
std::simd types should be regular
P2892R0

David Sankel | Adobe’s Software Technology Lab

Joe Jevnik | Jump Trading

June 2023, WG21 Varna Meeting

© 2023 Adobe. All Rights Reserved.

© 2023 Adobe. All Rights Reserved.

This Presentation

§ Background

§ Arguments for mask-returning == operator

§ Our position

§ Answers to objections

§ Alternatives considered

© 2023 Adobe. All Rights Reserved.

Background

§ std::simd types represent multiple numeric values

§ Arithmetic operators are element-wise. This isn’t contested

§ Current proposal has comparison operations element-wise as well. That is the subject of this
discussion

Arguments for mask-
returning == operator

© 2023 Adobe. All Rights Reserved.

Mask-returning == is consistent with the other SIMD operators

std::simd x, y, z;
//…
z = x + y;
y = z * x;
auto mask = y == z;

© 2023 Adobe. All Rights Reserved.

Bool-returning == is easy to misuse (courtesy Zach Laine/Lane)

std::simd x, y, z;
// …
auto result = (x == y) * z; // result is all 1s or 0s. Not the author’s intent

© 2023 Adobe. All Rights Reserved.

std::simd is not a value semantic type

It is in a different category. It is parallel value semantic.

© 2023 Adobe. All Rights Reserved.

You never want bool-returning == with SIMD

§ It is always the wrong operation

§ In real code you never see this used

§ Therefore, we should use the == operator to be something useful

© 2023 Adobe. All Rights Reserved.

Every SIMD library out there does this

§ We should standardize existing practice

§ Users will reject this library if we make it unfamiliar

© 2023 Adobe. All Rights Reserved.

std::valarray

§ std::valarray’s == operator doesn’t return bool

§ This is existing standard library convention we should follow

Our Position

© 2023 Adobe. All Rights Reserved.

The meaning of == is taken. It should not be contradicted

1. T a = b; assert(a==b);
2. T a; a = b; ⇔ T a = b;

3. T a = c; T b = c; a = d; assert(b==c)

4. T a = c; T b = c; zap(a); assert(b==c && a!=b) where zap always changes its operand’s value.

 -- James C. Dehnert and Alexander Stepanov. 1998. Fundamentals of Generic Programming.

 http://stepanovpapers.com/DeSt98.pdf

© 2023 Adobe. All Rights Reserved.

Value semantic types should be regular

§ Value semantic types represent mathematical values

§ Regular rendering of value semantic types enables generic programming
§ Creation and use of general-purpose algorithms

§ Consider operator==‘s usage in std::find

class PixelGrid64x64 {
using Color = std::fixed_size_simd<std::uint32_t, 4>;

std::array<Color, 64*64> data;

public:
bool has_black() const {

 auto i = std::find(data.begin(), data.end(), C{}); // ERROR

 return i != data.end();

}

};

© 2023 Adobe. All Rights Reserved.

Regularity is not only a library convention, it is a language convention

struct Pixel {
 std::uint32_t red = 0;
 std::uint32_t green= 0;
 std::uint32_t blue = 0;
 std::uint32_t alpha = 0;
 bool operator==(const Pixel&) const = default;
};

struct Pixel {
 std::fixed_size_simd<std::uint32_t, 4> value{};
 std::uint32_t red() const;
 std::uint32_t green() const;
 std::uint32_t blue() const;
 std::uint32_t alpha() const;
 bool operator==(const Pixel&) const = default;
};

// Equality comparison of Pixels errors out on first
// usage.

© 2023 Adobe. All Rights Reserved.

std::simd types should be regular

§ Value semantic type should be regular as this enables generic programming

§ This is something that will have practical impact on our users
§ Regular simd types reduces the complexity of the standard library

§ The consistency of the whole outweighs familiarity in a particular domain

Answering Objections

© 2023 Adobe. All Rights Reserved.

Mask-returning == is consistent with the other SIMD operators

std::simd x, y, z;
//…
z = x + y;
y = z * x;
auto mask = y == z;

§ External consistency is traded for internal
consistency

§ Code remains readable with suggested change

std::simd x, y, z;
//…
z = x + y;
y = z * x;
auto mask = mask_equals(y, z);

© 2023 Adobe. All Rights Reserved.

Bool-returning == is easy to misuse (courtesy Zach Laine)

std::simd x, y, z;
// …
auto result = (x == y) * z;
// result is all 1s or 0s. Not the author’s intent

§ Easily mitigated with documentation

§ It is not clear this would be a prevalent bug

§ People making the opposite assumption
would have the same issue

© 2023 Adobe. All Rights Reserved.

std::simd is not a value semantic type

It is in a different category. It is parallel value
semantic.

§ This objection is based on a misunderstanding
of value semantic types

§ Value semantic types represent an entity in
the platonic world of mathematical forms

§ std::simd objects represent a sequence of
numbers

§ We don’t get to change math because we
prefer a particular function identifier J

© 2023 Adobe. All Rights Reserved.

You never want bool-returning == with SIMD

§ It is always the wrong operation

§ In real code you never see this used

§ Therefore, we should use the == operator to be
something useful

§ Unit testing is a good practice

§ Comparing results of simd operations using
equality is a straightforward way to test

§ SIMD is not only used for bulk data processing.
It can be used for fixed-width vectors, color
representations, and other things. Equality
makes sense in these domains.

© 2023 Adobe. All Rights Reserved.

Every SIMD library out there does this

§ We should standardize existing practice

§ Users will reject this library if we make it
unfamiliar

§ Not every SIMD library does this

§ Eduardo Madrid’s SWAR library is a good
counter-example

§ See paper for other examples

§ Standardizing existing practice in general
would result in an inconsistent and inferior
standard library (consider the STL)

© 2023 Adobe. All Rights Reserved.

std::valarray

§ std::valarray’s == operator doesn’t return bool

§ This is existing standard library convention we
should follow

§ std::valarray was a failure

§ It is not a good standard library to look at for
best practices for this and other reasons

Alternatives Considered

© 2023 Adobe. All Rights Reserved.

Make masks convertible to bool

§ Idea: make operator== return a mask and have that mask convertible to bool
§ Get the best of both worlds?

§ Concerns
§ Bool conversion for == result is “all of”, but bool conversion for != result is “any of”

§ May introduce too much complexity

§ May result in contradictions

© 2023 Adobe. All Rights Reserved.

Remove/rename comparison operators for SIMD types

§ Benefits
§ Remove the contradiction

§ Remove possibility of run-time errors due to false assumptions

§ Drawbacks
§ Missed opportunities to take advantage of regular-type machinery

© 2023 Adobe. All Rights Reserved.

About the artist

Dan Zucco

London-based 3D art and motion director Dan Zucco
creates repeating 2D patterns and brings them to life
as 3D animated loops. Inspired by architecture, music,
modern art, and generative design, he often starts in
Adobe Illustrator and builds his animations using
Adobe After Effects and Cinema 4D. Zucco’s objective
for this piece was to create a geometric design that felt
like it could have an infinite number of arrangements.

Made with

https://www.behance.net/davyevans?tracking_source=search_users_recommended%7CDavy%20Evans

© 2023 Adobe. All Rights Reserved.

