
Contract-Violation Handlers
Document #: P2811R5
Date: 2023-6-08
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

Numerous use cases for contract checking in production environments depend upon handling
contract violations in a consistent and locally defined way. Based on existing designs deployed
at scale over many years, we present here a proposal to allow for link-time customization of
contract-violation handling, along with examples of how this method can satisfy a wide variety
of important, practical, and well-known usage scenarios, while being entirely forward compatible
with essentially all future enhancements envisioned to date.

Contents
1 Introduction 4

2 Motivation 5

3 Design 6
3.1 A Brief History of Contract-Violation Handler Proposals 6
3.2 Separation of Concerns 8
3.3 ABI Compatibility 12
3.4 Dynamic Libraries 13
3.5 Reentrancy 14
3.6 Enumerations 14
3.7 Naming 15
3.8 C Compatibility 16

3.8.1 C Annex K 17
3.9 Implementation Possibilities 17
3.10 Skipped Potential Features 19

3.10.1 Unique Identifiers 19
3.10.2 Program Name 19
3.10.3 Nonterminating throw possible 19

4 Proposal 20
4.1 An Extensible contract_violation Type 20
4.2 Contract-Violation Handler 26
4.3 Default Violation Handler 27

5 Usage Examples 28

1

mailto:jberne4@bloomberg.net

5.1 Custom Diagnostic Output 28
5.2 Throw on Contract Violation for Recovery 29
5.3 Propagating Predicate Exceptions 29
5.4 longjmp for Recovery 30
5.5 Performing a Safe Stop 31
5.6 Runtime-Selectable Violation Handler 32
5.7 Negative Testing of Non-noexcept Functions 33
5.8 Counting Repeated Violations 34
5.9 Platform-Specific contract_violation Subclasses 35

6 Throwing 36

7 Wording Changes 38

8 Conclusion 41

Revision History
Revision 5 (Prior to 2023-06 Varna Meeting)

• Added a brief history of contract violation-handler proposals

• Clarified expected points of evaluation for all forms of contract-checking annotations

• Added note on identifying contract violations on destructor preconditions

Revision 4 (Prior to 2023-05-18 SG21 telecon)

• Added will_continue accessor to contract_violation

• Explicit proposal in Section 6 regarding how exceptions should behave

• Added wording for exception-related proposal

• Clarified purpose of optionally noexcept and [[noreturn]] contract-violation handler

Revision 3 (Priot to 2023-05-05 SG21 telecon)

• Added the Design section to address questions proposed by SG21

• Added invoke_default_contract_violation_handler

• Made contract_violation polymorphic and noncopyable and clarified its lifetime

• Pointed out that program termination on enforced contracts should guard against signal
handlers that then violate contract checks themselves

• Clarified the purposes of the kind and detection_mode properties

• Renamed contract_violation_detection_mode to detection_mode

• Renamed detection_mode::predicate_exception to evaluation_exception

• Renamed detection_mode::predicate_detected_undefined_behavior to evaluation_undefined_behavior

2

• Greatly clarified intended resolution for throwing

Revision 2 (Prior to 2023-04-20 telecon)

• Removed the ignore semantic enumeration since it is currently unused in practice

• Added discussion of counting violations for observed violations

• Added usage example of safe stopping

• Added, to introduction, explicit clarification on proposed modifications

Revision 1 (Prior to 2023-03-23 telecon)

• Clarifications on the undefined behavior when using longjmp

• Reasoning for the contract_semantic::ignore and detection_mode::unknown enumerators

• An explanation for why the violation handler is in the global namespace and clarification that
it should be attached to the global module

• Other minor corrections

Revision 0 (Prior to 2023-03-09 telecon)

• Original version of the paper for discussion during an SG21 telecon

3

1 Introduction
C++20 Contracts, prior to their removal, describe a conditionally supported mechanism for installing
a user-supplied contract-violation handler. This callback function — invoked immediately upon
each detected contract violation — was intended to support both (1) the handling of user-defined
reporting of a contract violation, e.g., via what mechanism and in what format to report the error,
and (2) managing the semantics of contract violations within the program, e.g., terminate (the
default), longjmp (save and quit), throw (and what to throw), or, in some use cases, continue as if
contract checks were disabled (e.g., observe).

Handling contract violations via a user-provided callback is an established, well-tested approach that
is deployed in many modern assertion facilities. In particular, this approach has evolved directly from
that used by BDE1 in bsls_assert and bsls_review. User-provided contract-violation handlers were
first deployed to production at Bloomberg in 2004 and have been in continuous use ever since. In
addition, this approach has had later versions make their way through both LEWG and EWG to be
moved for standardization2 only to be rejected or removed at plenary prior to Standard publication.
That is, the eventual lack of acceptance of a Contracts facility for C++17 and again for C++20
had nothing whatsoever to do with the utility or design of the contract-violation handler; instead,
the issue was the design as a whole, i.e., the intrinsic use of macros (C++17) and the perceived
design instability (C++20).

Attempting to clarify the semantics of contract checks3 made clear that the local aspects of what a
contract check should do — i.e., determining whether control flow can continue normally after a
violation and whether the contract is checked — are separate from the decision of how precisely to
report a contract violation.

The current MVP4 has no mechanism for altering the behavior on contract violation, nor does
it provide much guidance on what default behavior should occur when a contract violation is
detected. The only mandatory behavior dictated by the Eval_and_abort build mode, where all
contract-checking annotations are given the enforce5 semantic, is program termination.

We6 propose here two modifications to the Contracts MVP.

1. Add the ability to provide a function — the contract-violation handler — to be invoked as part
of the contract-violation handling process. In a checked build mode such as Eval_and_abort,
program termination will occur when the contract-violation handler returns normally.

2. Establish a recommended practice for the behavior of the default contract-violation handler
that platforms might wish to adopt when applicable.

1See [bde14].
2See [N4378] and [P0542R5].
3See [P1332R0], [P1429R3], and [P1607R1].
4See [P2521R3].
5The enforce semantic for contract violations was originally named check_never_continue in [P1332R0] and is

identical, other than the name, to the semantic originally described there.
6The author of this paper has a tendency to use the first-person plural pronouns when discussing the contents

of proposals. The ideas here are not intended to be, unless noted explicitly, anyone else’s; however, all aspects of
this proposal are based on long-term experience with deploying a production contract-checking facility at Bloomberg
as well as extensive work with multiple parts of WG21, and in particular SG21, to build a consensus design for a
contract-checking facility. Please forgive my continued use of the word we with this understanding of its intent.

4

Concretely, the current MVP makes the behavior on contract violation in Eval_and_abort mode
implementation defined, requiring only that the program does eventually terminate on such violations
(i.e., instead of throwing or invoking longjmp).

Let’s consider, abstractly, the simplest form of check, an assertion (using the syntax of C++20
Contracts):

[[assert : X]];

The current behavior in Eval_and_abort mode could be imagined to be transformed into something
like this:

if (X) {} else {
__invoke_platform_violation_handling();
__terminate_program();

}

Here the __invoke_platform_violation_handling() intrinsic is required to not throw or invoke
longjmp but otherwise has implementation-defined behavior. The __terminate_program() part could
be an invocation of std::abort but should probably include additional guards protecting against user
code — such as a user-installed abort signal handler — intervening and then recursively violating
another contract.

This proposal alters this implementation-defined behavior into fully specified behavior, requiring
that the compiler prepare an appropriately populated std::contracts::contract_violation object
and then pass it to the (possibly) replaceable function ::handle_contract_violation.

We do not propose removing the program termination on normal returns from handling a contract
violation, since that would introduce a new semantic, observe, which will be the subject of a future
proposal incorporating additional build modes and meta-information with which to control the use
of that contract semantic.7

2 Motivation
Custom violation handlers will turn an overly simplified Contracts facility that is highly ineffective
in many environments into a moderately flexible and practicable one. Importantly, primary control
of the semantics of a contract check — i.e., whether it is checked and how control flows after the
contract-checking annotation (CCA) when a violation is detected — remain governed by the choice
of build mode. In the No_eval build mode, contracts will continue to be have the ignore semantic, no
runtime checking will occur, no contract-violation handler will be invoked, and control will silently
pass over the CCA. The Eval_and_abort, by contrast, is currently the only build mode that would
(or could) invoke the contract-violation handler immediately following the detection of a contract
violation. If, after a contract violation is detected, the contract-violation handler returns normally,
program execution will be terminated.

7Note that, in discussions involving where the contract-violation handler fits into the many possible use cases for
contracts, it has become clear that limiting semantics to only ignore and enforce, as well as baking in any build modes,
might be the wrong choice for the MVP and thus be in need of reconsideration. See the upcoming [P2877R0].

5

A typical custom violation handler will log appropriately; after that, the only mechanisms to
circumvent program termination are to throw an exception, block, enter a nonterminating loop, or
invoke std::longjmp. Continuation in this build mode is simply not an option.

Throughout the standardization process, two points have become abundantly clear: (1) No one
specification of violation handling is correct for all users on all platforms, and (2) having a consistent
and mostly portable way to customize behavior will greatly increase the utility (and thus, in some
views, the viability) of a Contracts facility for a wider range of users.

Executing any code when a contract violation is detected is often a risk because one can never be
certain that the program is not already exhibiting (language) undefined behavior due to earlier
defects that were not detected by an appropriate contract check. The severity of this risk, however,
will vary depending on the industry and application. We must always balance this risk with the many
available benefits such a (1) producing useful diagnostics (e.g., long-running financial analytics), (2)
at least saving the user’s data (e.g., a document editor), and sometimes (3) making attempts at
recovery and just soldiering on (e.g., video games). We assert that having the ability to customize
contract-violation handling, in an appropriately structured manner, beyond just logging is (a) often
necessary, (b) typically useful, and (c) never a net negative.

On some particularly specialized platforms, the ability to configure an alternative contract-violation
handler might be considered an unacceptable security risk. Therefore, the ability to provide a
replacement contract-violation handler is only conditionally supported. We suggest that providing
a candidate function for replacement on platforms that do not support such replacement be an
error so as to minimize any related confusion. Alternatively, such secure platforms might still choose
to disallow replacement but instead provide a suite of violation-handling implementations from
a selection of well-vetted, vendor-provided routines. Again, we would expect that, on general-use
platforms, developers will be able to create and supply fully custom violation-handling routines at
build time.

3 Design
After discussion in an SG21 telecon on April 20, 2023, the SG21 consensus became clear: to have
a Standard interface for a link-time replaceable contract-violation handler. During and after that
telecon, copious discussion has continued on the many nuances and implications of having this
handler. A number of topics have come up that have questioned and in some cases evolved this
proposal. Here we present deeper reasoning and rationale for the current state of this proposal to
add a Standard replaceable contract-violation handler to the MVP.

3.1 A Brief History of Contract-Violation Handler Proposals

Contract proposals that have come to wg21 have almost universally supported user-provided handlers
for contract violations.

• [N1613], in 2004, allowed per-contract overriding of the default invocation of std::terminate
on contract violations.

• [N1669], revising [N1613], promptly altered that design to support runtime-settable broken
contract handlers for each of the various contract types that were provided tby the feature.

6

These handlers were not, however, passed any additional information beyond distinguishing
the kind of contract check being violated.

• [N3604], which was the initial attempt to standardize a facility evolved from bsls_assert,
proposed a runtime-settable violation handler that would be passed the contract level along
with descriptive information (expression text, a filename, and a line number) about the violated
contract check.

• [N3753], which revised [N3604], updated the interface to the contract-violation handler to take
a single struct, std::precondition::assert_info, rather than many individual parameters.
This was done in response to LEWG feedback in order to enable easy addition of additional
information to that struct in future standards.

• [N3963] later changed the name of the struct to std::out_of_contract_info. The next revision,
[N3997], changed it to std::contract_violation_info

• [N4110] explored an alternative contract-checking facility but indicated that it should, like
[N3997], provide a runtime-selectable contract-violation handler, citing that it had not signifi-
cant deviation from [N3997] in this regard.

• [N4415] proposed the attribute-like syntax for contracts and left the behavior of a program
with violations unspecified.

• [P0147R0] discussed various opinions on static and dynamic contract-violation handlers, and
concluded with a proposal for supporting a dynamic, runtime-selectable contract-violation
handler.

• [P0246R0], the beginnings of the proposal that merged the Bloomberg ([N3604] and its
decendents) and other ([N4110], [N4415]) proposals, indicated that the desired direction was to
provide a replaceable (”in the manner of a user-specified operator new()”) contract-violation
handler.

• [P0380R0], the initial merged proposal that was eventually merged into C++20 (and then later
removed), specified a violation handler with an implementation-specific mechanism for selecting
the violation handler to use. This handler took an argument of type std::violation_info
containing the specifics of the contract-checking annotation being violated.

• [P0542R0], which contained the wording drafted for [P0380R1] that was to be merged into
the Standard, changed the name of the contract-violation object to std::contract_violation
A later revision, [P0542R3], changed the various string-like properties of this object from
const char* to std::string_view. [P0542R5] was merged into the standard at the Rapperswil
meeting in 2018.

Although significant changes to the semantics of evaluating contract-checking annotations in general
were considered by EWG in the C++20 cycle, there were no further changes adopted before contracts
were removed from the standard by [P1823R0].

The design for contract-violation handlers presented here has taken lessons and design points from
all of the above proposals. In total, it differs in the following ways from what was removed from
C++20 contracts:

7

• After having implementation experience and clarifications, the choice to specify the contract-
violation handler as being conditionally replaceable was made. This provides a cross-platform
mechanism to replace the violation handler while still supporting platforms that do not intend
to allow such replacement, and provides a mechanism for such platforms to detect such an
attempt to replace the handler and produce a warning or error in such cases.

• Again following usage experience with an implementation of [P1607R1], the semantic property
was added.

• Taking the guidance from [P1639R0] provided by LEWG in the C++20 cycle, which we
assume would have been adopted if Contracts had not been removed, string-like properties
have been changed back to const char* and no longer use std::string_view.

• Due to the extensive analysis of how contract-checking annotations should be evaluated (see
[P2751R0]), and the SG21 consensus to have alternate failures during the evaluation of a CCA
(such as an exception escaping the evaluation of a predicate) be treated as a contract-violation,
the detection_mode property has been added so contract-violation handlers may distinguish
such situations.

• SG21 discussion has revealed a desire to have a forward-compatible way to identify a continuing
semantic when a violation handler has been invoked, and so the will_continue property has
been added to the contract_violation object.

• Incorporating much earlier proposal’s (such as [N1669] abilities to distinguish preconditions,
postconditions, and assertions when handling a violation, the kind attribute has been added.

The fundamental semantics of when a contract-violation handler is invoked, how it is structured,
that there is only one in a program selected at link time, and that it might choose to terminate,
return, throw, or do anything else, are all unchanged from the contract-violation handler that was
part of C++20 contracts.

3.2 Separation of Concerns

Reasoning about code having contract checks might not come naturally to everyone. When analyzing
a block of code that has a defect, a couple of questions regarding the contract-checking annotations
in that code greatly benefit the reader’s understanding of the runtime behavior of that code.

1. Will I be made aware of a violation?

2. Will execution continue after a violation?

Knowing whether a violation will be reported reliably (or at least as reliably as possible in a program
with a defect that is being investigated) lets one reason based on the lack of such reports; if you
didn’t see a log message telling you that the particular contract check failed, then its associated
contract check was quite likely not violated.

Knowing whether execution will be permitted to continue past the CCA when the contract is
violated lets the reader know how broadly they must reason about the behavior of the code following
the contract check.

8

The four possible answer combinations to this pair of questions equate exactly to the four semantics
proposed for a CCA in C++20 Contracts.8

1. An ignored contract check does not inform you of violations, and control flow always continues
even when the contract check would have failed.

2. An enforced contract check reports violations and does not allow continuation.

3. An observed contract check, like an enforced one, reports violations but, like an ignored one,
is permitted to continue past the CCA.

4. An assumed contract check, similar to an ignored one, does not report violations, but continuing
past the violation necessarily leads into (language) undefined behavior , thus not a program
state that can be reasoned about.

That is to say, each CCA in a program is compiled to have exactly one of these four semantics
based on the contract-checking build mode. In the current MVP, they would all be either ignored
or enforced. In a future release of our C++ Contracts facility, any subset might be controlled
independently.

Let’s now imagine for a moment that we could indicate, for each CCA, exactly which of the four
semantics it was allowed to be assigned, and then somehow we could control which of those was
selected by the build mode.

Being able to determine locally what potential semantics a contract check might have and, for a
given build, being able to determine the exact semantic each contract will have allows one to reason
about the answers to these two questions and thus about the expected and observed behavior of the
resulting program.

The first property, whether a violation might be reported, is determined entirely by the semantic
with which the CCA is compiled. The requirement that the CCA be compiled in a particular
semantic is fortified by our need to incur zero overhead when a CCA is ignored. If it is compiled to
ignore, no runtime check will occur, and thus the handler will under no circumstances be invoked.
If the CCA is compiled to have either the enforce or observe semantic, the runtime check will be
active, and if the predicate fails to evaluate to true, the handler will be invoked. In general, if the
CCA is compiled with the assume semantic, then, just like with ignore, no runtime check will occur
and the handler is unlikely to be invoked; however, since any violation is undefined behavior , a
compiler might, in some circumstances, decide that the optimal action for some violations is to
actually invoke the contract-violation handler. Unless the CCA is compiled to a checked semantic in
the translation unit in which it resides, the handler has little opportunity and no requirement to
report the error; if the handler is called, only then does it become responsible for formatting the
information and outputting it appropriately.

The second property, continuation, could be delegated to the violation handler. If the handler
returns normally, program flow will continue; otherwise, the violation handler will have taken the
responsibility for doing something else, such as throwing, terminating, or sleeping.

Compelling reasons arise, however, for not giving the violation handler the unilateral ability to
choose to continue.

8See [P1332R0], [P1429R3], and [P1607R1].

9

• A highly anticipated future feature that allows for controlling the choice between observing
and enforcing contract-checking annotations based on meta-information provided in the CCA
itself (such as a new marker) will have to depend on being used with violation handlers that
would respect a request to continue. A violation handler written today against the MVP
will have no knowledge that it even should be returning normally, rendering a local observe
semantic unusable.

• A user expecting to deliver a compiled binary that is checked — i.e., has all contracts enforced,
such as with the Eval_and_abort build mode in the MVP — and then reason intelligently that
the client will be running without unknowingly violating any contracts will be subverted if
that same client can install a contract-violation handler that can simply choose to continue.
The ability to deliver such checked builds could be a huge boon to library vendors that do not
wish to distribute source code.

• The compiler translating a CCA that is enforced can, if it knows that the enforcement will
never be skipped, use the truth of the contract predicate to optimize code after the check. By
compiling the program termination locally, we enable one of the primary mechanisms used for
the chaining of postconditions to matching preconditions of later functions in a way that has
a decent chance of providing real performance improvements, even in fully runtime-checked
builds.

Though this approach would require substantial new compiler technology and investment in
producing thorough precondition and postcondition annotations, it could conceivably result in
a checked build of an application having no runtime checks yet guaranteeing that no contracts
will be violated. Moreover, this design would allow a program to incrementally reach this
goal, where any checks that cannot be proven from the previous (local) context will simply be
evaluated at run time.

These benefits all hinge on the overall contract semantic being known by the compiler when
translating a single translation unit, well before a link-time contract-violation handler is known.
Even link-time optimization will not aid the binary library distribution use case.

An assumed CCA — should we ever choose to support it — will implicitly have the same benefit
as if the enforced check had run and passed (independent of the contract-violation handler). A
CCA that is compiled to either the ignore or observe semantic opts to forgo this benefit, allowing
continuation past a potential runtime violation.

Thus, the question arises: Could we not just place the compiled semantic (e.g., either enforced or
observed) into the contract_violation object when we pass it to the violation handler on a detected
violation and trust that the handler (supplied by the owner of main) will respect that semantic?

We are left with three alternatives.

1. Refrain from assuming that the contract-violation handler will respect that property and forgo
any of the above benefits that might arise from knowing that the predicate is true.

2. Make the contract-violation handler responsible for not returning normally when told that the
contract semantic is enforce; if the handler does return normally, consider that to be undefined
behavior.

10

3. Guarantee that continuation will not happen by explicitly terminating the program if the
violation handler chooses to return normally to a CCA compiled with the enforce semantic.

Forgoing the benefits of knowing that continuation will not happen for certain builds of certain
contracts hinders valid use cases and limits any mitigating performance benefits of contract checking,
making the first alternative unattractive.

SG21 has repeatedly expressed its belief that introducing new sources of undefined behavior as part
of the contract-checking facility is unwise. We agree. Hence, option two is a poor idea.

We therefore propose that, when compilation options and meta-information on the contract-checking
annotation together have determined that the semantic of the contract check is to be enforce, the
local code will explicitly invoke std::terminate should the handler return normally, which would be
the typical behavior in checked builds in the Contracts MVP.

This modular design facilitates reasoning about continuation (or the lack thereof) without even
knowing what contract-violation handler will eventually be installed. Moreover, this separation
of concerns allows most such handlers to focus on just the single aspect of the violation-handling
process that the default contract-violation handler would implement, which is to produce and deliver
a diagnostic message indicating that a failure has occurred.

Note that the contract-violation handler is still user-defined C++ code, executed normally, so for all
of the varied use cases that extend beyond those that are baked into the basic semantics provided
by the Contracts facility, the violation handler remains a place to attempt to implement those
semantics.

The need for this separation of concerns became apparent during the development of the initial
proposals of the semantics for the C++20 Contracts facility, which came from attempts to leverage
early C++20 Contracts to implement Bloomberg’s already deployed contract-checking facility. Prior
to that work, that such logic could all be embedded entirely in a violation handler was assumed.
Attempts to implement features such as BSLS_REVIEW with a sufficiently advanced contract-violation
handler proved unsustainable and fruitless.

• To allow any continuation, all code needed to be compiled to allow continuation. Mature
checks that were trusted would be allowed to continue even past unexpected violations, leading
to long latent bugs continuing to be significant business risks.

• Code that we would otherwise have enforced does not benefit from the runtime optimization
of knowing that it either is correct or will not continue.

• Identifying those contract-checking annotations that should allow continuation required access
to syntax added to the annotation itself or baking into the violation handler such knowledge
of the source code. Neither of these were viable with C++20 Contracts prior to the addition
of explicit semantics.

Once the semantics could be specified on a contract-checking annotation, however, a robust imple-
mentation of BSLS_REVIEW that was based on language contacts became trivial to produce.

In short, we will eventually want to further annotate our CCAs to include additional information that
enables us to group and control their semantics from the contract-checking build mode. Importantly,
we will want to observe new checks while continuing to enforce old ones, possibly within the same

11

translation unit. The MVP does not allow us to do this today, but by following the design approach
suggested above, the addition of the observe and even the assume semantics is entirely backward
compatible. Adding a few more basic support features will enable us to realise the full control needed
for industrial-strength applications at scale.

3.3 ABI Compatibility

A primary goal of the design of the contract_violation object is to enable a fair range of ABI
migration strategies to allow the use of Contracts in environments where binaries are often assembled
(sometimes even at run time) from individual components built at vastly different times by potentially
completely different toolchains.

ABI compatibility concerns are typically hard to resolve since their proper design requires a fair bit
of speculation about future interactions. We do, however, know that we need (or do not need) to
support some specific use cases.

• We should be able to expect that a platform that compiles a program’s violation handler is also
providing the language-support library function that will be constructing a contract_violation
object and directly invoking the handler.

• The design must not require that all translation units in a program are built with the same
settings, Standard version, or even toolchain. Eventually, ABIs will need to specify what
information will be provided to the contract-violation handling process in a form that is an
implementation detail of the platform rather than specified by the C++ Standard.

• The design must allow contract violations in any translation unit within the program, including
those from dynamically loaded shared libraries, to result in the invocation of the single (unique)
user-provided contract-violation handler linked into the program.

• The Standard specification itself must not so restrict implementations that do not benefit
from such ABI migration concerns that those implementations cannot choose a potentially
more optimal implementation strategy.

We thus intend to require the contract_violation object and its use in ::handle_contract_violation
to have a minimum of compile-time dependencies on the specific version of that type being used.
The model from which this design starts is the same approach taken for std::type_info. Following
that type, we propose a few specific properties for contract_violation.

• All accessors for the various properties this type exposes are nonvirtual nonstatic member
functions, which allows future versions to easily add more accessors without an ABI break.

• Whether contract_violation is polymorphic is unspecified.9 This freedom allows a platform
that does not expect to extend contract_violation to use smaller objects that do not have a
vtable pointer, while platforms that do wish to perform such subclassing can make the object
polymorphic to enable the use of dynamic_cast to identify when a more specific type has been
provided (see Section 5.9).

• The contract_violation object is not copyable and provides no public constructors for users
to create their own instances. This restriction prevents its use in notoriously ABI-sensitive
ways such as data members or automatic variables.

12

One alternative considered was making contract_violation an incomplete type and then pro-
viding all access to its properties through free functions. The idea was to insulate its defini-
tion, yet this approach, while viable, would result in minimal benefits and significantly compli-
cate use. Also noted, by using a complete type, clients could depend on the size of the object
but only in the most minimal ways (such as by declaring but never engaging an instance of
std::optional<std::contracts::contract_violation>), which do not appear relevant.

To further maximize ABI compatibility, we disallow the dependence of contract_violation, in any
way, on other Standard Library definitions, such as std::string or std::runtime_error, that might
not have the same standards for maximizing cross-version compatibility.

3.4 Dynamic Libraries

Specification for the behavior of software that uses dynamically linked libraries is outside the scope
of the C++ Standard itself, but we still benefit from discussing what our expectations are for
the real world where applications do often link and execute additional code that was not readily
available when the program started.

The contract-violation handler is a link-time construct, but since a contract violation may happen
as soon as any code begins to execute at run time, the contract-violation handler must be available
as soon as program execution begins. The contract-violation handler is also a global entity; there
must be one and only one handler in a program. By having exactly one handler, we maximize the
control the entity that owns main10 has over the program’s behavior in any particular deployment.

Therefore, the contract-violation handler is to be linked in such a way that it will be available
at startup, and all loaded shared objects must still route to the same contract-violation handler.
Performance of the violation handling process is not critical, so the cost of making this function
dynamically loaded from all points of use in dynamically loaded libraries seems a reasonable
expectation.

We must consider, however, the situation in which an old program that knows nothing of Contracts
loads a shared library that makes use of Contracts. In such cases, we might have no violation
handler outside the shared library to link to. We recommend platforms solve this problem by either
(1) including a weakly linked default contract-violation handler in shared libraries, so that it may
take effect when no global contract-violation handler is available, or (2) simply failing to load such
libraries at run time. One mitigation strategy for this problem might also be to provide updated,
compatible platform-shared libraries that include the default violation handler as a weakly linked
symbol.

Application environments in which shared libraries have more bounded interfaces with their envi-
ronments — such as COM, device drivers, or control panel applications and service applications on
Windows — might consider instead identifying these complete components as being functionally
equivalent to complete applications and thus select for each such component a single contract-
violation handler. As the containers for these forms of applications evolve, they may add interfaces

9See [LWG2398] for the original resolution that inspired this approach.
10When we say “the entity that owns main,” we generally are using that phrase as a proxy for the person responsible

for choosing how an executable is built and assembled. In general, main exists with a one-to-one relationship to a
compiled executable, hence the proxy relationship is viable. For platforms having no main, we recommend giving an
entity having a similar property the final responsibility for picking a global violation handler.

13

to allow the contained components to pass contract violations to the enclosing system, thus giving
the full system total control over how to handle violations centrally.

Another concern related to dynamic libraries, any static storage duration data within a dynamic
library is accessible only until the library is unloaded, e.g., via a call to dlclose(). We cannot
universally guard against this scenario (provided that the unloading might potentially happen
concurrently with any part of the violation handling process, long before the contract-violation
handler is even invoked), yet it offers a compelling reason to discourage users from depending on
the lifetime of a contract_violation object extending beyond the point where the invocation of the
contract-violation handler completes.

3.5 Reentrancy

The general problem of reentrancy for contract-violation handling is potentially non-trivial. If,
during the evaluation of a contract-violation handler, a contract is again violated, the natural infinite
recursion that is likely to happen can suppress the output of any diagnostics (or even suppress a
prompt termination of the program itself), leading to a hard-to-analyze defect.

In practice, reentrance into a contract violation will work correctly with almost any implementation
strategy. The only strategy that will prevent a recursive call to a contract-violation handler would be
when a single contract_violation object is reused (populated differently) for every contract-violation
handler invocation. We therefore do not recommend this implementation strategy.

Complexity brings with it the potential downside of failures cascading, and this proposal seeks to
enable developers to intelligently make this tradeoff for themselves.

This same concern arises should a user-provided contract-violation handler itself have preconditions.
It would be reasonable for a compiler to warn about such cases, as a failure in such precondition
checks would lead to immediate recursing into the violation-handling process. It does not seem
appropriate, however, to make special rules for the contract-violation handler indicating that it
cannot have preconditions. As the inevitable stack overflow that would occur, should attempting to
invoke the contract-violation handler lead directly to a contract violation, is undefined behavior (due
to exceeding the implementation limits on number of nested executions) it would be reasonable for a
platform to do whatever it could to identify such a situation at runtime and report the catastrophic
failure through some other platform-appropriate channel. Being as the same exact situation would
occur if the violation handler invoked some other function out of contract as its first action, we do
not believe there is any real protection from this scenario that we can provide other than simply
letting developers discover this bug and fix it.11

3.6 Enumerations

Many of the properties on a contract_violation object present bespoke values, something that is
most naturally represented as an enum.

11As pointed out by Ville Voutilainen when discussing this point, developers dealing with the failures that come
from contract violations when attempting to invoke the contract violation handler should think to themselves “Maybe
you deserve it”.

14

Because the values themselves are not meaningful, they are specified using enum class — both to
scope the enumerator names and to remove the meaningless arithmetic operations that would come
with a classic enum nested in a struct. To ensure sufficient space for implementation-defined values,
we specify the underlying type of each of these enum class types to be int. Note that this constraint
might bloat the size of a contract_violation object that contained these values as members, but
an implementation that knows it will not use the full range can store much less, simply promoting
the stored value to the full size when the corresponding accessor is invoked.

Due to the possibility of multiple compilers seeking to produce contract violations that are delivered
to a single contract-violation handler as well as a desire to capture the values on a contract_violation
object and parse them in a platform-independent manner, we have specified the values to be used
explicitly for these objects.

Implementation-defined values for these enums should always be considered a possibility, so we specify
that a range of values are reserved for the implementations, which will thus never conflict with a
future Standard. Implementations that are aware of a future Standard having more enumerators
that the implementation wishes to support are encouraged to use that future Standard’s values
(and so are not restricted from using values in the Standard’s range, since they are using values the
Standard is known to use in an upcoming version).

The use of opaque enums having free functions to identify their values was considered. This design
would allow an implementation to treat both an implementation-defined value and a standardized
value as synonymous, but otherwise the idea seemed to offer little benefit and significant additional
complexity. The mixing of implementation-defined and Standard-defined values seems to be a
tractable enough problem to reason that this added complexity is unjustified.

The fixed values chosen for all enumerators begin at 1 to avoid different enumerators having different
truthiness (i.e., different values should they be converted to bool).

3.7 Naming

The names of types, functions, and enumerators proposed in this paper will be used quite rarely in
common practice. Any given program will have (at most) only a single contract-violation handler
defined in it, and such handlers will often be reused by any programs that share the things the
violation handler does, e.g., business needs, logging frameworks, and so on.

Therefore, minimizing the size of the names we propose here does not seem to be a priority. Instead,
we sought to produce clear and self-evident names that have little to no chance of colliding with
existing names. For example, we named the enumerator for contract semantics contract_semantic,
not just semantic, since the latter is ambiguous about its intent and likely to be in use in other
user-defined code (or even in a future Standard for some other purpose).

In the interest of protecting existing namespaces, we have, perhaps redundantly, also put all names
in the std::contracts namespace. This choice was made deliberately to remove this rarely used set
of names from what is provided when using using namespace std.

Overall, this naming approach leads to somewhat verbose, fully qualified names. Since users will have
little need for them, we’re fine with that. If, however, a consensus arises to remove that verbosity,
we recommend moving the names to namespace std, retaining the (longer) chosen identifiers that are

15

clearly related to the Contracts facility, even if not sequestered in the bespoke namespace contracts
(which is sometimes but far from consistently done within the Standard Library).

No name is set in stone until the Standard ships, of course. We have proposed some alternates as
well as listed some names proposed by others, and we are not especially partial to any of the names.

3.8 C Compatibility

SG21 certainly hopes to see, as part of a future C Standard, a contract-checking facility that is as
similar as possible to and interoperates smoothly with the C++ contract-checking facility. One of
the primary points of interaction between the two facilities will be a shared approach to violation
handling — all reasons to have a central violation handler for all C++ code in a program apply
equally well to C code in the same program. One could argue for a violation handler with C linkage,
which should be fine because exactly one can be in any given program.

On the other hand, the needs of C++ contract checking will inevitably be greater than those of C —
e.g., member functions, class invariants, coroutines, and use of or elevating beyond the preprocessor.
Representing all of these factors in the arguments to a contract-violation handler in C would be
limited by a lack of the tools C++ provides for encapsulation.

The syntax that the C++ community is likely to find natural and acceptable is also highly likely to
be distinct from whatever syntax the C Standard adopts, which might be both more conservative in
some ways and more liberal in others. The syntax question — and whether it can be resolved so the
same syntax works in C++ and in C, since the C feature set will inevitably be a subset of the C++
syntax — is a question that should be answered separately.

Our recommendation in that regard is to develop a syntax natural to C++ and, should C adopt a
functionally equivalent syntax for the subset of features applicable to C, support that C syntax in
C++ as an alternate spelling of the same functionality for the subset of features that overlap.

Independent of the syntax choice, the same concepts will apply when a contract check is evaluated
and determined to have been violated. The properties specified here will be made available to a
custom contract-violation handler installed according to the rules of either C or C++.

We expect, therefore, that a contract violation generated in either language should be reportable to a
single contract-violation handler defined in either language; although the properties that indicate how
a violation happened in a C++ program might not have values that a C contract-violation handler
will be expecting, the C contract-violation handler should manage those properties gracefully.

Much of this functionality could be implemented as implementation-defined behavior. Both languages
will specify a mechanism to provide a user-provided contract-violation handler, and implementations
are free to require that at most one of those two mechanisms is leveraged in a single program.

A potentially more easily implemented solution is to tie the handler type to the language of the
translation unit that defines main. If the language is C, a C++ contract-violation handler will be
installed that delegates to the C violation-handling mechanism. If a C++ main is defined, the default
C violation handler will delegate to the C++ contract-violation handling process.

As with shared libraries, the details of this process are outside the scope of either Standard to define,
yet developers are free and encouraged to create implementations that make the interoperability as

16

seamless as possible.

3.8.1 C Annex K

The C Standard’s Annex K12 provides a mechanism for setting a handler at run time to address
violations of various constraints of the core C language. These violations are essentially all related to
preconditions when using builtin functionality, and the C Standard would ideally support reporting
violations of these preconditions in a way that feeds into the global contract-violation handling
facility.

To integrate these preconditions, we suggest that, for a future C language implementation that
supports both Annex K and Contracts (either as a new conditionally supported “Annex N” or as
a core feature), the default constraint handler would invoke the contract-violation handler with
appropriately populated information based on the constraint. Support for this design would benefit
from having a new value for the detection_mode and kind enumerations to indicate that the source
of the violation was an Annex-K constraint.

3.9 Implementation Possibilities

Various implementation strategies can lead to different ABI evolution guarantees. One simple strategy
would be to, within each translation unit when a contract check evaluation is being generated,
produce a static contract_violation object having the appropriate contents at each point where
the contract-violation object might be invoked. For example, to show the full range of how such
objects might be used and initialized, consider a function, f, having an assertion in its body that
calls another (opaque) function, foo, as part of its predicate:

// f.cpp
void foo(int* p); // used in predicate of CCA below

void f (int* p)
{

[[assert : *p == 0 && foo(p)]];
}

The transformation of this assertion when enforced might depend on one compiler intrinsic that
creates a contract_violation object at compile time and another that invokes the current violation
handler with a specified contract_violation object and then proceeds to terminate the program:

void f(int* p)
{

// Begin transformation of [[assert *p == 0 && foo(p)]].
static constexpr char* __comment = "*p == 0 && foo(p)";
static constexpr source_location __location { "f.cpp", 5, "void f(int*)" };

// shared data between all local contract_violation objects

if (p == nullptr) {
// identified potential undefined behavior in the contract predicate
static constexpr contract_violation __violation =

12See [isoc11], “Annex K,” p. 582.

17

__make_contract_violation(__comment, __location,
contract_kind::assert, contract_semantic::enforce,
detection_mode::evaluation_undefined_behavior);

// initialized contract_violation object at compile time
__enforced_contract_violated(__violation);

}
bool result;
try {

result = (*p == 0 && foo(p)) ? true : false;
// Contextually convert expression result to bool.

} catch (...) {
static constexpr contract_violation __violation =

__make_contract_violation(__comment, __location,
contract_kind::assert, contract_semantic::enforce,
detection_mode::evaluation_exception);

__enforced_contract_violated(__violation);
}

if (!result) {
// false predicate detected a violation. Invoke
// violation handler outside of above try/catch blocks.
static constexpr contract_violation __violation =

__make_contract_violation(__comment, __location,
contract_kind::assert, contract_semantic::enforce,
detection_mode::predicate_false);

__enforced_contract_violated(__violation);
}

}

This implementation maximizes the data that can be kept in read-only memory but has the
disadvantage that all translation units will need to be compiled with fully ABI-compatible versions
of contract_violation.

An alternate approach having possibly greater (but probably insignificant) overhead is for the
platform ABI to define a versioned contract_violation_data object for which each translation unit
will create instances. Then, the contract_violation object will serve to adapt that versioned struct
into the interface the compiled contract-violation handler expects. When referencing an older version
of the data object, sensible defaults can be produced for new functions, and newer data objects
should include all fields that any older instance of contract_violation might seek to use.

This design retains the ability to keep most of the objects in read-only memory, while enabling
a protocol for translation units that have been built with an arbitrary range of platforms to
interoperate. This same data object could also then be passed to a C linkage violation handler to be
interpreted by C language free functions, thus allowing C++ contract violations to be handled by a
C language violation handler, and vice versa.

18

3.10 Skipped Potential Features

3.10.1 Unique Identifiers

A unique identifier for each contract violation is potentially quite helpful to properly implement
exponential backoff logging of observed contract violations. Various implementation strategies provide
different methods in which such an identifier could be generated. An implementation that placed
contract_violation objects prepopulated (or data objects used by the contract_violation objects)
in read-only memory could easily use the address of that read-only data as the unique identifier for
a contract violation.

Another option is to use the address of the instructions that invoke the contract-violation-handling
mechanisms (i.e., the instruction pointer of the appropriate stack frame that led to the violation
handler being invoked) for this unique identifier. This approach is discussed further in Section 5.8.

3.10.2 Program Name

Suggestions have been offered that the program name should be part of the contract_violation
object. Gathering this platform-dependent information for all contract violations seems like a cost
that is not universally acceptable. A contract-violation handler itself is also quite capable of invoking
any API that exposes this information should doing so be needed, so we recommend that, rather than
this being a property for contract_violation, cross-platform facilities to obtain this information
be explored. Notably, the default violation handler is welcome to include the program name in its
output if that is deemed appropriate for given platform.

3.10.3 Nonterminating throw possible

The desire that contract violations never lead to program termination has been expressed. Achieving
this goal through the use of exceptions thrown from a contract-violation handler is directly in
conflict with the use of noexcept on any function that might have a (possibly deeply nested) defect.
Only unconstrained hubris would lead anyone to believe that any function can be deemed absolutely
free of defects, and thus making that a requirement for the use of noexcept seems infeasible.

An alternative that has been suggested is to indicate, in the contract_violation object, that the
contract-checking annotation being evaluated is a precondition or postcondition attached to a
noexcept function. This indicator would not, however, prevent any thrown exception from a violation
handler from leading directly (and swiftly) to program termination. The range of scenarios in which
an exception thrown within the body of a function having a nonthrowing exception specification —
from a simple assertion to any CCA on any function invoked indirectly — is much broader than can
be easily identified.

On the other hand, the same logic that allows stack unwinding to be skipped when it will hit a
noexcept boundary could be exposed through a standard interface to identify if that would happen
should an exception be thrown.13 This information would at least allow a violation handler to
identify such cases and follow an alternate path (e.g., std::longjmp, or logging more verbosely) to
attempt to avoid certain termination.

13See http://lists.isocpp.org/sg21/2023/04/2784.php and http://lists.isocpp.org/sg21/2023/05/3188.
php, where it was pointed out that, at least with the Itanium ABI, a function such as std::throw_finds_noexcept

19

http://lists.isocpp.org/sg21/2023/04/2784.php
http://lists.isocpp.org/sg21/2023/05/3188.php
http://lists.isocpp.org/sg21/2023/05/3188.php

Addressing this concern for only preconditions and postconditions of noexcept functions seems likely
to be insufficient for any practical purpose, since the concerns emanate from exceptions thrown
within the body. The illusion that the function was somehow safe might even be considered actively
harmful. In any event, this woefully incomplete solution is, in our judgment, unworthy of further
consideration at this time.

Similar overlapping concerns have been expressed for wanting to know if a contract violation is a
precondition on a destructor, as a violation handler may want to behave differently and, for example,
not throw, if it knows that it is being invoked as part of destruction of an object. This seems to be a
similarly only partially solvable problem that is better served by better ways to inspect the current
state of the stack — i.e., a query such as std::during_destruction or possibly std::is_unwinding.
Without such runtime logic any perceived protection provided by an easily populated property on a
contract_violation object would be immediately circumvented by a single layer of indirection from
the destructor to another non-destructor function.

4 Proposal
Our proposed solution to broaden the viability of a still-minimal Contracts facility starts with
how to define the object that will capture the details of a contract violation, how to specify a
contract-violation handler, and what the recommended default contract-violation handler should do.

4.1 An Extensible contract_violation Type

Proposal 1: The Standard Library std::contracts::contract_violation Type

A new language-support type, std::contracts::contract_violation, will be added to the
Standard Library and will be designed for extensibility in an ABI-compatible manner.

To specify a custom violation handler, we will need to provide a type to represent the information
that will be gathered and made available to a contract-violation handler when a contract violation
occurs. This type might have any number of properties, but we want to ensure that it can evolve
while remaining ABI compatible.

We therefore recommend the following expectations and requirements for this contract_violation
type.

• Property types will be builtin types, enumerations, or Standard-Library value types such as
std::source_location. Strings will be null-terminated byte strings denoted by a const char*.14

• Each property accessor will return by value, not reference. Hence, a contract_violation object
itself is never required to maintain a member for any of these properties unless it chooses to
do so.

• Each property of std::contracts::contract_violation objects will have a recommended
practice for any values supplied when a contract violation is detected but no requirements
as to the specific values with which that property must be populated. Implementations may,

could probably be implemented to indicate that stack unwinding would terminate.

20

therefore, choose to store more information for improved diagnostics or to carry less information
in an executable for reduced overhead, potentially leaving that choice to the user.

• Objects of type std::contracts::contract_violation will be passed by const&, not by value,
to the contract-violation handler.

• Objects of type std::contracts::contract_violation will not be copyable (i.e., the type will
have a deleted copy constructor and move assignment operator), nor will they provide any
user-facing constructors. This restriction will prevent meaningful use of these objects as
user-defined variables (e.g., member variables or automatic variables) and reduces the chance
of dependence on attributes of the complete type that would prevent evolution of the type.

Proposal 1.1: The <contract> Header

The type std::contracts::contract_violation shall be defined in a new language support
header <contract>.

The C++20 Contracts facility has the primary declaration of this type in a new header, <contracts>,
and we see no compelling reason to place it elsewhere. But, much like other complex systems (e.g.,
std::pmr), we now understand that this facility will inevitably evolve to require many other such
supporting types; hence, we propose to give our new Contracts facility its own namespace under
std, std::contracts. (This sort of logical-physical cohesion is considered by many to be an industry
best practice.)

Proposal 1.2: The location Property

The type std::contracts::contract_violation shall provide this accessor:
std::source_location location() const noexcept;

It is recommended that the value returned represent the source location of the violated
contract-checking annotation, or for preconditions that it be the location of the function
invocation.

The recommended practice for the location property is to provide a source location for identifying
the contract-checking annotation that has been violated. When possible on a precondition, this
property would ideally be the source location of the point of function invocation. When the invocation
location cannot be ascertained and on other contract checks, the location provided would be the
source location of the contract check itself.

Compiler flags that request that built executables not store information regarding the source code
that produced the executable should not be rendered nonconforming by the need to populate this
location property. To allow such options, producing a default-constructed source_location from
this property would be permitted, although this option would be nonoptimal for those users who
did not explicitly choose to have this information made unavailable.

14See [P1639R0] for the LEWG’s reasoning behind the use of const char* in std::source_location and
associated arguments in favor of using const char* over std::string_view in types necessary to the use of core
language features such as contract_violation.

21

Proposal 1.3: The comment Property

The type std::contracts::contract_violation shall provide this accessor:
const char* comment() const noexcept;

It is recommended that the value returned contain the textual form of the expression of the
violated contract-checking annotation.

The recommended practice for the comment property is to include a textual representation of the
predicate expression in the contract-checking annotation that has been violated. When storing
the text of all potentially violated contract checks in a program is deemed to be too inefficient or
cumbersome, returning the empty string ("") instead is recommended.

Proposal 1.4: The detection_mode Property

The <contract> header shall provide an enumeration having members contingent on which
forms of violation detection are accepted:

namespace std::contracts {
enum class detection_mode : int {

predicate_false = 1,
evaluation_exception = 2,
evaluation_undefined_behavior = 3
/* to be extended with implementation-defined values and by future Standards */
/* Implementation-defined values should have a minimum value of 1000. */

};
}

The type std::contracts::contract_violation shall provide this accessor:
detection_mode detection_mode() const noexcept;

The value returned will express how the violation of the violated contract-checking annotation
was detected.

For any given kind of contract-checking annotation, multiple ways might exist via which a given
evaluation will end up identifying that a contract violation has occurred. Typically, a violation
will be identified when a contract-checking predicate evaluates to false, thereby clearly indicating
that the expected boolean condition failed to hold. In such cases, the value returned from the
detection_mode accessor will be detection_mode::predicate_false. The various subproposals of
Proposal 3 in [P2751R0] indicate that other situations, such as a predicate that throws or that
has readily detectable undefined behavior, are also potential candidates for triggering a contract
violation, and in such cases, indicating which mechanism led to the violation can greatly help guide
the violation-handling behavior.

Other future extensions — in particular, any sources of contract violations that are not annotations
with a simple boolean expression — would be associated with a distinct value for the detection_mode
enumeration. In general, if a compelling reason justifies the ability to alter violation handling
behavior based on how a violation was detected (such as possibly rethrowing when a predicate
allowed an exception to escape), that state benefits from being identified as a distinct detection_mode.

22

Purely informational distinctions are likely better served by placing that knowledge in the comment
property in a human-readable form.

In particular, if we choose to cause an exception thrown from evaluating the predicate of a contract-
checking annotation to trigger a contract violation, we must convey that information on the
contract_violation object; otherwise, we have no way to identify that situation (an exception
currently being in flight does not indicate that it was thrown by the contract predicate) and choose
to give it special treatment, such as rethrowing certain classes of exceptions (see Section 5.3).

Other names that could be considered for this enumeration are

• detection_method

• violation_trigger

The name cause has been proposed, but in our experience, misleading any user about the potential
cause of a violation is an egregious mistake. The predicate returning false is not the cause: It is
an effect of the root cause, which was a defect in the program. Library developers that deploy
large-scale contract-checked systems are inevitably keenly aware that often naive users blame the
contract check for their own code’s defects, and minimizing the chance that naming can contribute
to that misunderstanding will greatly benefit all people who make use of Contracts.

Proposal 1.5: The semantic Property

The <contract> header shall provide this enumeration:
namespace std::contracts {
enum class contract_semantic : int {

enforce = 1
// observe = 2, // expected in a future Standard
// assume = 3, // expected in a future Standard
// ignore = 4 // expected in a future Standard
/* to be extended with implementation-defined values and by future Standards */
/* Implementation-defined values should have a minimum value of 1000. */

};
}

The type std::contracts::contract_violation shall provide this accessor:
std::contracts::contract_semantic semantic() const noexcept;

The value returned will express the semantic with which the violated contract-checking
annotation was being evaluated.

Contract-checking proposals, including the MVP, hinge on selecting, at build time, a runtime
semantic controlling how detection and enforcement of each individual contract-checking annotation
will be performed. Our research and experience tells us that at least four well-defined semantics are
sound and practical to apply in appropriate circumstances. As of now, the MVP allows for contracts
having two of those semantics, i.e., ignore and enforce, which are selected for all contract-checking
annotations within a program based on the build modes No_eval and Eval_and_abort respectively.
In effect, this choice will result in users observing the results on only enforced contract-checking
annotations in a contract-violation handler. We can, therefore, forgo even specifying the ignore

23

enumerator as it would currently go unused. We hope that future evolution, however, will result
in satisfying the use cases of those who wish for contract checks having other checked semantics,
such as observe, since knowing which semantic is in effect for a particular violation greatly aids in
programming the violation handler to behave properly.

In particular, when a contract is enforced, we know that the program will not continue normally
after invoking the handler. A handler that wishes to proceed in any way other than program
termination, such as by throwing or invoking longjmp, would thus need to do so after logging and
prior to returning normally. But consider a future kind of contract-checking statement whose only
two viable semantics were observe and ignore. Hard coding the throw or long-jump into the handler
would interfere with the intent of always continuing but sometimes logging. In that case, we would
want to do the long-jump or throw only when the contract check had the enforce semantic.

Moreover, since continuation might result in many violations of the same contract-checking an-
notation, a robust violation handler would not necessarily want to attempt to log a message on
every violation. In general, the diagnostic of the first violation of each contract is quite helpful and,
in many cases, only one violation might occur, so skipping that diagnostic entirely is ill-advised.
Diagnostics of repeated violations quickly become unhelpful, so best practice is to employ some
form of exponential backoff for logging. This backoff strategy requires the violation handler to count
violations of each observed contract check in a safe and reasonably performant manner. Providing a
light stack trace to see the entire call chain is another useful technique, especially when observing a
contract check.

In practice, a contract_violation whose semantic has the ignore value will never occur; if we are
not evaluating the contract-checking annotation’s predicate to determine if a violation has occurred,
a contract-violation handler will never be invoked. The ignore semantic is still, however, one that
the MVP allows contracts to have, and thus we could include it, but with no current programmatic
need for it, we omit it for now.

Proposal 1.6: The will_continue Property

The type std::contracts::contract_violation shall provide this accessor:
bool will_continue() const noexcept;

The value returned will indicate whether, when the contract-violation handler returns nor-
mally, evaluate is expected to continue immediately following the violated contract-checking
annotation.

Many contract violation handlers will simply log a message and return, and thus will not generally
concern themselves with what will happen after violation, leaving that choice entirely in the hands
of how the calling code was being evaluated. For certain types of violation handlers, however, the
intent is to take control of fatal violations and do something completely different — such as throwing,
starting a new nested event loop, opening a debug port and sleeping, or any other behavior not
involving a normal return. When a CCA as evaluated has been configured to simply report the
violation and continue, however, subverting the user’s expectation that evaluation will continue is
likely to greatly hinder certain use cases.

Though the MVP currently does not allow for a semantic that would lead to this property having

24

a value other than false there is clear intent to add the observe semantic as a possible semantic
a contract evaluation may have, either as part of the MVP15 or with future evolution. Violation
handlers written to respect this property will thus be future-proof to handle both compiler extensions
that add the observe semantic as well as future standards that fully incorporate it, as well as any
similar semantics that would benefit from having the violation handler prefer returning.

Proposal 1.7: The kind Property

The <contract> header shall provide this enumeration:
namespace std::contracts {
enum class contract_kind : int {

pre = 1,
post = 2,
assert = 3
/* to be extended with implementation-defined values and by future Standards */
/* Implementation-defined values should have a minimum value of 1000. */

};
}

The type std::contracts::contract_violation shall provide this accessor:
std::contracts::contract_kind kind() const noexcept;

The value returned will represent the syntactic form of the violated contract-checking annota-
tion.

Whether the contract annotation violated was a precondition, postcondition, or assertion annotation
might guide the form of logging statements produced by a custom contract-violation handler.

Future extensions to Contracts might add new forms of contract checks, such as procedural
interfaces16 or class invariants, which could then be distinguished in a contract-violation handler
by producing distinct values of the contract_kind enumeration. Extensions might also add new
sources of detected contract violations, such as sanitizer checks, exceptions that attempt to escape a
noexcept function, or C Annex K constraint violations. A contract-violation handler might benefit
from distinguishing all of these cases.

The names for these enumerations should, of course, match the corresponding names used in
whatever final syntax is chosen for contract-checking annotations in general. We have, for simplicity,
proposed here names that match those from the C++20 attribute-like syntax.

It is important to note that the names precondition and postcondition would be uniquely bad for
these enumerators because a [[pre]] contract-checking annotation is not, a priori, a precondition,
and neither is a [[post]] contract-checking annotation necessarily a postcondition. A precondition in
a contract is a responsibility that belongs to the caller, while a postcondition is a responsibility that
belongs to the callee. The [[pre]] and [[post]] annotations are distinguished by when they evaluate
their checks, not by who the responsible party is for those guarantees. In general, preconditions and
[[pre]] annotations as well as postconditions and [[post]] annotations are highly correlated, but
often this correlation fails to hold.

15See [P2877R0].
16See [P0465R0].

25

• Class invariants are the responsibility of the class to maintain, so generally they are not the
responsibility of the caller invoking a member function of that class. On the other hand, a
member function might decide to check such invariants using a [[pre]] annotation.

• Some guarantees a caller must make are time based and must remain true throughout the
lifetime of a function invocation and hence might be checked by a [[post]] annotation, even
though they are preconditions for invoking the function.

• An [[assert]] annotation near the start of a function is often a precondition check,17 while
one near the end of a function is often a postcondition check, but in general only the function
implementer could readily identify which is the case. Some [[assert]]s are even better viewed
as sanity checks — which could be considered stepping stones a function takes to verify that it
is correctly on its way to guarantee its postconditions — but are not individually themselves
part of the stated postconditions in a function’s contract.

For this same reason — that the responsible party for a particular contract check is not clearly
expressible — it is important to understand the kind property as capturing the syntactic form of
the CCA and not (necessarily) the intended responsible party for the contract.

4.2 Contract-Violation Handler

Proposal 2: Contract Violations Invoke a (Potentially) Replaceable Function18

When a contract violation is detected, prior to other specified behavior that is associated with
the contract annotation, a function named ::handle_contract_violation that is attached to
the global module will be invoked. This function

• may be noexcept
• may be [[noreturn]]
• shall return void
• shall take a single argument of type const std::contracts::contract_violation&

Whether this function is replaceable is implementation defined.

Not all platforms, especially those that seek to have a thoroughly auditable security-conscious
deliverable, will want to support a replaceable19 contract-violation handler. We therefore propose that
whether handle_contract_violation is replaceable be unspecified. For platforms where replaceability
is not supported, defining the function shall lead to a link error (a clear and early indication to users
who attempt to replace handle_contract_violation that they will not be able to take advantage of
this portion of the Contracts facility). Platforms that do not allow for replacement of the violation
handler are nonetheless encouraged to instead provide to users at build time a finite set of alternative
behaviors that the default violation handler may have.

17In fact, in all existing macro-based runtime contract-checking frameworks today, all precondition checks are
expressed as assertions within the function’s body — this does not mean that they are not the responsibility of the
caller to satisfy.

18Note that polling in the 2023-04-20 SG21 telecon indicated strong consensus for a replaceable contract-violation
handler.

19This proposal adds ::handle_contract_violation to the set of replaceable functions the Standard defines,
which currently includes various overloads of the global operator new and operator delete. Just like those
functions, the violation-handler function is placed in the global namespace and attached to the global module.

26

Notably, the language and Standard Library provide no mechanism to alter the behavior of the
contract-violation handler at run time. A general feature having that purpose has been deemed by
some to be too large a security risk on many platforms, though a custom violation handler can be
crafted to achieve that effect.

As is generally assumed with arguments passed to a function by const&, accessing the
contract_violation object after handle_contract_violation has returned will be undefined be-
havior. This enables implementations to choose to create that argument on the stack and thus allow
it to be destroyed should the stack be unwound. Restricting the lifetime of this object also reduces
the risk of problems if the object refers to static data in a dynamic library that might be unloaded,
a likely possibility if during stack unwinding an RAII object unloads the shared library containing
the contract-violation data when it is destroyed.

This function is, by design, not declared in the <contract> header, as that would impose a specific
signature on user-defined contract-violation handlers instead of leaving , in particular, the exception
specification of the function user-defined. Given that users cannot construct a contract_violation
themselves, it is also unlikely that being able to directly invoke this function will do anything but
enter an infinite recursion, as the only place a contract_violation object is generally available is
when handle_contract_violation is already being invoked.

Finally, while normal single-TU builds will not be impacted in any direct fashion by the properties
of the link-time contract-violation handler — i.e., whether it is noexcept or [[noreturn]] — there
are still situations where this can have significant impact.

• When possible, the use of link-time optimization can make either of these properties result in
the elision of significant amounts of code. For environments where code size is highly significant,
this is a useful tool.

• It has been suggested that some compilers may even provide flags which compiles a translation
on the assumption that evaluation a contract-checking annotation will never throw - i.e., that
predicates do not allow exceptions to escape and the contract-violation handler is noexcept.
Such a flag would allow scalably obtaining the code-size benefits of a noexcept contract-
violation handler while simply enforcing at link time that the linked handler actually is
noexcept.

4.3 Default Violation Handler
Proposal 3: Default Violation-Handler Behavior

Recommended practice is that the default violation handler will output diagnostic information
describing the pertinent properties of the provided std::contracts::contract_violation
object.

27

Proposal 4: Default Violation-Handler Invocation

A new function that has behavior matching that of the default contract-violation handler will
be added to the Standard Library :

namespace std::contracts {
void invoke_default_contract_violation_handler(const contract_violation&)

}

When the violation handler is not replaceable or when no replacement is provided, recommended
practice is to provide a violation handler that outputs useful diagnostic information (such as the
contents of the std::contracts::contract_violation object) to a standard error-reporting channel
for the platform (such as stderr).

Looking forward, should the committee adopt the ability to observe contract violations,20 recommended
practice would be that the default violation handler log diagnostics only infrequently, such as with
some form of exponential backoff counter. Logging a diagnostic for each repeated failure of the
same contract-checking annotation can quickly down a system, and observation is intended to avoid
exactly that problem.

Platform capabilities, limitations, and other concerns will, of course, lead to default violation
handlers that do much more or much less. This behavior can range from launching a debugger to
doing nothing at all.

In addition, the simplest use case for using a custom contract-violation handler is to provide
additional logging or diagnostics that is best layered on top of the platform default violation handler.
A mechanism to, from within a user-provided contract-violation handler, invoke the platform default
contract-violation handler makes this form of layering feasible without needing to reinvent wheels
already provided by the platform.

5 Usage Examples
Providing just the hook of a custom violation handler effectively supports many use cases that
would otherwise not be implementable using the MVP.

5.1 Custom Diagnostic Output

The most common use case for custom contract-violation handlers is to log the error to a particular
output API in a particular format:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

std::cerr << "Contract violated at:" << violation.location() << std::endl;
}

20By observe, we mean “determine if a contract violation is detected by a specific contract-checking annotation and
then, when a violation occurs, invoke the contract-violation handler and, if the handler returns normally, continue
execution immediately following the contract-checking annotation.” See [P1607R1] and the earlier [P1332R0], which
referred to this behavior as check_maybe_continue.

28

Taking into the account the risks and potential rewards, a handler might choose to add stack traces,
the time, some subset of static program state, or other information before allowing the program to
terminate.

Other programs might want to provide feedback to a user more directly:
#include <windows.h>`
void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

MessageBox(NULL,
(LPCWSTR)L"Contract violation, abort?",
(LPCWSTR)L"Contract violation",
MB_OK);

}

On other platforms, a program might send messages to syslog, use other central logging APIs, store
an event in a diagnostic-event recording system, or perform other environment-specific actions to
record the detection of a contract violation.

5.2 Throw on Contract Violation for Recovery

Rather than aborting, an application might instead choose to handle all contract violations as
exceptions by throwing a known contract-violation-exception type from the handler:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

throw my::contract_violation_exception(violation);
// copies relevant fields from violation

}

Properly supporting this use of contract violations requires code be written with exception safety in
mind, which also goes a long way toward supporting the use case of applications that do not have
the choice to terminate.21

Since we, in general, do not want to make changes to the abstract machine itself, this use of
exceptions does nothing to prevent termination related to noexcept functions further up the stack,
but see Section 6 for more discussion on this topic.

Stack unwinding itself might, however, lead to other contract violations in the destructors of
automatic variables on the stack, showing again that significant risk is involved in using exceptions
as part of handling contract violations. Those who choose to do so must carefully evaluate the
software they write to be sure it will handle such problems properly.

5.3 Propagating Predicate Exceptions

The proper response to an exception being thrown from the evaluation of a contract-checking
annotation’s predicate expression might arguably depend on context. Some applications might have
resource recovery mechanisms to continue executing properly when, say, std::bad_alloc is thrown,

21See [P2698R0].

29

while others might have no viable way to recover from a logical error that was expressed as a thrown
exception (a common if unfortunate practice, such as through the use of std::vector::at).

In most cases when a predicate fails to evaluate cleanly to something contextually convertible to
true, something is amiss and is causing the contract-violation handler to be invoked. For those tasks
that are capable of recovering from a thrown exception, we can easily have a contract-violation
handler propagate the exception that escaped the evaluation of the predicate:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

if (violation.detection_mode() == detection_mode::evaluation_exception) {
throw; // rethrow the current exception

}
}

In other cases, users can inspect the particular exception that was thrown and propagate only those
that are known to represent resource acquisition failures from which the application is designed to
recover:

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

// First, log appropriately.
if (violation.detection_mode() == detection_mode::evaluation_exception) {

std::exception_ptr exception = std::current_exception();
try {

std::rethrow_exception(exception);
} catch (const std::bad_alloc&) {

throw; // rethrow bad_alloc
} catch (...) {

// Return normally to abort on other exception types.
}

}
}

Depending on other expectations, it may also benefit this violation handler to check to see if there
are any further uncaught exceptions (by invoking std::uncaught_exceptions()) which would lead
to this nested exception having a high chance of promptly invoking std::terminate and, when that
is the case, handling the unpleasant situation in an alternate fashion.

5.4 longjmp for Recovery

One option to avoid aborting without throwing an exception is to use std::longjmp to move control
flow up the stack to a primary event loop and begin recovery. The hard edge on this approach
is that behavior is undefined if the destructors of any non-trivial automatic variables would need
to be invoked when unwinding the stack from the invocation of longjmp to the invocation of the
corresponding setjmp, i.e., if the pair of calls were replaced with a try and a catch.

This undefined behavior manifests in at least two distinct ways. Many platforms simply skip any
of the corresponding destructors, leading to possible resource leaks (or worse, an imbalance in
the invariants that an RAII object, such as a std::lock_guard, was intended to enforce) but then
continuing execution from the point of invocation of setjmp. Other platforms,22 however, will, when

30

longjmp is invoked, unwind the stack in a manner similar to what would happen when an exception
is thrown. On platforms where longjmp will unwind the stack, all the same pitfalls that apply to
attempting to recover via throwing an exception, will apply — although it can be expected that, even
when crossing the boundary of a function with a nonthrowing exception specification, unwinding
will continue and std::terminate will not be invoked.

Using this longjmp approach requires carefully managing threads of execution and their currently
associated jmp_buf instances, handling the platform-specific behavior when unwinding goes past
non-trivial destructors, and overall structuring an entire application to be prepared to recover in
this manner. The solution proposed in [P2784R0] is similar to this approach in spirit, with similar
associated benefits and potential pitfalls.

5.5 Performing a Safe Stop

For many purposes, program termination is the safest approach to handling software defects; users
will be notified of problems through the auspices of the infrastructure that executed the program,
actions can be taken to recover at a higher level that has not suffered from unknown defects, and
normal computing activity can resume productively.

Some uses, however, do not have the surrounding infrastructure or, to make progress, must avoid
making the same level of demands of a user. Naive users happily executing a graphical interactive
program are unlikely to be well served by a program that simply disappears from their desktop for
reasons they cannot readily identify. An embedded system navigating a car on a highway must, as a
whole, continue controlling the car until a safe situation to stop execution is reached; the currently
sleeping human being behind the wheel of the car will certainly prefer that termination behavior
over being unexpectedly given control of a speeding car on a busy highway.

Both of these extremes — and many use cases in the middle — can benefit from a custom contract-
violation handler being able to begin executing complex logic to wind down the system to a safe
state to stop. Recovery of the original processing goals might be nonviable, but a minimal set of
functionality can be launched to continue execution until a safe stopping point is reached.

For the client of software with a primary graphical interface, this safe state can be as simple as
restarting the graphics-processing event loop within the violation handler to present an error dialog
to the user before gracefully shutting down. This minimal runtime state can even give a user the
ability to decide intelligently what information to retain or discard before finally terminating the
program.

A self-driving car, on the other hand, can run much more simplified and well-tested code paths
when the only goal is to bring the vehicle to a halt on the shoulder of the road, out of the way of
passing traffic and ready to wait for the surprised and groggy yet still alive driver to manually take
control of the vehicle once again.

All of this functionality is well defined and actionable using a custom contract-violation handler.
22Such as MSVC; see https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp.

31

https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp

5.6 Runtime-Selectable Violation Handler

Enabling runtime selection of the mechanism for violation handling provides an attack vector to
malicious actors that are capable of both (1) updating that mechanism to arbitrary functions
determined by the attacker and (2) forcing a contract violation to be detected after that. Many
of those who deploy C++ software, however, might determine that an attacker capable of those
two steps is likely capable of many other malicious acts, so the risk of enabling runtime selection is
acceptable. Put another way, locking the door to the garage doesn’t help if the attacker is already
in your house; the locked door just makes unloading your groceries from your car more difficult.

A custom violation handler that simply delegates to a user-specifiable violation handler that can be
altered at run time is straightforward to implement by maintaining a pointer to a violation-handling
function with static storage duration that can be updated by clients as well as accessed by the
violation handler:

class RuntimeViolationHandler
{
public:

using Handler = void(*)(const std::contracts::contract_violation& violation);

private:
static std::atomic<Handler> s_handler

public:
static void invokeViolationHandler(

const std::contracts::contract_violation& violation)
{

Handler handler = s_handler.load();
handler(violation);

}
static void setViolationHandler(Handler handler)
{

s_handler.store(handler);
}
static void defaultViolationHandler(

const std::contracts::contract_violation& violation)
// invoke platform-default contract-violation handler

{
std::contracts::invoke_default_contract_violation_handler(violation);

}
};

std::atomic<RuntimeViolationHandler::Handler>
RuntimeViolationHandler::s_handler = &RuntimeViolationHandler.defaultViolationHandler;

void ::handle_contract_violation(const std::contracts::contract_violation& violation)
{

RuntimeViolationHandler::invokeViolationHandler(violation);
}

Runtime selection of the contract-violation handling behavior enables several common use cases

32

whose benefits depend on the environment in which they might be used.

• Choosing violation handling behavior based on configuration options not identified until after
main has begun

• Dynamically altering what information is gathered by a violation based on what phase a
program is in during its execution, i.e., storing and attempting to save user information only
after the user login process has completed and normal program usage is underway

• Dynamically altering the form of recovery that might be attempted on violation, such as
attempting to recover via thrown exception only after the main program execution loop is
underway

Any custom violation handler could certainly modify its behavior based on program state. A generic
runtime-replaceable facility such as this one allows for a library solution to leave the choice of
specific violation-handling mechanics to a higher-level component.

5.7 Negative Testing of Non-noexcept Functions

For non-noexcept functions (though see Section 6), a runtime-selectable violation handler (such as
the one implemented above) allows for effective, practical negative testing of contract checks in a
fully well-defined manner. Negative testing is a tool to verify that contract checks have themselves
been written to properly detect inputs outside of the domain of a function. The negative-testing
algorithm consists of a few steps.

1. Execute negative tests only in a build mode where the contract checks under test will be
evaluated and invoke the custom violation handler, such as Eval_and_abort mode on a platform
that allows replacing the violation handler.

2. Prior to beginning a negative test, install a violation handler that will throw a known testing-
only exception containing the violation details.

3. Inside a try...catch block, execute the function with inputs that are out of bounds.

4. The precondition checks on the function should detect the out-of-bounds input and lead to
an immediate exception, unwinding the construction of the function arguments and being
caught by the caller. Importantly, this method is the only one that doesn’t leak when resource-
allocating objects are passed by value.

5. The caller then checks that control flow passed through the catch and the function under
test did not return normally. Returning normally from the function or throwing any other
exception type is considered a test failure.

6. The caller also checks that the violation handler was invoked from a contract-checking
annotation in an appropriate-seeming location. A violation in a different function called from
within the function under test would indicate that the precondition was not properly checked.

7. Once all tests are run, restore the runtime-selectable violation handler to the value it had
before the negative test began.

33

5.8 Counting Repeated Violations

Should the Contracts facility evolve to enable contracts having the observe semantic, it will quickly
become possible for a single contract to be violated a significant number of times in a single program.
Allowing violation handling to throw, and thus potentially return again to the same point of violation
at a later point in execution, also opens up this possibility.

The overhead of producing a diagnostic for each violation, when attempting to simply observe the
violations that are otherwise benign, can be too large to enable normal business operations. On
the other hand, accidentally skipping diagnostics for all occurrences of a particular contract check
failing might hide real program defects, throwing the proverbial baby out with the bath water.

To fix these issues, a violation handler can keep count of how many times a particular contract check
has been violated and emit a diagnostic for only progressively fewer and fewer of them, usually with
a strategy such as logging only when the count is a power of 2, an approach known as exponential
backoff .

The hard part of performing this type of backoff hinges on identifying individual contract checks.
The source_location provided on the contract_violation object is a rough approximation but is
somewhat lacking.

• For contracts on a templated entity, the distinct instantiations of the template might be
captured by the function_name property on the source_location, but many compilers choose
not to keep the full text of the function name available to runtime violation handling, so this
solution might be limited.

• Any particular precondition when violated from distinct call sites should arguably be considered
a distinct defect, so counting is benefited by counting distinct caller and callee pairings
separately.

• Multiple checks of the same precondition, such as when invoking the same function in a
complex expression, can occur on the same line from within the same function, leading to
source_location not uniquely identifying the defect.

Two potential fallouts arise when a defect is not uniquely identified.

1. Diagnosing and fixing the problem can be greatly hindered by needing to narrow down the
specific control flow that led to the defect or, worse, not even realizing that the defect occurred
on a path distinct from the one where a fix was applied.

2. When defects occur on multiple paths, exponential backoff logging can suppress some of
them such that an improper conclusion is reached that no defect exists along the path where
diagnostics were not emitted.

Macro-based contract-checking facilities often use a static local variable to track the count where
the macro is placed, which solves some of these problems but, as with the rest of the macro-based
facility’s uses, does not allow for capturing the caller location on precondition checks. A contract-
violation handler can use the source_location object’s properties as a key in an associative container
to achieve the same level of tracking as this proposal.

A future proposal that makes observe a usable contract-checking semantic in the language would

34

be well served to also include the ability to, on a contract_violation object, expose a unique
identifier for the contract-checking annotation that was violated. The type of this property should be
something suitable to use as the key in an associative container while also facilitating easy generation
of a unique identifier by the platform. Generating such a unique value can be done by taking the
address of the instructions that execute the contract violation handling process. This would allow
for distinct counting of separate inlined versions of the same function in different contexts, which
are invariably distinct defects. To facilitate this uniqueness, the type of this property must thus be
an integral type at least as large as std::uintptr_t.

Keeping an opaque identifier would leave the compiler quality of implementation (QoI) to determine,
like many of the other properties of the contract_violation object, how accurate and useful the
identifier is. Careful wording would be needed to at least guarantee uniqueness as effective as the
source_location but leave more granularity up to the compiler.

5.9 Platform-Specific contract_violation Subclasses

Platforms might wish to expose vendor-specific extensions to the contract_violation object. Con-
sider, for example, a scenario in which GCC decided to track the number of violations of a contract
for the user to thus ease the implementation of exponential backoff logging.

GCC might provide that information by making its contract_violation object polymorphic (through
choosing to have its destructor be virtual) and defining a GCC-specific subclass:

// in gcc/gcc_contract_violation.h:
namespace gcc {
class gcc_contract_violation : public contract_violation {
public:

std::int32_t count() const noexcept;
};

A client wishing to access this information when available yet still have a cross-platform contract-
violation handler might identify this subclass when it is present through the use of dynamic_cast:

void ::handle_contract_violation(
const std::contracts::contract_violation& violation)

{
if constexpr (std::is_polymorphic_v<std::contracts::contract_violation>) {

if (auto* gcc_violation =
dynamic_cast<const gcc::gcc_contract_violation*>(&violation)) {

std::int32_t count = gcc_violation->count();/
// Do stuff with count.

}
else {

// This particular contract_violation was not generated with GCC extensions.
}

}
else {

// This platform does not support subclassing contract_violation.
}

}

35

6 Throwing
Exception propagation from the evaluation of a contract-checking annotation is, unsurprisingly, in
strong conflict with the use of noexcept. The Lakos Rule,23 which proscribed the use of noexcept on
functions with narrow contracts, i.e., those having one or more preconditions, was invented and
applied to all of the C++11 Standard Library precisely to address this issue. Once such an exception
escaping from a violation handler begins to propagate up the call chain, any intervening noexcept
function that fails to catch the exception will force termination.

Allowing the noexcept property to either report an incorrect value (i.e., true for an expression
that will actually throw) or vary across build modes would be a fundamental flaw in a Contracts
facility for C++, opening the door to major problems being undiagnosable or even caused by the
contract-checking facility.24 Therefore, we recommend that contract checks on a function, either
as preconditions or postconditions on the declaration or those evaluated by the function body or
other functions it invokes, should all be subject to the normal rules of exception propagation and
noexcept function boundaries.25

We would break down our recommendations for exception-related decisions for contract-checking
annotations into the following proposals:

Proposal 5: Exception Behaviors26

• Any exception emanating from the evaluation of a precondition or postcondition should
be treated as though it originated within the function’s body.27

• An exception escaping from the evaluation of a contract-checking annotation’s predicate
should invoke the contract-violation handler (from within a handler for that exception,
with the detection_mode of evaluation_exception). Users who wish to propagate this
exception to the caller can implement a custom violation handler that does this (see
Section 5.3).28

• An exception may escape from the invocation of the contract-violation handler. Any
such exception will perform stack unwinding with the same behavior as an exception
escaping from the point of evaluation of the corresponding contract-checking annotation.

It has been noted that it might be unclear exactly what the point of evaluation is for any given
contract-checking annotation. This question is further muddled if there is a lack of clarity over
whether preconditions and postconditions might throw back to the caller even when attached to a
function that is marked noexcept. Following the consensus direction of SG21 to take the proposal
in [P2834R0], we will now aim to clarify the exact points of evaluation for the various forms of
contract-checking annotation.

23See [N3279].
24See [P2834R0].
25Previous versions of this paper (see [P2811R2]) have explored this topic further. Here we have simplified to present

only our recommended decision.
26Note that polling in the 2023-05-18 SG21 telecon indicated consensus for all aspects of Proposal 5.
27This logically follows from Proposal 2 in [P2834R0].
28This is an elaboration on Proposal 2.3 in [P2751R1], with clear rules for how that exception should be expressed

to a user-provided contract-violation handler.

36

It is useful to keep open the possibility of implementation strategies that use caller-side or callee-
side checking of preconditions. In order to facilitate that, preconditions must be evaluated before
any statements that may be insulated within a separate translation unit not visible to a caller,
and similarly postconditions should occur after any such statements. Note that we still leave the
location of a contract_violation as implementation-defined in order to facilitate any attempts
implementations might make to provide the caller location for a contract_violation, even with
callee-side contract checking.

• A precondition is evaluated after a function’s arguments are initialized and prior to any other
evaluations that are part of the function.

– The point of evaluation of a precondition is prior to any statements in the body of the
function.

– If the function is a constructor, the point of evaluation is prior to the initializers of any
members or base classes, including the evaluation of any part of the member-initializer-list.

– If the function has a function-try-block, any handlers of that try block are not associated
with the evaluation of the preconditions of that function.

– If an exception escapes from the evaluation of a precondition associated with a function
that has a non-throwing exception specification, std::terminate is invoked.

Postconditions may reference the function’s return value and function parameters, therefore they
must be sequenced after the initialization of the return value and prior to the destruction of function
parameters. A postcondition has no way to reference other local variables, and to enable caller-side
checking should not be within the purview of a function’s function-try-block.

• A postcondition is evaluated after the evaluation of any expressions within a function’s body
and before destruction of function parameters.

– The point of evaluation of a postconditions is after any statements in the body of the
function (that were evaluated).

– The point of evaluation is after the destruction of local variables, as they are destroyed
at the end of the compound-statement that is the function’s body.

– The point of evaluation is after the complete initialization of the function’s return value,
if any, including destruction of any temporary objects created by the initializer of that
return value.

– If the function has a function-try-block, any handlers of that try block are not associated
with the evaluation of the postconditions of that function.

– If an exception escapes from the evaluation of a postcondition associated with a function
that has a non-throwing exception specification, std::terminate is invoked.

Finally, assertions are attached to otherwise-empty statements within a function’s body. They are
evaluated when that otherwise-empty statement would be evaluated.

• An assertion is evaluated after all statements that preceed the statement to which they are
attached and before all statements that folow the statement to which they are attached.29

37

– If an exception escapes from the evaluation of an assertion, stack unwinding will proceed
as it normally would from the statement to which the assertion is attached.

All of the above declarations about the points of evaluation of contract-checking annotations match
our reading of the current MVP, and we present them here for the purposes of clarification and to
record the motivation for the current behavior, not as a proposal for any changes to the current
design.

7 Wording Changes
The current MVP30 does not contain suggested wording, somewhat by design. A previous paper,
[P2388R4], contains Standard wording for an earlier iteration of the MVP, and the final wording for
the MVP can be expected to evolve from that.

In [dcl.correct.test], introduced in [P2388R4], add a new paragraph after paragraph 2:

The contract-violation handler of a program is a function of type “opt[[noreturn]]
optnoexcept function of (lvalue reference to const std::contracts::contract_violation)
returning void” named ::handle_contract_violation. Whether the contract-violation
handler is replaceable is implementation defined. (A C++ program may define a function
with this name and signature and thereby displace the default version defined by the im-
plementation.) [Note: The definition of a contract-violation handler on an implementation
where the contract-violation handler is not replaceable will result in multiple definitions
of the contract-violation handler and thus be ill-formed. —end note]

Recommended practice: The default contract-violation handler provided by the implemen-
tation should produce diagnostic output that suitably formats the most relevant contents
of the std::contracts::contract_violation object and then return normally.

In [dcl.correct.test]p4, Make the following change:

If the evaluation exits via an exception, !std::terminate()! is called. the contract violation
handler is invoked from within an exception handler for that exception.

Note: The points where a correctness test is evaluated are already specified and, if unchanged, will
invoke std::terminate should that be from an annotation on a noexcept function, thus no additional
changes need be made related to Proposal 5.

Note: The existing wording in [P2388R4] already references the contract-violation handler without
further detail, specifying that it is invoked for an unsuccessful enforced correctness annotation test.

Add a new section, [support.contract], after section [support.coroutine]:
29We hope this is clear enough to never have anyone question exactly when an assertion is evaluated.
30See [P2521R3].

38

Contract-violation handling [support.contract]

Header <contract> synopsis [contract.syn]

The header <contract> defines a type for reporting information about contract violations
generated by the implementation.

namespace std::contracts {
enum class detection_mode : int;
enum class contract_semantic : int;
enum class contract_kind : int;
class contract_violation;
void invoke_default_contract_violation_handler(const contract_violation&);

}

Enum class detection_mode [support.contract.violation.detection.mode]

Enum class detection_mode [tab:support.contract.violation.detection.mode]

Name Value Meaning
predicate_false 1 Contract predicate returned false
evaluation_exception 2 Unhandled exception evaluating contract pred-

icate
evaluation_undefined_behavior 3 Contract predicate would have undefined be-

havior when evaluated

Enum class contract_semantic [support.contract.semantic]

Enum class contract_semantic [tab:support.contract.semantic]

Name Value Meaning
enforce 1 End program on violation

Enum class contract_kind [support.contract.kind]

Enum class contract_kind [tab:support.contract.kind]

Name Value Meaning
pre 1 A [[pre]] contract annotation
post 2 A [[post]] contract annotation
assert 3 An [[assert]] contract annotation

Class contract_violation [support.contract.cviol]
namespace std::contracts {

class contract_violation {
public:

@\seebelow@ ~contract_violation();
contract_violation(const contract_violation&) = delete;

39

// cannot be copied
contract_violation& operator=(const contract_violation&) = delete;

// cannot be copied

const char* comment() const noexcept;
detection_mode detection_mode() const noexcept;
contract_kind kind() const noexcept;
source_location location() const noexcept;
contract_semantic semantic() const noexcept;
bool will_continue() const noexcept;

};
}

The class contract_violation describes information about a contract violation generated
by the implementation. Whether ~contract_violation() is virtual is implementation
defined.

const char* comment() const noexcept;

Returns: Implementation-defined text describing the predicate of the violated con-
tract.

detection_mode detection_mode() const noexcept;

Returns: The manner in which this contract violation was detected.
contract_kind kind() const noexcept;

Returns: The kind of contract annotation whose check detected this contract viola-
tion.

source_location location() const noexcept;

Returns: The implementation-defined source code location where this contract
violation was detected.

contract_semantic semantic() const noexcept;

Returns: The runtime semantic chosen (at build time) for the contract annotation
that has been violated.

bool will_continue() const noexcept;

Returns: Whether evaluation will continue after the violated contract check should
the contract-violation handler return normally.

invoke_default_contract_violation_handler [support.contract.invdef]

void invoke_default_contract_violation_handler(const contract_violation&);

Effects: Equivalent to ::handle_contract_violation if it is not replaced with a
user-provided function (see [dcl.correct.test]).

40

8 Conclusion
With growing concerns over the MVP’s severely limited ability to meet the needs of many existing
C++ users,31 SG21 will inevitably be compelled to consider various proposals to address each of
those individual concerns. The well-proven approach of supporting a user-defined contract-violation
handler has been shown to address these use cases clearly, effectively, and without the need for
excessive core-language specification efforts. Although a contract-violation handler does not in and
of itself solve all problems, the new information about the expectations of the MVP clearly indicates
that we should reconsider this flexible solution, which could in turn immediately unleash real-world
use of the language feature SG21 is striving to produce. Importantly, what is being proposed here
strives to be backward compatible with many other highly anticipated and sorely needed features
that can be quickly enabled to solve still more practical problems that reoccur in industry, especially
at scale.

Acknowledgements
Thanks to John Lakos, Bjarne Stroustrup, Tom Honermann, Andrzej Krzemieński, Ville Voutilainen,
Gašper Ažman, Aaron Ballman, Mungo Gill, Tom Arcidiacono, Mike Verschell, and Timur Doumler
for feedback on the earlier revisions of this paper. Special thanks to Ville Voutilainen for producing
[P2838R0] and Tom Honermann for [P2852R0], both of which have supported and evolved the ideas
in this paper.

Lori Hughes made great contributions to the linguistic quality of this paper, as always. Any lingering
failures to properly use the English language are the fault of the author.

Bibliography
[bde14] “Basic Development Environment”. Bloomberg

https://github.com/bloomberg/bde/

[isoc11] ISO/IEC 9899:2011 Information Technology — Programming Languages — C (Geneva,
Switzerland: International Standards Organization, 2011)
https://www.iso.org/standard/57853.html

[LWG2398] Stephan T. Lavavej, “type_info’s destructor shouldn’t be required to be virtual”
https://wg21.link/lwg2398

[N1613] Thorsten Ottosen, “Proposal to add Design by Contract to C++”, 2004
http://wg21.link/N1613

[N1669] Thorsten Ottosen, “Proposal to add Contract Programming to C++ (revision 1)”,
2004
http://wg21.link/N1669

[N3279] A. Meredith and J. Lakos, “Conservative use of noexcept in the Library”, 2011
http://wg21.link/N3279

31See [P2698R0].

41

https://github.com/bloomberg/bde/
https://www.iso.org/standard/57853.html
https://wg21.link/lwg2398
http://wg21.link/N1613
http://wg21.link/N1669
http://wg21.link/N3279

[N3604] J. Lakos and A. Zakharov, “Centralized Defensive-Programming Support for Narrow
Contracts”, 2013
http://wg21.link/N3604

[N3753] J. Lakos and A. Zakharov, “Centralized Defensive-Programming Support for Narrow
Contracts (Revision 1)”, 2013
http://wg21.link/N3753

[N3963] J. Lakos and A. Zakharov, “Centralized Defensive-Programming Support for Narrow
Contracts (Revision 4)”, 2014
http://wg21.link/N3963

[N3997] J. Lakos, A. Zakharov, and A. Beels, “Centralized Defensive-Programming Support
for Narrow Contracts (Revision 5)”, 2014
http://wg21.link/N3997

[N4110] J. Daniel Garcia, “Exploring the design space of contract specifications for C++”,
2014
http://wg21.link/N4110

[N4378] John Lakos, Nathan Myers, Alexei Zakharov, and Alexander Beels, “Language Support
for Contract Assertions”, 2015
http://wg21.link/N4378

[N4415] Gabriel Dos Reis, J. Daniel Garcia, Francesco Logozzo, Manuel Fahndrich, and
Shuvendu Lahri, “Simple Contracts for C++”, 2015
http://wg21.link/N4415

[P0147R0] Lawrence Crowl, “The Use and Implementation of Contracts”, 2015
http://wg21.link/P0147R0

[P0246R0] Nathan Myers, “Contract Assert Support Merged Proposal”, 2016
http://wg21.link/P0246R0

[P0380R0] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup, “A
Contract Design”, 2016
http://wg21.link/P0380R0

[P0380R1] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup, “A
Contract Design”, 2016
http://wg21.link/P0380R1

[P0465R0] Lisa Lippincott, “Procedural Function Interfaces”, 2016
http://wg21.link/P0465R0

[P0542R0] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup,
“Support for contract based programming in C++”, 2017
http://wg21.link/P0542R0

[P0542R3] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup,
“Support for contract based programming in C++”, 2018
http://wg21.link/P0542R3

42

http://wg21.link/N3604
http://wg21.link/N3753
http://wg21.link/N3963
http://wg21.link/N3997
http://wg21.link/N4110
http://wg21.link/N4378
http://wg21.link/N4415
http://wg21.link/P0147R0
http://wg21.link/P0246R0
http://wg21.link/P0380R0
http://wg21.link/P0380R1
http://wg21.link/P0465R0
http://wg21.link/P0542R0
http://wg21.link/P0542R3

[P0542R5] J. Daniel Garcia, “Support for contract based programming in C++”, 2018
http://wg21.link/P0542R5

[P1332R0] Joshua Berne, Nathan Burgers, Hyman Rosen, and John Lakos, “Contract Checking
in C++: A (long-term) Road Map”, 2018
http://wg21.link/P1332R0

[P1429R3] Joshua Berne and John Lakos, “Contracts That Work”, 2019
http://wg21.link/P1429R3

[P1607R1] Joshua Berne, Jeff Snyder, and Ryan McDougall, “Minimizing Contracts”, 2019
http://wg21.link/P1607R1

[P1639R0] Corentin Jabot, “Unifying source_location and contract_violation”, 2019
http://wg21.link/P1639R0

[P1823R0] Nicolai Josuttis, Ville Voutilainen, Roger Orr, Daveed Vandevoorde, John Spicer, and
Christopher Di Bella, “Remove Contracts from C++20”, 2019
http://wg21.link/P1823R0

[P2388R4] Andrzej Krzemieński and Gašper Ažman, “Minimum Contract Support: either No_-
eval or Eval_and_abort”, 2021
http://wg21.link/P2388R4

[P2521R3] Andrzej Krzemieński, Gašper Ažman, Joshua Berne, Bronek Kozicki, Ryan McDougall,
and Caleb Sunstrum, “Contract support – Record of SG21 consensus”, 2023
http://wg21.link/P2521R3

[P2698R0] Bjarne Stroustrup, “Unconditional termination is a serious problem”, 2022
http://wg21.link/P2698R0

[P2751R0] Joshua Berne, “Evaluation of Checked Contracts”, 2023
http://wg21.link/P2751R0

[P2751R1] Joshua Berne, “Evaluation of Checked Contracts”, 2023
http://wg21.link/P2751R1

[P2784R0] Andrzej Krzemieński, “Not halting the program after detected contract violation”,
2023
http://wg21.link/P2784R0

[P2811R2] Joshua Berne, “Contract Violation Handlers”, 2023
http://wg21.link/P2811R2

[P2834R0] Joshua Berne and John Lakos, “Semantic Stability Across Contract-Checking Build
Modes”, 2023
http://wg21.link/P2834R0

[P2838R0] Ville Voutilainen, “Unconditional contract violation handling of any kind is a serious
problem”, 2023
http://wg21.link/P2838R0

43

http://wg21.link/P0542R5
http://wg21.link/P1332R0
http://wg21.link/P1429R3
http://wg21.link/P1607R1
http://wg21.link/P1639R0
http://wg21.link/P1823R0
http://wg21.link/P2388R4
http://wg21.link/P2521R3
http://wg21.link/P2698R0
http://wg21.link/P2751R0
http://wg21.link/P2751R1
http://wg21.link/P2784R0
http://wg21.link/P2811R2
http://wg21.link/P2834R0
http://wg21.link/P2838R0

[P2852R0] Tom Honermann, “Contract violation handling semantics for the contracts MVP”,
2023
http://wg21.link/P2852R0

[P2877R0] Tom Honermann and Joshua Berne, “Contract Build Modes, Semantics, and Imple-
mentation Strategies”, 2023
http://wg21.link/P2877R0

44

http://wg21.link/P2852R0
http://wg21.link/P2877R0

	1 Introduction
	2 Motivation
	3 Design
	3.1 A Brief History of Contract-Violation Handler Proposals
	3.2 Separation of Concerns
	3.3 ABI Compatibility
	3.4 Dynamic Libraries
	3.5 Reentrancy
	3.6 Enumerations
	3.7 Naming
	3.8 C Compatibility
	3.8.1 C Annex K

	3.9 Implementation Possibilities
	3.10 Skipped Potential Features
	3.10.1 Unique Identifiers
	3.10.2 Program Name
	3.10.3 Nonterminating throw possible

	4 Proposal
	4.1 An Extensible contract_violation Type
	4.2 Contract-Violation Handler
	4.3 Default Violation Handler

	5 Usage Examples
	5.1 Custom Diagnostic Output
	5.2 Throw on Contract Violation for Recovery
	5.3 Propagating Predicate Exceptions
	5.4 longjmp for Recovery
	5.5 Performing a Safe Stop
	5.6 Runtime-Selectable Violation Handler
	5.7 Negative Testing of Non-noexcept Functions
	5.8 Counting Repeated Violations
	5.9 Platform-Specific contract_violation Subclasses

	6 Throwing
	7 Wording Changes
	8 Conclusion

