
inplace_vector
D0843R7

Gonzalo Brito Gadeschi, Timur Doumler, Nevin Liber, David Sankel
LEWG, 2023-06-16

Review

inplace_vector<int, 5> v; // Storage on stack
v.push_back(1);
v.push_back(2);

● For systems that cannot use a dynamic allocator
● Provides useful set of performance tradeoffs

push_back interfaces*

constexpr T& push_back(const value_type& x);

constexpr T* try_push_back(const T& value);

constexpr T& push_back_unchecked(const T& value);

* also with T&& parameter and emplace_back styles

push_back

If space is not available, throw std::bad_alloc.
Otherwise, return a reference to the newly created
element

template<typename T, typename U, int N>
class pair_sequence {
 inplace_vector<T, N> ts_;
 inplace_vector<U, N> us_;
public:
 void push(T t, U u) {
 ts_.push_back(t):
 try { us_.push_back(u); }
 catch(...) { ts_.pop_back(); throw; }
 }
};

● push_back is a drop-in replacement
for that of std::vector

● Returns a reference to the element
that was added
 f(v.push_back(x));

● A straightforward extension to
std::vector as well if not for ABI
concerns

try_push_back

If space is not available, return 0. Otherwise,
return a pointer to the newly created element

// Pattern 1
if(!v.try_push_back(x)) {
 panic();
}

// Pattern 2
if(T * p = v.try_push_back(x)) {
 f(*p);
}

● Exhausted inplace_vectors are a
more common occurrence than
exhausted std::vectors

● try_push_back is convenient for this
● try_push_back also enables this

functionality for exception-free
systems

push_back_unchecked

If space is not available the behavior is
undefined, otherwise return a reference to
the newly created element.

assert(v.size() < v.capacity())
v.push_back_unchecked(x);

● An unsafe interface (alt name
unsafe_push_back?)

● May have performance benefits…

Performance Measurements

T1

for (size_t i = 0; i < N; ++i)
 v.push_back(b[i]);
f(&v);

T2

for (size_t i = 0; i <N; ++i) {
 v.push_back(b[i]);
 f(&v);
}

● Attempt to capture common use
cases

● In T2 the compiler must account for
the possibility of f changing v’s size.
There is less opportunity for
optimization (e.g. unrolling) here

● GPU/microcontroller performance
wasn’t checked

Bikesheds

● Name of class (inplace_vector, static_vector, fixed_capacity_vector)
● Name of unsafe push_back (push_back_unchecked, unsafe_push_back)

