
Preprocessing is never undefined
Replacing UB with IFNDR

Document #: P2843R0
Date: 2023-05-18
Project: Programming Language C++
Audience: SG12 Undefined Behavior
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 1
2.1 R0: Varna 2023 . 1

3 Introduction 1

4 Basic Proposal 2
4.1 Original wording . 2
4.2 Conflict resolution . 3

5 Towards a better specification 4
5.1 Past efforts . 4

6 Reviewing each ill-formed constructions 4

7 Acknowledgements 5

8 References 5

1 Abstract
This paper revises all specification of the C++ preprocessor using the term undefined behavior with the more
appropriate term, ill-formed, no diagnostic required.

2 Revision history
2.1 R0: Varna 2023
Initial draft of the paper.

3 Introduction
Undefined behavior is a form of C++ specification that applies to the runtime behavior of a well-formed program
and its inputs. Logically, there is no potential for undefined behavior within the preprocessor, which simply

1

mailto:ameredith1@bloomberg.net

transforms source code before translation — although subsequent phases of translation might introduce undefined
behavior when processing the source code.

4 Basic Proposal
A better formulation for all cases where the preprocessor specifies undefined behavior in the preprocessor is that
the program is ill-formed, no diagnostic required. Such a change would have no effect on any implementations
today, and serves as the basis for the follow up work below, making most of those cases diagnosable, or well-
defined.

All wording is relative to [N4944], the latest working draft at the time of writing.

4.1 Original wording
15.2 [cpp.cond] Conditional inclusion

10 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by the defined unary operator), just
as in normal text. If the token defined is generated as a result of this replacement process or use of the
defined unary operator does not match one of the two specified forms prior to macro replacement, the behavior
is undefined program is ill-formed, no diagnostic required.

15.3 [cpp.include] Source file inclusion
4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include in the
directive are processed just as in normal text (i.e., each identifier currently defined as a macro name is replaced
by its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match
one of the two previous forms, the behavior is undefined program is ill-formed, no diagnostic required. The
method by which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair of
" characters is combined into a single header name preprocessing token is implementation-defined.

15.6.1 [cpp.replace.general] General
13 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of

arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise act
as preprocessing directives, the behavior is undefined program is ill-formed, no diagnostic required.

15.6.3 [cpp.stringize] The # operator
2 A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is immediately

preceded by a # preprocessing token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding argument (excluding placemarker
tokens). Let the stringizing argument be the preprocessing token sequence for the corresponding argument with
placemarker tokens removed. Each occurrence of whitespace between the stringizing argument’s preprocessing
tokens becomes a single space character in the character string literal. Whitespace before the first preprocessing
token and after the last preprocessing token comprising the stringizing argument is deleted. Otherwise, the
original spelling of each preprocessing token in the stringizing argument is retained in the character string literal,
except for special handling for producing the spelling of string-literals and character-literals: a \ character is
inserted before each " and \ character of a character-literal or string-literal (including the delimiting " characters).
If the replacement that results is not a valid character string literal, the behavior is undefined program is
ill-formed, no diagnostic required. The character string literal corresponding to an empty stringizing argument
is "". The order of evaluation of # and ## operators is unspecified.

2

https://wg21.link/cpp.cond
https://wg21.link/cpp.include
https://wg21.link/cpp.replace.general
https://wg21.link/cpp.stringize

15.6.4 [cpp.concat] The ## operator
3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more

macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an argu-
ment) is deleted and the preceding preprocessing token is concatenated with the following preprocessing token.
Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results in a single
placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker preprocessing
token results in the non-placemarker preprocessing token. If the result begins with a sequence matching the
syntax of universal-character-name, the behavior is undefined program is ill-formed, no diagnostic required.

[Note 1: This determination does not consider the replacement of universal-character-names in translation phase
3 (5.2 [lex.phases]). —end note]

If the result is not a valid preprocessing token, the behavior is undefined program is ill-formed, no diagnostic
required. The resulting token is available for further macro replacement. The order of evaluation of ## operators
is unspecified.

15.7 [cpp.line] Line control
3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line that
has a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence
specifies zero or a number greater than 2147483647, the behavior is undefined program is ill-formed, no diagnostic
required.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on the
directive are processed just as in normal text (each identifier currently defined as a macro name is replaced by
its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match one
of the two previous forms, the behavior is undefined program is ill-formed, no diagnostic required; otherwise,
the result is processed as appropriate.

15.11 [cpp.predefined] Predefined macro names
4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define or

a #undef preprocessing directive, the behavior is undefined program is ill-formed, no diagnostic required. Any
other predefined macro names shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

4.2 Conflict resolution
Corentin Jabot has paper [P2621R2] that resolves the outstanding concerns for undefined behavior in the lexer,
which is tentatively ready to land at the Varna meeting. Thus, we do not cover the lexer in this paper, but do
note that both papers make changes to the same paragraph in 15.6.4 [cpp.concat]. If both papers are applied at
the same meeting, P2621 takes precedence.

15.6.4 [cpp.concat] The ## operator
3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more

macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an argu-
ment) is deleted and the preceding preprocessing token is concatenated with the following preprocessing token.
Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results in a single
placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker preprocessing to-
ken results in the non-placemarker preprocessing token. If the result begins with a sequence matching the syntax
of universal-character-name, the behavior is undefined.

3

https://wg21.link/cpp.concat
https://wg21.link/lex.phases
https://wg21.link/cpp.line
https://wg21.link/cpp.predefined
https://wg21.link/cpp.concat
https://wg21.link/cpp.concat

[Note 1: This determination does not consider the replacement of universal-character-names in translation phase
3 (5.2 [lex.phases]). —end note]

[Note 1: Concatenation can form a universal-character-name. —end note]

If the result is not a valid preprocessing token, the behavior is undefined program is ill-formed, no diagnostic
required. The resulting token is available for further macro replacement. The order of evaluation of ## operators
is unspecified.

5 Towards a better specification
While the above wording is the minimum progress we should aim for, replacing an inappropriate term with a
more correct one, there is a long history of trying to address the undefined nature of the preprocessor. Note
that this section of the paper is the start of an ongoing review that is incomplete in this revision of paper.

5.1 Past efforts
— [N3801] Removing Undefined Behavior from the Preprocessor, Gabriel Dos Reis
— [N4219] Fixing the specification of universal-character-names, David Krauss
— [N4220] An update to the preprocessor specification, David Krauss
— [N4858] Disposition of Comments for CD Ballot, ISO/IEC CD 14882, Barry Hedquist
— [P1705R1] Enumerating Core Undefined Behavior, Shafik Yaghmour
— [P2234R1] Consider a UB and IF-NDR Audit Scott Schurr

6 Reviewing each ill-formed constructions
For the benefit of the following examples, we are assuming the UB -> IFNDR change at the start of this paper
has been applied.

IFNDR Well-formed

#define DECLARE_CONSTRUCTOR(CLASS \
, TYPE \
, PARAM) \

CLASS (TYPE PARAM);

struct Any {

template <class T>
DECLARE_CONSTRUCTOR(Any

#if defined __cpp_rvalue_references
, T &&

#else
, T const &

#endif
, arg_name
);

};

#define DECLARE_CONSTRUCTOR(CLASS \
, TYPE \
, PARAM) \

CLASS (TYPE PARAM);

struct Any {

#if defined __cpp_rvalue_references
template <class T>
DECLARE_CONSTRUCTOR(Any

, T &&
, arg_name
);

#else
template <class T>
DECLARE_CONSTRUCTOR(Any

, T const &
, arg_name
);

#endif

};

4

https://wg21.link/lex.phases

7 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks to Joshua Berne for making the painstaking effort to be sure I understand the subtle differences between
undefined behavior, unspecified behavior, implementation-defined behavior, and programs that are ill-formed,
no diagnostic required. I am not the easiest of students!

8 References
[N3801] Gabriel Dos Reis. 2013-10-14. Removing Undefined Behavior from the Preprocessor.

https://wg21.link/n3801

[N4219] David Krauss. 2014-10-10. Fixing the specification of universal-character-names (rev. 2).
https://wg21.link/n4219

[N4220] David Krauss. 2014-10-10. An update to the preprocessor specification (rev. 2).
https://wg21.link/n4220

[N4858] Barry Hedquist. 2020-02-15. Disposition of Comments: SC22 5415, ISO/IEC CD 14882.
https://wg21.link/n4858

[N4944] Thomas Köppe. 2023-03-22. Working Draft, Standard for Programming Language C++.
https://wg21.link/n4944

[P1705R1] Shafik Yaghmour. 2019-10-07. Enumerating Core Undefined Behavior.
https://wg21.link/p1705r1

[P2234R1] Scott Schurr. 2021-02-13. Consider a UB and IF-NDR Audit.
https://wg21.link/p2234r1

[P2621R2] Corentin Jabot. 2023-02-08. UB? In my Lexer?
https://wg21.link/p2621r2

5

https://wg21.link/n3801
https://wg21.link/n4219
https://wg21.link/n4220
https://wg21.link/n4858
https://wg21.link/n4944
https://wg21.link/p1705r1
https://wg21.link/p2234r1
https://wg21.link/p2621r2

	Abstract
	Revision history
	R0: Varna 2023

	Introduction
	Basic Proposal
	Original wording
	Conflict resolution

	Towards a better specification
	Past efforts

	Reviewing each ill-formed constructions
	Acknowledgements
	References

