
Removing exception in precedence rule(s) when using member
pointer syntax

Document #: P2904R0
Date: 2023-05-27
Project: Programming Language C++
Audience: Evolution Working Group
Reply-to: Anoop Rana

<ranaanoop986@gmail.com>

1 Introduction

This paper proposes that [expr.unary.op#4] be amended to allow the usage of the syntax &(C::Bar)

for some class C with member function Bar.

The standard makes an exception to precedence rules when it comes to member function pointer
syntax. For example, in the below shown program, the syntax &(C::Bar) is explicitly forbid-
den(disallowed) by [expr.unary.op#4]. Is there a reason why the normal operator precedence rules
are not applied here. I mean I would expect that &C::Bar is grouped as(or equivalent to writing)
&(C::Bar) and so the latter should be allowed(since the former is allowed and since they are equiva-
lent in form). There doesn’t seem to be a good reason to disallow the latter by making an exception
to the normal precedence rules.

This exception also makes the language(this part of the language to be specific) little inconsistent
and unintuitive in my understanding. Here is the example for which we notice implementation
divergence:

1 struct C
2 {
3 void Bar(int);
4 };
5 int main()
6 {
7 void (C::*ptr)(int) = &(C::Bar); //compiles with msvc but both gcc and clang rejects this
8 }

2 Motivation and Scope

This would make this part of the language more consistent and intuitive. Since there doesn’t seem
to be a good motivation for having this exception in the normal precedence rules, I suggest this to
be removed so that &(C::Bar) is well-formed and work just like &C::Bar.

1

mailto:ranaanoop986@gmail.com


3 Impact on the Standard

Again, this will make previously invalid program(s) involving &(C::Bar) to be well-formed.

4 Change in wording

Change [expr.unary.op#4] to as shown below:

A pointer to member is only formed when an explicit & is used and its operand is a
qualified-id not enclosed in parentheses.

[Note 4: That is, the expression &(qualified-id), where the qualified-id is enclosed in
parentheses, does not form an expression of type pointer to member . Neither does. The
expression qualified-id does not form an expression of type pointer to member, be-
cause there is no implicit conversion from a qualified-id for a non-static member function
to the type “pointer to member function” as there is from an lvalue of function type to
the type “pointer to function” ([conv.func]). Nor Neither is &unqualified-id a pointer
to member, even within the scope of the unqualified-id’s class. — end note]

2


	Introduction
	Motivation and Scope
	Impact on the Standard
	Change in wording

