-time-regular-expressions
https://github.com/foonathan/lexy

Without this proposal

template <typename T, auto Expected, unsigned long Size = sizeof(T)>
constexpr bool ensure_size() {

static_assert(sizeof(T) == Expected, "Unexpected sizeof");
return true;

}
static_assert(ensure_size<S, 1>());

error: static assertion failed due to requirement 'sizeof(S) == 1':
Unexpected sizeof

static_assert(sizeof(T) == Expected, "Unexpected sizeof");
^ ~~~~~~~~~~~~~~~~~~~~~
note: in instantiation of function template specialization

'ensure_size<S, 1, 4ULL>' requested here
static_assert(ensure_size<S, 1>());
^
note: expression evaluates to '4 == 1'
static_assert(sizeof(T) == Expected, "Unexpected sizeof");

~~~~~~~~~~^~~~~~~~~~~
1 error generated.
Compiler returned: 1

With this proposal

static_assert(sizeof(S) == 1,
std::format("Unexpected sizeof: expected 1, got {}", sizeof(S))); // *

error: static assertion failed due to requirement 'sizeof(S) == 1':
Unexpected sizeof: expected 1, got 4

static_assert(sizeof(S) == 1,
^ ~~~~~~~~~~~~~~
note: expression evaluates to '4 == 1'
static_assert(sizeof(S) == 1,

~~~~~~~~~~^~~~
1 error generated.
Compiler returned: 1

* constexpr std::format is not proposed in this proposal (and very much intentionally so this
is but one building block). We should note however that libfmt has supported constexpr
formatting since version 8.0.0, mid-2021.

This both simplifies the code and makes the diagnostic clearer.

3

https://github.com/fmtlib/fmt/releases

Interaction with reflection

The capabilities presented here would be made more useful by reflection (P1240 [?]), notably
for the ability to use the name of an instantiated template parameters in diagnostic messages,
however, both features are independently useful and do not overlap and there is no need to
tie these features together.

Community use cases

Here is a sampling of discussions of this facility online

• Stackoverflow - How to combine static_assert with sizeof and stringify?

Memory usage is quite critical inmy application. Therefore I have specific
asserts that check for the memory size at compile time and give a static_-
assert if the size is different from what we considered correct before. [..]
The problem is that when this static_assert goes off, it might be quite
difficult to find out what the new size should be. [...] It would be much
handier if I could include the actual size.

People replying suggest instead injecting a template parameter in the function enclosing
the static_assert, which would be outputted by most compilers. The generated error
message is not user-friendly.

In instantiation of ‘void check_size() [with ToCheck = foo; long
unsigned int ExpectedSize = 8ul; long unsigned int RealSize = 16ul’]:

bla.cpp:15:22: required from here
bla.cpp:5:1: error: static assertion failed: Size is off!

• Stackoverflow - Better Message For ‘static_assert‘ on Object Size

Similar use case.

• Display integer at compile time in static_assert()

The user would like to express the following code:

enum First
{

a,
b,
c,
nbElementFirstEnum,

};
enum Second
{

a,

4

https://wg21.link/P1240
https://stackoverflow.com/questions/11526526/how-to-combine-static-assert-with-sizeof-and-stringify
https://stackoverflow.com/questions/11526526/how-to-combine-static-assert-with-sizeof-and-stringify
https://stackoverflow.com/questions/13837668/display-integer-at-compile-time-in-static-assert

b,
c,
nbElementSecondEnum,

};

static_assert(
First::nbElementFirstEnum == Second::nbElementSecondEnum,
"Not the same number of element in the enums."s + to_string(First::

nbElementFirstEnum) + " "s + to_string(Second::nbElementSecondEnum);

There again, the suggestion is to surface these values as a template parameter, hoping
the compiler would show enough content to surface them.

• Stack overflow - How to pass a not explicitly string literal error message to a static_assert?

In this question, the user would like to reuse the same message in multiple static_assert
and is reluctant to either copy-paste their code or use a macro. Alas, there is no better
solution.

• Many other questions in stack overflow would require reflection to be fully solved: They
are all more or less identical to this one: C++11 static_assert: Parameterized error
messages

• That feature was previously requested and discussed on std-proposals here, and here.

Design

We proposed to allow a constant expression string as the second parameter of static_assert.
That’s it. In particular, we propose no way to construct a string, as these are orthogonal
concerns that can be handled by reflection, making std::format constexpr, or by string inter-
polation (P1819r0 [4]), or simply by concatenating std::strings or using third-party libraries,
or, a combination of some or all of the above. The question we are answering in this paper is:
I have a string, can I use it as my static_assertmessage?

What is a string?

We do not think this core-language feature should be tied to a specific type or header like
std::string_view. Indeedmany user-defined types can be used to form and store a diagnostic
message, and relying on details of the standard libraries are likely to be more complicated
than note for implementers and users alike. Instead, we propose a definition of a string-like
type that allows the support of string and string_view, as well as similar user-defined types.
A compatible string-like type is a type that:

• Has a size()method that produces an integer

• Has a data()method that produces a pointer of character type such that

• The elements in the range [data(), data()+size()) are valid.

5

https://stackoverflow.com/questions/57501016/how-to-pass-a-not-explicitly-string-literal-error-message-to-a-static-assert
https://stackoverflow.com/questions/11050511/c11-static-assert-parameterized-error-messages
https://stackoverflow.com/questions/11050511/c11-static-assert-parameterized-error-messages
https://lists.isocpp.org/std-proposals/2019/07/0155.php
https://groups.google.com/a/isocpp.org/g/std-proposals/c/eKNlsA4Vd-M
https://wg21.link/P1819r0

This is consistent with how structured bindings and range for loops work.

Non-contiguous ranges

We only propose to support ranges that offer size() and data(). There are a few reasons for
that.

Defining what a range is is slightly more involved - although we could reuse the definition
used by ranged-base for, and it seem less motivated. ie, string-like are usually contiguous.

But themain reason is that implenters expressed some slight performance concerns. constant
evaluating operator++ and operaor* for each character at compile time is a lot less efficient
than evaluating a pointer. It could even be faster to convert a list to string and then use it in a
diagnostic message, than to use the list directly, as the later forces us to get in and out of the
constant evaluation domain.

What if the expression producing the message is ill-formed?

The message-producing expression is intended to be always instantiated, but only evaluated
if the assertion failed.

template <auto N>
consteval std::string_view oups() {

static_assert(N, "this always fires");
return "oups!";

}
void f() {

static_assert(true, oups<false>());
}

[Compiler explorer]

oups<false> is instantiated even though the static_assert never triggers. This behavior is
consistent with the rest of the language - except for discarded statements, and is motivated
by the fact that if the message-producing is ill-formed, it would otherwise not be detected
until the static_assert triggers. In effect, it could hide bugs in code whose purpose is to
diagnose bugs, and this seems extremely user-hostile.

We should also note that in the example above both static_assert would trigger, but it is
very much implementation defined whether an implementation could evaluate oups<false>
despite it being ill-formed.

Could this thing recurse forever?

Consider:

template <auto N>
consteval std::string_view oups() {

if constexpr(N == 0)
return "oups";

6

https://godbolt.org/z/PdvKsjTxq

else
static_assert(!N, oups<N-1>());
return "oups!";

}

void f() {
static_assert(false, oups<99999>());

}

[Compiler explorer]

This naturally falls into implementation limits. No message is likely to be produced as we
cannot evaluate the terminal branch until bumping into the limits.

with a more reasonable limit, say

static_assert(false, oups<5>());

[Compiler explorer]

In this example, the static assert messages are produced from 1 to 5 (again, it is mostly QOI
and context-dependent whether the user-generated message can be produced).

Encodings

Constant evaluation deals with literal encoding, which may not be UTF-8. As such, static_-
assert should allow both char and char8_t as messages and will need to convert both to the
encoding of diagnostic messages. This is different from string literals in static assert which are
not evaluated and converted directly from Unicode (likely UTF-8) to the encoding of diagnostic
messages.

Support for wchar_t, char16_t, char32_t is not proposed, but would not be an issue.

Note however that, if an implementation did not have the ability to convert from the literal
encoding to the diagnostic encoding, properly rendering non-basic characters in a sequence
of char might be the most involved part of this proposal. same if we were to support wchar_t.
Supporting any of the UTF encodings is however a non-issue.

Note that in the case of char and wchar_t there is very little room to treat these things as
anything but strings in the (wide) ordinary literal encoding. character and string literals are in
the literal encoding and so would be any expression that would concatenate or otherwise be
composed from character and string literals in some way. Treating them in any other way
would lead to mojibake (as it always does when interpreting a string in an encoding that is
different from the one it is constructed with).

We shouldn’t either try to evaluate these expressions using an encoding, as they may refer to
variables already evaluated.

Should we want another encoding here (and we really should not, C++ has enough encodings
as it is), we would need a new kind of literals and a new set of types from distinguishing them.
Such type actually exist: char8_t!

7

https://godbolt.org/z/Kc9cPbqz6
https://godbolt.org/z/eqsj6GavG

In other words, given the following code:

constexpr string_view str = "Hello";
static_assert(false, str);

The abstract machine leaves no room to consider str as anything but as a string literal in the
ordinary literal as it was already evaluated at the point the variable is used.

What if the string literal encoding cannot represent the diagnostic message in some
environments?

P1854R3 [1] makes mojibake in literals ill-formed (as it already is on most platforms). It is still
possible to produce mojibake using escape sequences, for example.

Given there are 2 possibles opportunities for losses here, namely that the ordinary literal
cannot encode some text, and that the output of the compiler may have a different encoding
to, only one of these could theoretically be remedied, I do not think there is much of a concern
here: compilers will, as QOI, present any potential encoding issues in a way that is useful to
users, escaping invalid code units for example. They already do so.

There isn’t much value in trying to legislate more than that. If a static_assert fires, the
program is ill-formed. If the diagnostic message has encoding errors, is it double ill-formed?
Should we care about potential mojibake in static_assert that do not fire?

Should we expose the encoding of the compiler’s output?

For completeness, as I was asked if i considered that: No

Knowing the execution encoding is useful as it allows users to perform conversions. Knowing
the encoding of the compiler output does not allow to do anything the compiler cannot
do on its own: Having established that strings are in the ordinary encoding, the compiler
can transcode that and the user could not do it better. And we’d have to make constexpr
all the existing text manipulations facility to do anything useful EVEN if somehow we could
form strings in that theoretical compiler encoding, which we can’t do, short of some magic
conversion from an u8 string of some form. At this point, why did we not use u8 to begin
with?

Maybe std::format cannot produce u8 and so we’d fail to support a motivating use case. Fair
enough, but if we are concerned about that, we should add u8 support to std::format !

What about null-terminated strings?

Null-terminated strings are mostly useful to communicate with C libraries and systems and
are rarely useful at compile time. While it would not be a huge effort to support them, maybe
it’s best to keep the design simple.

SG-16 expressed a slight preference to not support null-terminated string.

8

https://wg21.link/P1854R3

Alternatives

In the status quo, depending on the specific use case, macros can be used to stringify some
arguments, or the static_assert can be lifted in a function template such that most compilers
should print the value of this template parameters as part of the diagnostic message.

Neither of these solutions is really satisfying or complete.

Previous work

A similar capability was previously proposed in 2014 by N4433 [2]. At the time, the consensus
was that it required too many pieces that did not exist then. As string and string_view are
constexpr, std::format could be made constexpr (and the fmt lib already can create messages
at compile times), and reflection is upon us, we think this feature could be immediately useful.

Future work

As static_assert is constantly evaluated, it cannot be used to diagnose, for example, unsat-
isfied preconditions on parameters and local variables. For that, we will need an additional
facility composed of consteval functions, as proposed by P0596R1 [5] and P2758R0 [3].

Implementation

This feature was implemented in Circle and prototyped in Clang, with no difficulties.

Wording

[Editor’s note: This wording assumes P2361R5 has been applied to the working draft] .

�? Preamble [dcl.pre]

simple-declaration:
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [identifier-list] initializer
;

static_assert-message:
unevaluated-string
conditional-expression

static_assert-declaration:
static_assert (constant-expression) ;
static_assert (constant-expression , unevaluated-string static_assert-message) ;

9

https://wg21.link/N4433
https://wg21.link/P0596R1
https://wg21.link/P2758R0

empty-declaration:
;

attribute-declaration:
attribute-specifier-seq ;

[...]

Syntactic components beyond those found in the general form of simple-declaration are added
to a function declaration to make a function-definition. An object declaration, however, is
also a definition unless it contains the extern specifier and has no initializer[basic.def]. An
object definition causes storage of appropriate size and alignment to be reserved and any
appropriate initialization[dcl.init] to be done.

A nodeclspec-function-declaration shall declare a constructor, destructor, or conversion func-
tion. [Note: Because a member function cannot be subject to a non-defining declaration
outside of a class definition[class.mfct], a nodeclspec-function-declaration can only be used in a
template-declaration [temp.pre], explicit-instantiation [temp.explicit], or explicit-specialization
[temp.expl.spec]. —end note]

If a static_assert-message matches the syntactic requirements of unevaluated-string, it is an
unevaluated-string and the text of the static_assert-message is the text of the unevaluated-string.

Otherwise, a static_assert-message shall be an expression M such that

• the expression M.size() is implicitly convertible to std::size_t, and

• the expression M.data() is implicitly convertible to ”pointer to const char”.

In a static_assert-declaration, the constant-expression E is contextually converted to bool and
the converted expression shall be a constant expression [expr.const].

If the value of the expression E when so converted is true or the expression is evaluated in the
context of a template definition, the declaration has no effect and the static_assert-message
is an unevaluated operand [expr.context] .

Otherwise, the static_assert-declaration fails , and the program is ill-formed, and the resulting
diagnostic message [intro.compliance] should include the text of the string-literal, if one is
supplied.

• the program is ill-formed, and

• if the static_assert-message is a conditional-expression M ,

– M.size() shall be a converted constant expression of type std::size_t and let N
denote the value of that expression,

– M.data(), implicitly converted to the type ”pointer to const char”, shall be a core
constant expression and let D denote the converted expression,

– for each i where 0 ≤ i < N , D[i] shall be an integral constant expression, and

– the text of the static_assert-message is formed by the sequence
of N code units, starting at D, of the ordinary literal encoding [lex.charset].

10

Recommended practice:

When a static_assert-declaration fails, the resulting diagnostic message should include the text
of the static_assert-message, if one is supplied.

[Example:

static_assert(sizeof(int) == sizeof(void*), "wrong pointer size");
static_assert(sizeof(int[2])); // OK, narrowing allowed

—end example]

Feature test macro

[Editor’s note: In [tab:cpp.predefined.ft], bump the value of__cpp_static_assert to the date
of adoption] .

#define __cpp_static_assert 2023XX // date of adoption

References

[1] Corentin Jabot. P1854R3: Conversion to literal encoding should not lead to loss of meaning.
https://wg21.link/p1854r3, 1 2022.

[2] Michael Price. N4433: Flexible static_assert messages. https://wg21.link/n4433, 4 2015.

[3] Barry Revzin. P2758R0: Emitting messages at compile time. https://wg21.link/p2758r0, 1
2023.

[4] Vittorio Romeo. P1819R0: Interpolated literals. https://wg21.link/p1819r0, 7 2019.

[5] Daveed Vandevoorde. P0596R1: Side-effects in constant evaluation: Output and consteval
variables. https://wg21.link/p0596r1, 10 2019.

[N4892] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4892

11

https://wg21.link/p1854r3
https://wg21.link/n4433
https://wg21.link/p2758r0
https://wg21.link/p1819r0
https://wg21.link/p0596r1
https://wg21.link/N4892

	1 Abstract
	2 Revisions
	2.1 R3
	2.2 R2
	2.3 R1
	2.4 R0
	2.5 Motivation
	2.6 Without this proposal
	2.7 With this proposal
	2.8 Interaction with reflection
	2.9 Community use cases

	3 Design
	3.1 What is a string?
	3.2 Non-contiguous ranges
	3.3 What if the expression producing the message is ill-formed?
	3.4 Could this thing recurse forever?
	3.5 Encodings
	3.5.1 What if the string literal encoding cannot represent the diagnostic message in some environments?
	3.5.2 Should we expose the encoding of the compiler's output?

	3.6 What about null-terminated strings?
	3.7 Alternatives
	3.8 Previous work
	3.9 Future work

	4 Implementation
	5 Wording
	6 Preamble
	6.1 Feature test macro

	7 References

