
Proposed resolution for CWG1223

P2915R0
Corentin Jabot, 13 June 2023
CWG

Because the restriction that a trailing-return-type can appear only in a declaration with “the single
type-specifier auto” is a semantic, not a syntactic restriction, it does not influence disambiguation,
which is “purely syntactic”. Consequently, some previously unambiguous expressions are now
ambiguous.
This problem is made more apparent by P0849R8 "auto(x) decay copy in the language", which can
make auto(x) a valid expression.

The proposed wording specifies that something that looks like a declaration with a trailing return type
is only a declaration if it starts with auto.

Wording
Modify [stmt.ambig]/p1 as follow

There is an ambiguity in the grammar involving expression-statements and declarations: An
expression-statement with a function-style explicit type conversion as its leftmost
subexpression can be indistinguishable from a declaration where the first declarator starts
with a (. In those cases the statement is a declaration, except as specified below.

Add at the end of [stmt.ambig] after Example 3

A syntactically ambiguous statement that can syntactically be a declaration with an outermost
declarator with a trailing-return-type is a declaration only if it starts with auto.

[Example:

struct M;
struct S {
S* operator()();
int N;
int M;

void mem(S s) {
auto(s)()��M; �� S��M hides ��M, this is an expression

https://wiki.edg.com/pub/Wg21issaquah2023/CoreWorkingGroup/cwg_active.html#1223


}

};

void f(S s) {
{
auto(s)()��N; �� expression
auto(s)()��M; �� function declaration

}

{
S(s)()��N; �� expression
S(s)()��M; �� expression

}
}

- End Example]
Modify [dcl.ambig.res]/p1

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned
in [stmt.ambig] can also occur in the context of a declaration. In that context, the choice is between
an object declaration with a function-style cast as the initializer and a declaration involving a
function declarator with a redundant set of parentheses around a parameter name. Just as for the
ambiguities mentioned in [stmt.ambig], the resolution is to consider any construct, such as the
potential parameter declaration, that could possibly be a declaration to be a declaration.
However, a construct that can syntactically be a declaration whose outermost declarator would
match the grammar of a declarator with a trailing-return-type is a declaration only if it starts with
auto.

[Example 1�
struct S {
S(int);

};
typedef struct BB { int C[2]; } *B, C;

void foo(double a) {
S w(int(a)); �� function declaration
S x(int()); �� function declaration
S y((int(a))); �� object declaration
S y((int)a); �� object declaration
S z = int(a); �� object declaration
S a(B()->C); // object declaration
S b(auto()->C); // function declaration

http://eel.is/c++draft/stmt.ambig
http://eel.is/c++draft/dcl.ambig.res#1.sentence-1
http://eel.is/c++draft/dcl.ambig.res#1.sentence-2
http://eel.is/c++draft/stmt.ambig


}
— end example]

Modify [dcl.ambig.res]/p2

An ambiguity can arise from the similarity between a function-style cast and a type-id. The resolution
is that any construct that could possibly be a type-id in its syntactic context shall be considered a
type-id. However, a construct that can syntactically be a type-id whose outermost abstract-declarator
would match the grammar of an abstract-declarator with a trailing-return-type is a type-id only if it
starts with auto.

template <class T> struct X {};
template <int N> struct Y {};
X<int()> a; �� type�id
X<int(1)> b; �� expression (ill�formed)
Y<int()> c; �� type�id (ill�formed)
Y<int(1)> d; �� expression

void foo(signed char a) {
sizeof(int()); �� type�id (ill�formed)
sizeof(int(a)); �� expression
sizeof(int(unsigned(a))); �� type�id (ill�formed)

(int())+1; �� type�id (ill�formed)
(int(a))+1; �� expression
(int(unsigned(a)))+1; �� type�id (ill�formed)

}
typedef struct BB { int C[2]; } *B, C;
void g() {

sizeof(B ()��C[1]); �� OK, sizeof(expression)
sizeof(auto () �� C[1]); �� error: sizeof of a function returning an array

}
— end example]

https://eel.is/c++draft/dcl.name#nt:type-id
https://eel.is/c++draft/dcl.ambig.res#2.sentence-1
https://eel.is/c++draft/dcl.name#nt:type-id
https://eel.is/c++draft/dcl.name#nt:type-id
https://eel.is/c++draft/dcl.ambig.res#2.sentence-2
https://eel.is/c++draft/dcl.decl.general#nt:trailing-return-type

