
Remove Deprecated std::allocator Typedef From C++26
Document #: P2868R0
Date: 2023-05-15
Project: Programming Language C++
Audience: Library Evolution Incubator
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 1
2.1 R0: Varna 2023 . 1

3 Introduction 1

4 Analysis 2

5 Proposal 2

6 Wording 2

7 Acknowledgements 2

8 References 2

1 Abstract
The Standard Library allocator class contains a deprecated typedef member than can cause problems for
derived classes. This paper proposes removing that member from the C++ Standard Library.

2 Revision history
2.1 R0: Varna 2023
Initial draft of the paper.

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863R0], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

1

mailto:ameredith1@bloomberg.net

This paper takes up the deprecated ‘is_always_equal’ member typedef in std::allocator, D.17
[depr.default.allocator].

4 Analysis
The Standard Library allocator class has a typedef member that could be synthesized from the primary
allocator_traits template, and was deprecated in C++20 by [#LWG3170]. When std::allocator provides
this member directly, any classes that derive from it will not synthesize this type name correctly, but use the
true_type value provided directly by std::allocator. If the derived allocator type is not empty, its value for
this trait will not match the expected default behavior, forcing the allocator author (if they are aware) to add
their own typedef that should not be needed to restore the default behavior; typically, this leads to subtle bugs.

While this is a small corner for misuse, the concern is embarrassing to explain, and the Standard Library allocator
is a common example folks will follow when trying to write their first allocators. Hence, this paper recommends
the removal of this deprecated typedef for C++26.

5 Proposal
Remove the deprecated typedef std::allocator<T>::is_always_equal from C++26.

6 Wording
All wording is relative to [N4944], the latest working draft at the time of writing.

D.17 [depr.default.allocator] The default allocator
1 The following member is defined in addition to those specified in 20.2.10 [default.allocator]:

namespace std {
template<class T> class allocator {
public:

using is_always_equal = true_type;
};

}

7 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

8 References
[N4944] Thomas Köppe. 2023-03-22. Working Draft, Standard for Programming Language C++.

https://wg21.link/n4944

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

2

https://wg21.link/depr.default.allocator
https://wg21.link/depr.default.allocator
https://wg21.link/default.allocator
https://wg21.link/n4944
https://wg21.link/p2139r2

	Abstract
	Revision history
	R0: Varna 2023

	Introduction
	Analysis
	Proposal
	Wording
	Acknowledgements
	References

