
Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Build System Requirements for
Importable Headers

Abstract
Importable Headers were included in the specification of C++ Modules in C++20. Initial
explorations on the integration of that feature into build systems commonly used in the C++
ecosystem have raised a number of concerns. This paper explores those concerns and
provides recommendations on how those can be addressed.

Changes
● R1

○ Remove the section about the import syntax. This section was based on a
misunderstanding of requirements related to the use of header modules inside a
module purview.

○ Highlight the importance of the performance of incremental builds for the
adoption of importable headers.

○ Rewrite recommendations section based on feedback in reflector and on informal
conversations.

○ Rename the paper to reflect new conclusions.

1. State of Named Modules
Named modules introduce a fundamental change to how C++ code has to be built. We currently
have a coherent understanding of the requirements for the support to Named Modules to be
supported by build systems, even though we also acknowledge that an entire class of simplistic
project build instructions will no longer be viable.

However, Named Modules also introduce an important limitation to the specification, which is
that the preprocessor state is not inherited from a translation unit performing an import. This
allows build systems to perform the dependency scanning and generation of the build plan to be
performed in two distinct steps:

1

mailto:druoso@bloomberg.net


Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

1. Identifying which modules are required and provided by a given translation: This can be
done in an embarrassingly parallel way, since the only input needed for that is the
compilation command for the translation unit and the source files.

2. Collation of dependencies into a unified build graph: Once all the dependency
information is assembled, the build system can create a coherent build graph that is
stable with all inputs and outputs clearly identified.

The industry also has significant experience in implementing this model, as it follows the same
general design as Fortran modules. CMake has had support for Fortran modules since at list
version 2.8, and that has been instrumental in the development of the support for C++ Modules.
Part of this effort has resulted in a output format for the dependency scanning in C++ module
code that is already supported by Clang, MSVC and GCC1.

However, the output file produced by the translation of a module interface establishes a new
type of compatibility. While it is possible to link together object files produced by different
compilers and compiler versions, Built Module Interface (BMI) files are significantly less
compatible. Currently we don’t expect compilers to be able to read a BMI produced by a
different compiler, in fact, even different versions of the same compiler or specific compiler
options may result in a BMI file that will result in a failure to import. This has also been a pain
point in the implementation of Fortran modules.

That being said, we have reached a consensus on how to address those issues in C++ Named
Modules 2 3 4. Bloomberg has been working with Kitware to implement the required support for
Named Modules according to that consensus in CMake. We also expect the draft C++ Modules
Ecosystem Technical Report to formalize those requirements and implementation strategies. We
don’t foresee any major blocker to the implementation of those features, even though it still
represents a significant investment.

2. Importable Headers are Fundamentally Different
than Named Modules
There are two fundamental distinctions between Named Modules and Importable Headers for
the purpose of the tooling implementation:

● Named modules create a new space for names where one didn’t exist before,
meanwhile Importable Headers share the same search space as Source Inclusion.

4 P2581R2: Specifying the Interoperability of Built Module Interface Files
3 P2701R0: Translating Linker Input Files to Module Metadata Files
2 P2577R2: C++ Modules Discovery in Prebuilt Library Releases
1 P1689R5: Format for describing dependencies of source files

2

mailto:druoso@bloomberg.net
https://wg21.link/P2581R2
https://wg21.link/P2701R0
https://wg21.link/P2577R2
https://wg21.link/P1689R5


Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

● Importable headers “leak” preprocessor state into the importing translation unit.

The following sections will explore the different ways in which those differences create problems
for the tooling implementation:

2.1. Identity between “Importable Header” and “Source Inclusion”
There is no mechanism today that allows us to reasonably establish the identity between what
an importable header and a header going through source inclusion looks like. Compound with
the fact that the specification allows the compiler to replace an `#include` directive by an
equivalent `import` can result in a situation where adding the information about a header unit in
the module mapper for a translation unit could result in an entirely different file being processed,
with entirely different semantics.

This identity problem has always been a complicated topic for the C++ specification, the
`#pragma once` directive has been supported by various implementations in varying degrees of
compatibility, but it cannot be universally implemented because we don’t have a way of
specifying what is the thing that should be included only “once” given the way that header
search works.

2.2. Dependency Scanning Dependencies
The dependency scanning process needs a fully-capable preprocessor5. The shape of the
dependency graph is, therefore, influenced by the state of the preprocessor. However, header
units can change the state of the preprocessor, which means the dependency scanning process
has to perform one of the following procedures:

● Accept the Built Module Interface for header units as an input to the dependency
scanning6.

● Emulate what the import would have done, by recursively creating a new preprocessor
state using the command line arguments from the header unit in order to process it
coherently and then merging the resulting preprocessor state7.

Early implementations in Clang and MSVC dependency scanning simply processes those
header units as if they were doing a source inclusion, accepting that it is “best practice” to only
identify as header units the files that have no significant dependency on preprocessor state8.

8 This is the approach used in the adoption of explicit clang header modules
7 No compiler or dependency scanning tool currently supports this.
6 GCC currently only supports this mode.

5 The specification leaves room for an optimization where the preprocessor doesn’t need to complete in
its entirety, but instead can expand only the macros necessary for resolving what is required and provided
by a translation unit.

3

mailto:druoso@bloomberg.net


Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

And while that approach has been successful in well-regulated environments (i.e.: monorepos),
open-ended build systems (i.e.: mixing pre-built dependencies from a package manager) cannot
guarantee that importable headers are well-behaved in that way, and therefore this will generate
a level of friction for the tooling ecosystem that is not acceptable for those use cases.

It is possible to solve this problem, by doing the following:

● Include a list of all known importable headers as an input to the dependency scanning
process

● Include the Local Preprocessor Arguments for those as an input to the dependency
scanning process

● Communicate to the compiler or dependency scanning tool what are the Local
Preprocessor Arguments for the current translation unit, such that the emulation can be
performed correctly.

The cost of that approach, however, is that we create a significant bottleneck in the dependency
chain of any given object. Changing the list of Importable Headers or the Local Preprocessor
Arguments for any one of them will result in a complete invalidation of the dependency scanning
for all translation units in the project.

While theoretically it would be possible for the build system to realize that the change didn’t
affect the results of the dependency scanning step, most build systems are not capable of
interrupting the invalidation of artifacts based on that, resulting in an unacceptable incremental
cost for the build of C++ projects.

The other alternative is for the compiler to collaborate with the build system to implicitly produce
the information when a use of an importable header is found9. However, that is not a viable
approach for environments where hermetic remote execution is used, since in those cases a
complete list of inputs and outputs needs to be established prior to the execution.

2.3. Reasoning About the Preprocessor State
In the case of Named Modules, we have a significant advancement in the C++ ecosystem, as
an import does not in any way affect the preprocessor state. With Importable Headers, on the
other hand, a programmer looking at a `import` directive will need to step out to the build system
in order to identify the command line that will be used to translate that header, and then create
an understanding of which state gets merged back into the translation unit doing the import.

Again, considering the specification allows an `#include` to be replaced by an equivalent
`import`, it means the programmer will not be able to reason what the preprocessor state may

9 This is the approach used by implicit clang header modules.

4

mailto:druoso@bloomberg.net


Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

be without investigating whether or not that particular header is importable or not. This presents
a significant challenge, particularly to those teaching C++. And that challenge is made even
more acute considering that the specifics of how to answer that question will be entirely
dependent on the specific build system being used.

This is going to be particularly challenging if the ecosystem ends up in a situation where
different compilers make different choices about how to handle the implicit replacement of
`#include` by the equivalent `import`.

3. The Goals of Importable Headers
Given all those challenges, before we identify a better solution, we need to take a step back and
understand what are the goals that motivated the inclusion of Importable Headers into the
specification:

● Take the lessons from the independent implementations of pre-compiled headers and
make a coherent specification.

● Take the lessons from Clang Header Modules and make a coherent specification.
● Provide an easier adoption path for modules.

It is the position of the author that those are all worthwhile and important goals. However, the
current specification does not actually deliver on those, and for environments where the use of
Clang Header Modules was not viable it represents a significant risk of bifurcating the C++
ecosystem, or significantly increasing the incremental costs of the build of C++ projects.

In the next sections, I will elaborate on how the specification for Importable Headers fails to
achieve those objectives:

3.1. Restrictions From Pre-Compiled Headers Were Not
Preserved
While there are substantial differences on how different compilers support pre-compiled
headers, there is a common subset of requirements that, if the user complies to, are
consistently supported by the various implementers.

The main restriction that enables a interoperable use of pre-compiled headers is that the
translation unit has to use it as a preamble to the translation unit, meaning the precompiled
header is guaranteed not to be influenced by any other code in the translation unit.

5

mailto:druoso@bloomberg.net


Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

This guarantees that when a compiler does not yet have the precompiled header available,
doing the source inclusion is guaranteed to have the same effect as using the precompiled
header when it is available.

3.2. Clang Header Modules Have A Narrower Scope
While they don’t share the same restriction as pre-compiled headers, Clang Header Modules
are implemented in situations where there is an assumption that the headers are not supposed
to be influenced by the state of the preprocessor, and it is considered an user error if that
restriction is violated. In other words, they are applicable in code-bases that are using a subset
of the C++ Language. For code that follows that convention, falling back to plain source
inclusion is considered a valid interpretation of the code.

Importable Headers, as specified, however, do not address the aspect of how we take the
experience from Clang Header Modules and apply to the entire C++ ecosystem, where it would
be unreasonable to support only a subset of the language.

3.3. Header Units Performance Benefits Depends on Bottom-Up
Adoption
Early efforts have also shown that if the adoption of Header Units does not start from the most
low-level headers, the compiler will actually perform worse, because of how effective compilers
have become at handling include guards during source inclusion.

If the adoption starts from higher-level headers that include the same lower-level headers, it
means the compiler will now have to de-duplicate entities that otherwise wouldn’t have been
present in the translation unit.

We can learn from the early experience that the adoption of header units will rely on interactive
experimentation to evaluate what headers provide, and therefore the performance of
incremental builds is significantly important.

5. Recommendation

5.1. Dependency scanning must emulate the import
We don’t have a well-defined test that would be able to specify whether it is appropriate for a
given header to be made importable or not. The general idea is that the preprocessing based on
source inclusion should be “mostly equivalent” to the case where an import is used. However,

6

mailto:druoso@bloomberg.net


Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

there’s no current proposal on how that can be validated in order to correctly inform the user if
that is being done incorrectly.

Therefore, in order to provide a coherent understanding of the code between the dependency
scanning and the actual translation, the dependency scanning process has to perform a
complete emulation of the import process.

In order for that to be possible, the dependency scanning needs to:

1. Know whether a header is importable or not;
2. Know what are the local preprocessor arguments that will be used when translating the

header unit;
3. Know what are the local preprocessor arguments for the translation unit being scanned;
4. When encountering a header import, or source inclusion to an importable header, create

a new preprocessor context using the command from the translation unit doing the
import, remove its local preprocessor arguments, and integrate the local preprocessor
arguments of the importable header;

5. Report the import requirements for the translation unit;

5.2. Allowing the discovery of importable headers
One of the biggest challenges for the implementation of importable headers is the conflicting
requirements of avoiding the dependency bottleneck created when the list of header units and
their arguments need to be provided to the dependency scanning with the requirements to
correctly emulate the import at that step.

This can be mitigated by build systems that are capable of breaking the invalidation of
downstream targets when an intermediate target produces the same output (e.g.: ninja and
scons). However, this solution is not possible in build systems that don’t support that capability
(e.g.: GNU Make).

The alternative this paper proposes is that, while the optimization of providing a pre-computed
list of importable headers is effective in those cases, allowing the dependency scanning to
dynamically identify which headers are importable or not means it will not have a dependency
on the complete list.

A way that this could be implemented would be to require, as a lowest-common-denominator
approach, that importable headers have a metadata file that is placed alongside it. That way,
once the dependency scanning process identifies the file that will be used for source inclusion, it
can check if it should be treated as an importable header by trying to open a different file in the
same directory, with the name of the header file suffixed with a constant extension, such as
.importable-header-metadata.

7

mailto:druoso@bloomberg.net


Document Number: P2898R1
Date: 2023-05-18
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Alternatively, the metadata file would be looked for first, and that would point to the specific
source file that has to be included. This has the benefit of making it easier to create an overlay
directory that contains that metadata regardless of where the headers are, which would make it
easier to turn headers from existing libraries into importable headers.

That file would, in addition, contain the information about the local preprocessor arguments
which are necessary for the correct implementation of the emulation of the import process.

The additional benefit of this approach is that it re-converges the namespace lookup between
the import process and the source-inclusion process, as the same lookup mechanism would be
used for both.

5.3. Build Systems that don’t support dynamic nodes in the build
graph still need a declared list of importable headers
In build systems that don’t support the dynamic generation of nodes in the build graph (e.g.:
ninja and GNU Make) still need to pre-generate the build rules for all importable headers in all
possible variations the project may need. Therefore they need the list of importable headers to
be known up-front. This would technically be achievable by traversing the include directories
and dynamically identifying them, however that may have undesirable performance
characteristics.

There is still a risk that the list is incomplete and the dependency scanning would generate a
dependency on an unknown header unit. However, the failure mode in that case is easily
detectable and the user can be presented with clear diagnostics on what the issue was and how
to fix it.

In particular, this risk is considerably easier to manage than the problem caused by the
invalidation of downstream dependencies when the list of header units or their arguments
change on build systems that don’t support stopping that invalidation when there are no
changes (e.g.: GNU Make).

8

mailto:druoso@bloomberg.net

