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Abstract

SG21 is poised to decide upon a final syntax for the Contracts proposal it will produce for inclusion
in the C++ Standard and has gathered the requirements such a syntax would ideally satisfy.
This paper presents a syntax, based on the C++20 Contracts syntax, for the Contracts MVP.
This syntax is one that is familiar, that is easily extensible, with which there is implementation
experience, and which meets many of the requirements described in [P2885R3].
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Revision History
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• Moved alternate syntax to be prior to pure-specifier
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• Concrete proposals for assertions as expressions
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• Poll results on alternate delimiters, removed proposals to use them

• Poll results on end-of-declaration syntax, expanded grammar and discussion

• Concrete syntax proposals in conclusion

Revision 1 (Discussed during 2023-09-07 SG21 telecon)

• Minor cleanups and clarifications

Revisio 0

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
An attribute-like syntax for contract-checking annotations (CCAs) was first proposed in 2015 via
[N4415]. This syntax evolved, was eventually adopted into the C++ Working Draft in 2018 via
[P0542R5], and switched to using the identifiers pre and post for preconditions and postconditions
(instead of the original expects and ensures) via [P1344R0]. This approach has a long history of
being analyzed, implemented, and considered, all in an attempt to determine how it can evolve
to meet future needs. Papers such as [P2487R0] have explored some of the impacts of using this
syntax, and [P2487R1] discusses in-depth the impact of choosing an attribute-like syntax.

SG21 has made significant progress, following the path proposed in [P2695R1], to produce a complete
Contracts proposal, which will be consolidated into the draft currently in development, [P2900R0].
While several open questions about the behavior of Contracts remain to be answered, most are edge
cases that are not central to the feature and will, we hope, be addressed thoroughly in the coming
months. The primary remaining decision, however, is the syntax of the feature SG21 will propose to
the WG21 community.

This paper proposes the use of the C++20 Contracts style of syntax for CCAs. Each annotation
will take the following basic form:

contract-checking-annotation :
[ [ contract-kind metadata-sequence : evaluable-code ] ]

For the contract kinds that are in the initial SG21 Contracts proposal, the evaluable code is always
a normal C++ expression that is contextually converted to bool, i.e., a conditional-expression. The
only uses of the metadata-sequence in the initial proposal are for the optionally named return value
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in a postcondition and attributes which themselves appertain to CCA itself. However, a vast number
of future proposals can make effective use of this syntactic location.

This syntax can be used naturally for preconditions, postconditions, and assertions:
int f(const int x, int y)

[[ pre : y > 0 ]]
[[ post : fstate() == x ]] // Parameters referenced in post must be const.
[[ post r : r > x ]] // Postcondition may optionally name return value.
[[ post (r) : r > y ]] // Return value may have parenthesis.

{
[[ assert : x > 0 ]]; // Assertions form a complete statement.
return x;

}

For the basic Contracts facility, a few general points must be made to have a complete proposal.

• Preconditions and postconditions are placed in the same location where attributes that would
appertain to the function’s type (as opposed to the function) would be located, i.e., after
the cv-qualifiers, ref-qualifiers, and noexcept-specifier on the function, but before any trailing
return type, virtual specifiers such as final and override, or requires clause:

struct S1 {
auto f() const & noexcept [[ pre : true ]] -> int;
virtual void g() [[ pre : true ]] final = 0;
template <typename T>
void h() [[ pre : true ]] requires true;

];

For a lambda expression, a CCA that appertains to the lambda expression or to its function
call operator is considered to appertain to the type of the function call operator. Therefore
CCAs may be added to lambda expressions with or without function parameter lists, and
with trailing return types:

auto w = [] [[pre: true]] {};
auto x = [] (int x) [[pre: true]] {};
auto y = [] (int x) [[pre: true]] -> void {};

Note that this location is where an attribute would appertain to a function’s type and not to
the function itself. The advantage of this locations is that the same syntax will be applicable
if we ever choose to allow CCAs to be placed on function types:

using positiveIntFunction = int() [[ post r : r > 0 ]];
std::function<positiveIntFunction> f;

The downside is that the CCAs on a function are not located in what would seem to be the
most natural place:

– For functions with a trailing return type, the return type is not yet known when reading
or parsing a postcondition.

– requires clauses, which provide a form of compile-time contract on template parameters,
are syntactically after the CCAs, which are in terms of runtime values.
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– Other properties, such as virtual specifiers, can be very far removed from the major parts
of the function declaration by verbose CCAs.

We discuss possible alternatives in Section 5.2.

• In postconditions, the return value’s name must be introduced prior to the colon (:):
int f()

[[ post r : r > 0 ]];

To allow for future evolution that might be ambiguous with the name chosen for a return
value, the return value can always have parenthesis added around it with no other change in
meaning:

int f()
[[ post (r) : r > 0 ]]; // same as above

• Where they occur, preconditions and postconditions can be of any number and in any order.1
In various cases and for style or readability, alternating arbitrarily between preconditions
and postconditions is beneficial, such as when there is a natural grouping based on the
parameters:

std::pair<double,double> clamp2d(double x, double y,
const double minx, const double maxx,
const double miny, const double maxy)

// Check the x-dimension range.
[[ pre : minx <= maxx ]]
[[ post r : r.first >= minx && r.second <= maxx ]]

// Check the y-dimension range.
[[ pre : miny <= maxy ]]
[[ post r : r.second >= miny && r.second <= maxy ]];

• When new features allow additional identifiers in the space between the kind and the colon for
(possibly user-defined) additions, the last identifier before the colon in a postcondition names
the return value only when that identifier is parenthesized or would not qualify for another
purpose:

int f( )
[[ post audit : true ]] // OK, this is an audit label.
[[ post audit : audit ]]; // Error, invalid expression.
[[ post (audit) : audit ]]; // OK, return value name is audit.

Choosing this disambiguation is important to avoid important labels being applied to post-
conditions and then silently ignored, even when that label is not used in the postcondition’s
expression.

• Assertions form complete statements and thus appear at block scope only. The syntax for
assertions, however, does not preclude relaxing this restriction to use assertions within other
expressions:

1C++20 contracts allowed for such repetition and intermingling, as have other previous proposals such as [P2388R4]
and [P2461R1].
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struct S2 {
int d_x;
S2(int x)
: d_x( [[ assert : x > 0 ]], x ) // error, but could be made valid later
{}

};

One could allow the assertion to appertain to a full statement or expression, but then the
order of checking for that assertion would be unnatural compared to other assertions. Instead,
an assertion would be treated as appertaining to an otherwise empty expression with a type
of void, and would be usable anywhere such an expression is allowed.

• Attributes which appertain to a CCA may be placed in the CCA itself after the kind. Note
that this is a location primarily for implementation-defined attributes as there are no current
proposals for Standard attribtues which would be able to appertain to a CCA:

int k()
[[ pre [[ clang::weeble ]] : true ]]
[[ post [[ gcc::wibble ]] : true ]]
[[ post [[ msvc::wobble ]] r : true ]]

{
[[ assert [[ icc::falldown ]] : true ]];
return x;

}

Other locations which would not work as well should likely not be considered:

– After the expression might be ambiguous with attributes that might appertain to the
expression itself.

– Before or after the CCA would cause problems in contexts where the CCA can occur
alongside a list of attributes that appertain to something else, such as on a function
declaration, as it would be ambiguous whether the new attribute appertained to the
CCA or the function (or function type).

2 Goals and Principles
The syntax choices made here and the choices for how this syntax can evolve to handle other use
cases are managed by certain guiding principles.

1. Make simple things simple. — The simplest preconditions, postconditions, and assertions
have only 8–11 characters of overhead on top of the predicate being checked.

double sqrt(double x) [[ pre : x >= 0 ]];

2. Meet the spirit of language attributes. — Users have been taught that attributes are
ignorable; attributes provide additional hints or restrictions on behavior, but a program with
all instances of an attribute removed would have conforming behavior for the program with
that attribute included. Well-written contracts are generally very similar: They do not form
an integral part of the essential behavior of a system, but instead simply provide a mechanism
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by which the correctness of that essential behavior can be verified. While certain code that
focuses on the actual contract-checking facility — such as tests of a function’s precondition
checks — does depend on the CCA’s effect being well-defined and observed, that case is a
rare and clear exception to the general rule that CCAs are purely defensive in nature and not
an essential part of a program’s behavior.2

3. Have distinctive syntax with meaning. — The code in a CCA will be evaluated in a
different way from other code, and having the syntax clearly indicate that the CCA is not
merely a function call is important. A distinct syntax also provides a framework for introducing
other language features that relate to contracts.

4. Basic use of even advanced features can remain simple. — By supporting labels that
are single identifiers with no need to express and understand the operators that combine them,
the syntax simplifies taking advantage of even more advanced features. For example, we might
choose to add within the CCA metadata sequence a label named audit — or even one using a
name that is a keyword like new — and then mix and match use of these labels on CCAs:

template <typename T>
T* binary_search(const std::vector<T> &data, const T& value)

[[ pre audit : is_sorted(data) ]]
[[ post r : (r == nullptr) || (*r == value) ]]
[[ post audit new r :

(r == nullptr) == std::contains(data.begin(), data.end(), value) ]];

Support for single-identifier labels that are provided by the Standard without the need for
excess syntax also maximizes the ability for C to provide support for the same labels with the
same meaning, even if C should choose not to provide support for more advanced customization
of CCA behavior through additional user-defined labels.

5. Maintain extensibility. — There is ongoing work, such as [P2755R0], to design, implement,
and propose features to build on the Contracts MVP to to satisfy many of the use cases
gathered in [P1995R1]. Neither that list, nor the work being done to meet some of those needs,
are exhaustive of all potential future needs. As a wider range of developers use Contracts in
an ever-expanding variety of situations, even more use cases are certainly likely to become
apparent.

Providing a well-identified boundary between a CCA and the code that surrounds it (i.e., the
opening [[ and the closing ]] on an attribute-like CCA) retains ample room to introduce
additional features consistently across all CCAs and includes potential places a CCA might
appear that would otherwise lack the ability to parse such a construct.

This flexibility to consider only the syntax that has already been adopted for CCAs within
the enclosing tokens will help to guarantee that future proposals can be considered entirely on
their merits and usefulness rather than rejected due to no acceptable syntactic approach to
producing them.

6. Metadata can be first. — A CCA can be seen, in part, as a small function. The predicate
is the function’s body, while all of the other data contained within the CCA is its declaration.

2See [P1743R0] and [P2053R1].
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In general, the declaration and meta-information pertaining to an entity, all of which would
be implemented by features that build on the Contracts MVP, come first in C++ and might
guide the understanding of the body.

Putting meta-information that is outside the expression first also improves certain fundamental
characteristics.

• Regularity: Metadata is often going to be fairly regular across groups of contracts. Coding
styles might, for instance, dictate that noncostly checks should come first, followed by
audit-level checks, followed by uncheckable CCAs that have no runtime-enforceable
semantics. Being able to put the meta-information for all such checks in consistent
locations relative to the tokens that introduce a CCA means the correctness can be more
easily verified, and its regularity can improve readability.

For example, a large codebase with extensive precondition checking that made regular
use of the labels audit, new, and unchecked labels might mandate that such labels always
be placed in the same columns, noting that audit and unchecked should be mutually
exclusive:

int *binarySearch(int *begin, int *end, int val)
[[ pre unchecked : is_reachable(begin,end) ]]
[[ pre audit : is_sorted(begin,end) ]]
[[ pre audit new : is_monotonic(begin,end) ]]
[[ post new r : r == end || *r == val ]]
[[ post unchecked new r : is_reachable(begin,r)

&& is_reachable(r,end) ]];

Even large expressions such as the newly added postcondition place the labels in visually
easy to locate positions.

• The ability to use grep: Searching for CCAs with certain labels becomes much simpler
when the CCA kind and the CCA’s labels are consistently adjacent, are in a particular
order, or are at least on the same source lines. Tools such as grep make this form of
search much easier, but even visual inspection is aided by avoiding the need to connect
the start of a CCA with the end of its predicate to discover which CCAs have which
labels.

• Bounded size: Contract predicate examples in presentations or papers are often very
simple, along the lines of p != nullptr and x > 0. In practice, predicates are likely to
expand to be potentially quite large, including complex nested logical operations and the
invocation of verbosely named functions. Consider, for example, potential postconditions
on a complex-valued sqrt that placed certain extra guarantees on inputs with no imaginary
component, along with a general guarantee to prefer the solution in the positive-real half
of the complex plane:

template <typename T>
complex<T> sqrt(const complex<T>& val)

[[ post r : close_enough(r * r, val) ]]
[[ post r : (val.imag() == 0)

? (val.real() < 0) ? (r.imag() > 0) && (r.real() == 0)
: (r.imag() == 0) && (r.real() >= 0)
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: val.real() > 0 ]];

As predicates grow longer, any information placed after the predicate in a CCA becomes
significantly more difficult for a human to associate with that predicate.

When all meta-information is placed before the predicate, only the volume of the meta-
information itself increases the distance between the kind and that meta-information.
If repeated use of verbose, custom labels becomes burdensome, the ability to provide
user-defined labels should allow the effects of multiple labels to be easily combined into a
single label, thus reducing large amounts of boilerplate code into a single token.

• Capturing intent and setting expectations: Introducing a CCA with the labels that are
assigned to it, many of which will describe to users the character of the CCA’s predicate,
assists the user in understanding the importance and nuance of a CCA. A new label might
warrant extra inspection when debugging, since violation of a newly introduced check
might be a reason that a bug that had previously remained hidden is now being escalated.
An uncheckable CCA is a good forewarning of potential misuses of a function, and such
misuses will be hard to diagnose; such a CCA thus indicates that extra thought is needed
when stumbling upon a function that appears to be behaving poorly in a production
system.

• Impact on parsing: Any meta-information that might impact the meaning of the expression
within a CCA likely needs to be lexically prior to the expression; otherwise, compilers
must parse all the way to the potential location of that meta-information before being
able to complete translation of the expression. This form of look-ahead parsing is onerous
and error prone and often introduces cases — such as those needed in many dependent
contexts — in which disambiguators must be manually introduced into expressions, e.g.,
when using template members of a dependent type.

7. Metadata can be last. — Despite all the arguments for putting metadata first, having a
clear closing token at the end of a CCA facilitates extending the syntax to put some optional
metadata after the expression, for example with a semicolon (;) or colon (:) separating the
expression from the metadata that follows it:

[[ assert : X : audit ]];
[[ assert : X ; audit ]];

The additional colon might be hard for a reader to distinguish from half of a ternary operator
but would be unambiguously parseable. Using a semicolon would validly separate an expression
today but might conflict with some potential proposals for expression statements.

8. Allow optional backward compatibility.— Due to its similarity with the attribute syntax,
the CCA’s syntax could be extended to allow optional parentheses after the pre or post and
around the rest of the contents of a CCA:

void f(int x)
[[ pre(: x > 0) ]]
[[ post(r : r < 0 ]];
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A compiler for an older version of C++ would then see this complete CCA as a regular
attribute and would ignore it (often with a warning that we hope is suppressible). Modern
C++ would need to introduce a disambiguation rule where anything beginning with [[pre or
[[post would be treated as a CCA rather than as an attribute (and would thus be exempt
from the design rules for attributes).

Note that this optionality could not be extended to assertions safely, as inclusion of <cassert>
will introduce the assert() macro that will expand [[assert(x>0)]] into something that is
almost certainly not an attribute.

Enabling such optional parentheses would give users a built-in choice that removes the need
for any macros when writing code that is portable between platforms supporting different
language standards.

3 Formal Syntax
The grammar definition of a CCA is as follows:

contract-checking-annotation :
precondition-specifier
postcondition-specifier
assertion-specifier

Each possible annotation follows the same general structure:
precondition-specifier :

[ [ pre attribute_specifier-seqopt : conditional-expression ] ]

postcondition-specifier :
[ [ post attribute-specifier-seqopt postcondition-return-value-specifieropt : conditional-
expression ] ]

postcondition-return-value-specifier :
identifier
( identifier )

assertion-specifier :
[ [ assert attribute-specifier-seqopt : conditional-expression ] ]

The grammar term for attribute-specifier is expanded to include precondition and postcondition
specifiers:

attribute-specifier :
[ [ attribute-using-prefixopt attribute-list ] ]
alignment-specifier
precondition-specifier
postcondition-specifier

As with other elements of an attribute-specifier , the syntactic location where the specifier appears
controls to what that construct appertains. In the case of preconditions and postconditions, the
annotation must be placed where it would appertain to the function type of a function declaration.

Assertions are specified using a new statement grammar term:
assertion-statement :

assertion-specifier ;
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This grammar term is allowed as an alternative for the statement grammar term — allowing it to
be used within compound statements such as function bodies or nested within other control flow
structures.

statement :
labeled-statement
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block
assertion-statement

4 Basic and Functional Requirements Discussion
Various requirements that SG21 has expressed for a Contracts syntax have been expressed via
[P2885R3].

• [basic.aesthetic]3, [basic.brief]4, and [basic.teach]5 — We believe this syntax clearly
identifies the Contracts syntax as distinct while being minimally intrusive. Many Contracts-
related papers and presentations have been published, dating back to the times when C++20
Contracts were already in the Standard, and many readers made no negative comments about
the syntax and understood it intuitively.

Some have objected to the use of an attribute-like syntax which, to a nonexpert, seems to in all
ways be an attribute while not necessarily meeting the guarantees expected of a full attribute
as codified by [P2552R3]. Defensive checks, while not following the letter of that requirement,
should not be part of the essential behavior of a typical function and thus do meet the spirit
of the requirement on attributes. In our (admittedly limited and possibly biased) experience,
this attribute-like syntax has not been a source of any confusion outside of WG21.

• [basic.practice]6 — Extensive literature related to contract checking exists which makes use
of the terms precondition, postcondition, and assertion. The use of the identifiers with special
meaning — pre, post, and assert — builds on that historical precedent. Discussions within
WG21 — and in particular within SG21 — have also almost universally used these three
terms. The very strong consensus for [P1344R0] made it especially clear that these identifiers
have strong support.

• [basic.cpp]7 — That this syntax is largely similar to an existing language construct already
used with a variety of flexible meanings is a good sign that this syntax too will fit in with
other parts of the language with minimal worries about how much it might feel like C++.

3See [P2885R3], Section 4.1, “Aesthetics” [basic.aesthetic].
4See [P2885R3], Section 4.2, “Brevity” [basic.brief].
5See [P2885R3], Section 4.3, “Teachability” [basic.teach].
6See [P2885R3], Section 4.4, “Consistency with existing practice” [basic.practice].
7See [P2885R3], Section 4.5, “Consistency with the rest of the C++ language” [basic.cpp].
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• [compat.break]8 — The syntax for assertions was carefully chosen so that it would not conflict
with uses of <cassert>. The general syntax has had full formal wording already merged into
the C++ standard once, and developers have completely implemented this syntax, and no
known incompatibilities or breakages have resulted.

• [compat.macro]9: The syntax allows for full use of the proposed features of the Contracts
MVP with no need for extra preprocessor usage.

As with all other syntaxes, unless the option to allow a backward-compatible use of this syntax
is chosen, macros will be needed to place CCAs in code that intends to support C++ language
versions that do and do not have support for Contracts.

Other features, such as the selection of semantics through labels, might involve the use of
macros depending on the level of functionality that they provide.

• [compat.parse]10 — Using three bespoke grammar compositions for preconditions, postcon-
ditions, and assertions allows humans and compilers to easily read and identify CCAs with
this syntax. The attribute delimiters, [[ and ]], provide a highly unambiguous framework in
which the entire CCA specification can freely live and evolve without parsing problems with
other language constructs.

• [compat.impl]11 — The attribute-like syntax presented here is the C++20 Contracts syntax
which is available in GCC version 13.0, released in April 2023. A version with additional
support for user-defined contract labels and other related features is available on godbolt.org
with the name “x86-64 gcc (contract labels)”.

• [compat.back]12 —The attribute-like syntax is the only proposal known that has any possibility
for having a backward-compatible subset. Some changes would need to be made to allow this.

– Introduce the ability to have optional ()s around the contents of an attribute-like CCA,
enabling CCAs to be written that will be ignored by older compilers.

– Disambiguate anything starting with [[pre, [[post, or [[assert in modern C++ as a
CCA and not as an attribute.

This flexibility is not part of this proposal but could be considered for a future addition.

• [compat.tools]13 — Searching for only the attribute-like syntax CCAs is significantly easier
than other context-sensitive syntax approaches would be, thus enabling the possibility of
tooling that parses and acts on the presence of CCAs without the need to fully parse the
entire C++ grammar.

Of course, any automated tool that parses CCAs and does no additional parsing of the C++
grammar is going to be highly limited in its understanding of the meaning of those CCAs,
making this requirement have little benefit for softwre tools.

8See [P2885R3], Section 5.1, “No breaking changes” [compat.break].
9See [P2885R3], Section 5.2, “No macros” [compat.macro].

10See [P2885R3], Section 5.3, “Parsability” [compat.parse].
11See [P2885R3], Section 5.4, “Implementation experience” [compat.impl].
12See [P2885R3], Section 5.5, “Backwards-compatibility” [compat.back].
13See [P2885R3], Section 5.6, “Toolability” [compat.tools].
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• [compat.c]14 — The C and C++ languages have the same grammar for attributes; hence, an
attribute-like CCA is no more a valid C attribute than it is a valid C++ attribute. This leaves
the same grammatical space available to C that is available to C++, enabling C to choose to
adopt exactly the same syntax as proposed by this paper.

Some features that build on the MVP proposal will have varying likelihood of adoption in
C. Many, such as requires clauses and structured bindings for the return value, are unlikely
needed by C functions and are thus irrelevant to the compatibility discussion. Others might
be heavily influenced by a desire for C compatibility.

The primary place where overlap might exist in a need for functionality is in the labels
the Standard Library might provide to influence CCA semantics. An expression-based label
syntax15 — i.e., [[pre<audit | review> : true]] —- would seem unlikely to be adopted by
C since this syntax would heavily leverage the C++ semantics of the expression to define how
the contents of the expression influence the behavior of the CCA. A label syntax that simply
allows for a sequence of tokens would more readily allow for a C specification that supports a
subset of those tokens — i.e., [[pre audit new : true]].

• [func.pred]16 — The attribute-like syntax allows for arbitrary C++ expressions as CCA
predicates and easily extends to other kinds of expressions as well as block-style CCA bodies,
such as on procedural interfaces.17

The rules for name lookup and what can be used in a CCA expression specified here match
SG21’s expectations for being arbitrary C++ expressions that are convertible to bool and
have the specified rules for name resolution — e.g., all function parameters are resolvable by
name within CCA predicates.

• [func.kind]18 — The values of the contract_kind enumeration adopted with [P2811R7] use
the same identifiers as those used to introduce the three kinds of CCAs in this proposal. The
identifiers associated with the contract_kind enumeration, therefore, do not need to change
to remain consistent with this proposal.

• [func.pos]19, and [func.pos.prepost]20 — The grammar proposed does not place CCAs
at the end of a function declaration since they then do not appertain unambiguously to a
function’s type. See Section 5.2 for a discussion of fully meeting this requirement. Motivations
mentioned above (primarily implementation experience and the ability to consider CCAs on
function types in the future) which conflict with this requirement.

• [func.pos.assert]21 — The grammar for assertion specifiers could also easily be included
as a potential grammar for arbitrary expressions if that was desired. Enabling this option
immediately is presented as a choice for SG21 in Section 5.3

14See [P2885R3], Section 5.7, “C compatibility” [compat.c].
15See Page 24 for more discussion of this possibility.
16See [P2885R3], Section 6.1, “Predicate” [func.pred].
17See [P0465R0].
18See [P2885R3], Section 6.2, “Contract kind” [func.kind].
19See [P2885R3], Section 6.3, “Position and name lookup” [func.pos].
20See [P2885R3], Section 6.4, “Pre/postconditions after parameters” [func.pos.prepost].
21See [P2885R3], Section 6.5, “Assertions anywhere an expression can go” [func.pos.assert].
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• [func.multi]22 — All preconditions and postconditions in this proposal occur in a single
sequence, with a well-defined location within function declarations, that may mix with other
attributes or specifiers. This sequence allows for a well-defined, lexical ordering to those CCAs.

• [func.mix]23 — The locations where preconditions and postconditions may be placed on a
function, whether at the end or where attributes would appertain to the function type, puts
no artifical restrictions on the ordering between preconditions and postconditions. In other
words, they may be intermingled, by design, or grouped based on the developer’s preferred
style or desired order of evaluation. (Note that, should the ability to add a capture list to
post conditions be adopted, the ordering of postconditions in relation to preconditions will be
observable and potentially salient, as the captures will be initialized at the time of precondition
evaluation in the lexical order of the CCAs.)

• [func.retval]24, [func.retval.predef]25, and [func.retval.userdef]26 — This syntax pro-
vides a way to introduce a name for an identifier. A separate proposal to have an additional
implicit name available within the conditional expression of a postcondition on a non-void
returning function could be considered as an additive proposal. Postconditions that make use
of that name could simply not name the return value explicitly.

Note that the C++20 Contracts proposal explicitly chose not to include the implicit intro-
duction of a bespoke name for the return value, though the idea was certainly known at the
time.

• [app.attr]27 — As with all other language constructs, there will inevitably be a need to
have an unambiguous syntacic location for attributes that appertain to a CCA. Though there
are no standard attributes being proposed which would do so, it is often an oversight that
needs to be corrected at a later date so that implementations may place their own attributes
unambiguously.28

To allow for such implementation-defined attributes this syntax proposal allows for attributes
which appertain to the CCA to be placed after the contract kind, the same syntactic location
where other metadata related to the CCA is projected to be located.

5 Alternative Proposals
Two primary alternate approaches, either of which could be pursued should SG21 have consensus to
do so, are presented here.

5.1 Non-Attribute Opening and Closing Delimiters

Concerns have been raised with the use of [[ and ]] in this attribute-like syntax.
22See [P2885R3], Section 6.6, “Multiple pre/postconditions” [func.multi].
23See [P2885R3], Section 6.7, “Mixed order of pre/postconditions” [func.mix].
24See [P2885R3], Section 6.8, “Return value” [func.retval].
25See [P2885R3], Section 6.9, “Predefined name for return value” [func.retval.predef].
26See [P2885R3], Section 6.10, “User-defined name for return value” [func.retval.userdef].
27See [P2885R3], Appendix A.1, “Standard attributes appertaining to Contracts” [app.attr].
28Often via CWG issue, such as [CWG1042], [CWG1657], or [CWG2262].
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• Although the syntax does not actually meet the grammatical requirements of being a C or
C++ attribute, it so strongly resembles that syntax that anyone who isn’t a language lawyer
will see them as attributes and assume they follow all of the advertised rules of attributes —
in particular, those rules expressed by EWG by adopting [P2552R3].

• Though the current minimal proposal always allows an implementation to choose the ignore
semantic for attributes, many use cases require that the Contracts feature have nonremovable
effects:

– Allowing users to specify a particular semantic for a particular CCA or do anything that
limits the choice of semantics to only checked semantics, i.e., some subset of enforce and
observe.

– Any functionality that evaluates CCAs independently of how they might be configured,
such as features that could be added to allow for testing of CCAs

• The attribute syntax adds five total characters plus whatever whitespace a user considers
stylistically appropriate, and some developers consider this addition to be overly heavy for a
syntax.29

• While one could argue that defensive checks are superfluous to the essential logic of a piece
of software, knowing what conditions are expected to hold cannot be ignored. The high
relevance of such expectations to all uses of a function conflicts in many minds with the spirit
of ignorability generally associated with attributes.

The distinguishing factor of the attribute-like syntax proposed here is that the contents of a CCA
are enclosed in a clearly identifiable pair of opening and closing tokens. The only property of the [[
and ]] delimiters upon which this syntax depends is that they are easily distinguishable from other
syntactic constructs and naturally support being nested without any special need for lookahead
rules; parsing of a CCA can be known to be complete as soon as the closing delimiter is processed.

SG21 discussed these possibilities and polled on two potential alternative delimiter sets for the
attribute-like syntax:

We are interested in considering the non-attribute delimiter tokens [{ ... }] for the attribute-
like Contracts syntax proposed in D2935R1.
SF F N A SA
1 4 4 10 3

Result: Consensus Against

We are interested in considering the non-attribute delimiter tokens @( ... ) for the attribute-
like Contracts syntax proposed in D2935R1.
SF F N A SA
0 8 5 5 3

Result: Not Consensus

29Some participants in the standardization process, however, consider this number of characters to be comparable
to most other language constructs and can type sufficiently fast to be unbothered. These same participants tend to
consider a clearly distinguished syntax for the Contracts facility to be a feature, not a bug.
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Given these poll results, there does not seem to be a viable path to consensus for any alternate
delimiters for the attribute-like syntax.

5.2 Trailing Function Contract-Checking Annotations

The C++ function declaration syntax is crowded and confusing. The attribute-like syntax of C++20
Contracts led to choosing a location in function declarations for preconditions and postconditions
that was the same as the location for attributes that would appertain to the function type. Being
applicable to function types means we have an evolutionary path to include CCAs as part of a
function type in general.

This location choice, however, led to CCAs being prior to trailing return types, virtual specifiers,
and requires clauses. Many developers seem to find this unintuitive — so much so that sample
code in papers, discussions within the committee, and presentations often show CCAs in the wrong
place when mixed with these language features.

Instead of being part of the atttribute-specifier-seq that appertains to a function type, contract-
specifiers could be defined within the grammar to occur at bespoke locations at the end of function
declarations, or at the end of the declaration-like part of a function definition:

template <typename T>
auto f() const&& [[ function_type_attribute ]] // #1

-> int [[ function_return_type_attribute ]]
requires requirement<T>
override final

[[ pre : X ]] // #2
[[ post : Y ]]

{ return 17; }

This positioning has some potential disadvantages:

• When not using a trailing return type, requires clause, or virtual specifier location #1 and #2
are adjacent and thus indistinguishable.

• There is no confusion about possibly mixing other attributes between CCAs, as CCAs live in
a separate place in the grammar by themselves.

• When there is a trailing return type no requires clause or virtual specifier there is no visual
separation between an attribute which appertains to the return type and a CCA:

void f() -> int
[[ function_return_type_attribute ]]
[[ pre : X ]]
[[ post : Y ]];

This confusion might be alleviated more with a choice of delimiters other than [[]] as suggested
above.

• Even without trailing return type, there are other (admittedly obscure) situations where the
return type surrounds the function name and its parameters, such as a function that returns a
pointer to an array:
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int (*g(char i) [[ function_type_attribute ]])
[17] // array length
[[ return_type_attribute ]];

• This syntactic position is specific to the various forms of function declarations and would
not naturally extend to applying to function types in the future. Choosing this syntax would
preclude future extensions (for better or for worse) to capture CCAs when stating a function
type.

• This is not a syntactic location with which we have implementation experience, there may be
further surprises that need to be addressed.

Compelling reasons to consider this choice exist regardless:

• The end of the declaration does, in general, seem to be the most intuitive location for CCAs.

• This location is one where CCAs will be readily able to grow to be as specific as desired
without unduly separating more bounded parts of the function declaration such as the return
type or virtual specifiers.

• This location places runtime considerations after compile-time considerations such as requires
clauses.

The option also exists to support both locations for CCAs - at the end of the declaration or where
an attribute would appertain to the function type, but this would require careful study of the needed
disambiguation rules and what their impact would be on future use cases.

This alternate proposal was discussed in SG21 and there was strong consensus to pursue it:

We are interested in placing contract-checking annotations at the end of the function decla-
ration, rather than the position of an attribute appertaining to the function type, for the
attribute-like Contracts syntax proposed in D2935R1.
SF F N A SA
1 11 5 2 1

Result: Consensus

The grammar to make use of this syntax would match that proposed in [P2961R0], with precondition-
specifier , postcondition-specifier , and assertion-specifier defined as in Section 3.

init-declarator :
declarator initializeropt
declarator requires-clause
declarator requires-clauseopt function-cca-seq

To be consistent with the grammar when defaulting (=default) or deleting (=delete) a function
CCAs also occur prior to a pure specifier (=0) in a member declarator.
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member-declarator :
declarator virt-specifieropt function-cca-seqopt pure-specifieropt
declarator requires-clause
declarator requires-clauseopt function-cca-seq
declarator brace-or-equal-initializeropt
identifieropt attribute-specifier-seqopt : brace-or-equal-initializeropt

function-definition :
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt
function-cca-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause
function-cca-seqopt function-body

lambda-declarator :
lambda-specifier-seq noexcept-specifier opt attribute-specifier-seqopt
trailing-return-typeopt function-cca-seqopt
noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt function-cca-seqopt
trailing-return-typeopt function-cca-seqopt
( parameter-declaration-clause ) lambda-specifier-seqopt noexcept-specifieropt
attribute-specifier-seqopt trailing-return-typeopt requires-clauseopt function-cca-seqopt

function-cca-seq :
function-cca function-cca-seqopt

function-cca :
precondition-specifier
postcondition-specifier

The grammar for assertions, whether they are specified as potential statements or unary-expressions
is unchanged from that describe in Section 3 or the alternate option presented in Section 5.3.

Many function declarations look the same as the normal attribute-like syntax:

Attribute-Like Syntax Post-Declaration

int f(const int x, int y)
[[ pre : y > 0 ]]
[[ post : fstate() == x ]]
[[ post r : r > x ]]
[[ post (r) : r > y ]]

{
[[ assert : x > 0 ]];
return x;

}

int f(const int x, int y)
[[ pre : y > 0 ]]
[[ post : fstate() == x ]]
[[ post r : r > x ]]
[[ post (r) : r > y ]]

{
[[ assert : x > 0 ]];
return x;

}

When trailing return types, requires clauses, or virtual specifiers are present the changes with this
alternate grammar become more apparent. Function bodies, such as {}, =default, and =delete, still
come after the CCAs, as does the very similar syntax of a pure specifier.
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Attribute-Like Syntax Post-Declaration

struct S1 {
auto f() const & noexcept

[[ pre : true ]] -> int;
virtual void g()

[[ pre : true ]] final = 0;
template <typename T>
void h() [[ pre : true ]]

requires true;
void j() [[ pre : true ]]

= delete;
void k() [[ pre : true ]]

{}
];

struct S1 {
auto f() const & noexcept -> int

[[ pre : true ]];
virtual void g() final

[[ pre : true ]] = 0;
template <typename T>
void h() requires true

[[ pre : true ]];
void j() [[ pre : true ]]

= delete;
void k() [[ pre : true ]]

{}
];

When a function body is provided, either as a compound statement, using =default, or using
=delete, that will still come after the CCAs on the function:

Attribute-Like Syntax Post-Declaration

struct S2 {
auto operator=(const S2&)

[[ pre : true ]] -> S2& = default;
auto f() [[ pre : true ]] -> int

{ return -1; }
};

struct S2 {
auto operator=(const S2&) -> S2&

[[ pre : true ]] = default;
auto f() -> int [[ pre : true ]]

{ return -1; }
};

5.3 Assertions as Expressions

The assert() macro in <cassert> provides one feature that C++20 attribute-like CCAs did not,
which is that it may be used as an expression (whose type is void) and not only as a single statement.

Allowing the option to use attribute-like assertion CCAs as expressions requires only a small change
in the grammar and wording to specify how such a construct behaves within an expression — i.e.,
as one with a void type.

To make this grammar change, the assertion-specifier grammar term would be added to that
of unary-expression instead of adding the assertion-statement grammar term and the associated
modification to the statement grammar production.
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unary-expression:
postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
await-expression
sizeof unary-expression
sizeof ( type-id )
sizeof ... ( identifier )
alignof ( type-id )
noexcept-expression
new-expression
delete-expression
assertion-specifier

6 Evolution
Both the attribute-like syntax and the alternative syntax proposals mentioned above provide two
major mechanisms via which evolution may occur.

1. Additional contract kinds can be added that are clearly also part of the Contracts facility by
simply using a different identifier while maintaining the attribute-like structure of the existing
CCAs.

2. Between the introducing identifier (pre, post, assert, or others that might be added) and the
colon (:) lies significant flexibility for introducing additional features that can be consistently
used with any of the existing kinds of CCAs. Throughout this section, we will refer to this as
the CCA-metadata sequence, which the basic syntax uses only as a location for the optional
name for a return value in postconditions.

Among the various evolutionary paths for the syntax that are considered in Section 7, each element
of the CCA-metadata sequence takes one of the following easily distinguishable forms.

• A single identifier — When this single identifier is the last element of the sequence on a
postcondition and when the identifier does not qualify as any of the other available types (i.e.,
when name lookup to see if it is a valid label fails), this identifier is a name for the return
type:

[[ assert audit : true ]];

• An identifier followed by a template parameter list (i.e., a sequence of types and values
surrounded by <>s) or a function parameter list (i.e., a sequence of expressions surrounded by
()s) — Some identifiers might be reserved for particular constructs (such as requires), and
others might be used to identify user-defined or built-in contract labels:

[[ assert checked<std::is_random_access_iterator<ITER>> :
std::distance(start,end) > 3 ]];

• A sequence of (comma-separated) init-captures, i.e. an identifier followed by an initializer,
inside []s would represent an init-capture list:
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void swap(int& lhs, int& rhs)
[[ post [ orig_lhs = lhs, orig_rhs = rhs ] :

lhs == orig_rhs && rhs == orig_lhs ]];

This feature would also be compatible with naming the return value:
T increment(T&& input)

[[ post [ orig_input = input ]
r : r == (orig_input + 1) ]];

• A sequence of (comma-separated) identifiers would be used as names for structured bindings
initialized with the return value. Naturally this functionality would be mutually exclusive with
naming the return value, but not with other features:

std::tuple<int,int,int> combine(const int a, const int b, const int c)
[[ post [ra, rb, rc] : a == ra && b == rb && c == rc ]];

If the visual ambiguity with this declaring structured bindings for return values and an
init-capture list becomes concerning, parenthesis around this list are allowed or could even be
required to avoid any confusion:

std::tuple<int,int,int> combine(const int a, const int b, const int c)
[[ post ([ra, rb, rc]) : a == ra && b == rb && c == rc ]];

Note that none of the discussions in Section 7 are complete proposals, and they indicate only how
possible future proposals might fit into this proposed syntax. This syntax, overall, also allows for
other possible extensions within the bounds of the opening [[ and closing ]], none of which are
meant to be precluded by this proposal.

7 Future Evolution Requirements Discussion
The SG21 contracts syntax requirements paper, [P2885R3], also included requirements related to
various potential future proposals that have been hinted at or considered. While none of these
enhancements are going to be part of the initial SG21 Contracts proposal, it is imperative that
the choice of syntax must not close the door completely on features that might be essential to the
scalable and robust use of the Contracts facility in the future.

• [future.prim]30 — Contracts metadata should be capable of potentially altering the funda-
mental meaning of the predicate of a CCA. For this primary reason, Contracts metadata
must precede that predicate; otherwise, compilers will need to either perform some form of
look-ahead parsing to search for such metadata, or labels that alter the meaning will not be
an option.

In particular, we can envision wanting contract labels that a compiler understands and that
would specify aspects of a predicate, such as

– the predicate must be pure (and reference pure functions only)
30See [P2885R3], Section 7.10, “Primary vs. secondary information” [future.prim].
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– the predicate must be a conveyor expression and invoke only conveyor functions31

– the predicate must use only the public API of the enclosing class

There might, however, be mechanisms to apply additional meta-information to CCAs within a
scope, completely outside each individual CCA. Constructs enabling the application of labels
to all CCAs within a scope or on a type might be provided to reduce the cognitive load of
understanding the CCAs themselves

In addition, we should expect that most projects will select a particular set of labels to apply
uniformly with common code formatting to all CCAs across the project, while the predicates
that make up each individual CCA might vary from tiny to quite large. Keeping the uniform
part of the CCAs together at the start of the CCA makes searching for them (particularly
with tools such as grep) and identifying them (particular with tools such as human eyeballs)
easier.

Put together, we can see that optional metainformation can be kept small and easily identified,
occupying only the space between the kind and the colon (:), leaving minimal chance of
burying the predicate in syntactic noise in most common usages.

• [future.struct]32 — Naming structured bindings to attach to a return value can be expressed
intuitively by providing the list of names in enclosing []s, optionally parenthesized, as part of
the CCA-metadata sequence instead of a single name for the return value:

std::pair<int,int> minMax(int x, int y)
[[ post [min,max] : min == std::min(x,y) && max == std::max(x,y) ]];
[[ post ([min,max]) : min == std::min(x,y) && max == std::max(x,y) ]];

Just as when a name is used for the return value, these names would be implicitly const&
structured bindings initialized to reference the actual returned object. This naming of the
return with a structured binding should be mutually exclusive with assigning an identifier to
the return value as a whole and must immediately precede the colon (:).

Note that this syntax is not incompatible with captures, though the two syntaxes are very
similar, due to the assignment operators in an init-capture list which allow for disambigua-
tion:

template <typename T>
std::pair<T,T> swapMembers(std::pair<T,T> &&input)

[[ post [ orig_first = input.first, orig_second = input.second ]
[first,second] : first == orig_second && second == orig_first ]];

Surrounding structured binding names with ()s also allows for this form of disambiguation,
and those parenthesis could be made non-optional.

• [future.reuse]33 — Several methods are available for reusing expressions in different contexts
in C++ that are not contract specific.

31See [P2680R1].
32See [P2885R3], Section 7.3, “Structured binding return value” [future.struct].
33See [P2885R3], Section 7.4, “Contract reuse” [future.reuse].
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– Macros are one possibility and do not require answering questions about doing name
lookup on the same expression in different contexts; the meaning is always understandable
once one understands how macro expansion occurs.

– This potential use of macros could be better served should C++ adopt a form of hygienic
macro such as is available in many other languages.

– A new kind of CCA could be added, if strongly desired, that may declare a set of
preconditions and postconditions that could then be named at a later point for reuse:

struct S {
int d_x;

[[ function_contracts(xfamily) :
[[ pre : x > 0 ]]
[[ post r : r > x ]]
[[ post : d_x == x ]] ]]

int x1(int x) [[ function_contracts(xfamily) ]] { d_x = x; return x; }
int x2(int x) [[ function_contracts(xfamily) ]] { d_x = x; return x*x; }
int x3(int x) [[ function_contracts(xfamily) ]] { d_x = x; return x*x*x; }

};

This form of reusing the same CCAs (i.e., the predicates of the various CCAs within the
defining function_contracts attribute) would, however, be quite novel due to needing to
store the expressions as, essentially, an unparsed sequence of tokens until each individual
use on a function. Without storing the CCAs as such token soup, reuse would become
quite limited as a CCA would be unable to refer to function parameters or know the
return type when attempting to reuse such batches of conditions.

• [future.params]34 and [future.captures]35 — Both storing the initial values of function
parameters as a copy and capturing other values upon function invocation can be accomplished
by adding support for a list of init-captures inside the CCA-metadata sequence:

void swap(int& x, int& y)
[[ post [ old_x = x, old_y = y ] : x == old_y && y == old_x ]];

template <class Rep, class Period>
void sleep(const std::chrono::duration<Rep,Period>& rel_time)

[[ post [ start_time = std::steady_clock::now() ]
: std::steady_clock::now() >= start_time + rel_time ]];

Note that we do not suggest supporting by-value capture by just naming the value to capture
because that would encourage hiding the name of the function parameter with a captured
copy. In addition, by not allowing by-value captures in this way, the syntax for destructuring
a return value and the syntax for an init-capture list are distinguishable, thereby allowing
them to be used together with no ambiguity.

Making such copies with the same name is, of course, still supported:
34See [P2885R3], Section 7.1, “Non-const non-reference parameters” [future.params].
35See [P2885R3], Section 7.2, “Explicit captures” [future.captures].
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double clamp(double value, double low, double hi)
[[ pre : low <= hi ]]
[[ post [low=low,hi=hi] r : r >= low && r <= hi ]];

Note that use of a function parameter within the capture list does not force that parameter to
be const since this use occurs during precondition evaluation before the function might be
changing the value in its implementation. Similarly, the names declared by the capture list
hide function parameter names if they match (although giving these captures distinct names,
like orig_low and orig_hi, might be stylistically preferable).

• [future.meta.param]36, [future.meta.user]37, and [future.meta.keyword]38 — Contract la-
bels such as default, audit, or new can all be included unadorned as part of a CCA-metadata
sequence:

int* binary_search(int *begin, int *end, int val)
[[ pre audit : std::is_sorted(begin,end) ]];

The available identifiers for labels could be specified in any number of ways, from being built-in
to the language or specified using some other form of declaration that makes these names
available for the name lookup done when evaluating a CCA-metadata sequence.

In a postcondition, a trailing identifier in the CCA-metadata sequence could potentially be
a label or a name for the return value. When an ambiguity arises because resolution on the
label name succeeded (i.e., the identifier is a valid label name), the label interpretation should
be chosen.39

The designers of user-defined or Standard-Library-defined labels might also want to parameter-
ize their labels with additional arguments, which can be done with either a template-argument
list or a parameter list:

void f()
[[ pre mylib::newinversion(5) : true ]]
[[ pre mylib::checked<true> : true ]];

Depending on the mechanism chosen for introducing labels, either (or even both) of these
syntaxes may be appropriate.

Due to labels existing within the CCA-metadata sequence, which is a wholly new context,
even keywords (again, as mentioned in the [future.meta.keyword] requirement) should be
available for use as labels:

void g()
[[ pre default new : true ]];

36See [P2885R3], Section 7.6, “Parametrised meta-annotations” [future.meta.param].
37See [P2885R3], Section 7.7, “User-defined meta-annotations” [future.meta.user].
38See [P2885R3], Section 7.8, “Meta-annotations re-using existing keywords” [future.meta.keyword].
39This disambiguation rule does mean that new labels provided by the Standard Library would potentially break

existing code, but the fix for such users would be contained to the expression using the introduced return value name.
Any such conflict is also easily fixed by choosing a different name for the return value or enclosing the return value
name in ()s.
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Multiple labels, separated by white space, can be used on a CCA. The mechanism to declare
user-defined labels, however, might provide a facility to specify that certain labels are mutually
exclusive.

Labels with no namespace should be reserved for use by the Standard Library, and user-defined
labels should require a namespace. Hence, the labels audit, default, and new in an earlier
example would be defined by the Standard Library, and the labels prefixed with mylib:: would
be provided by a library, presumable named mylib.

The reservation of non-namespaced labels to the Standard Library also allows other constructs
that start with different identifiers to be put in the CCA-metadata sequence without concern
for conflicting with user-defined labels. Any unnamespaced element of the CCA-metadata
sequence must be either a Standard Library label or another construct (such as a requires
clause) described by the Standard.

Another direction in which this syntax can be extended is to provide a location for an arbitrary
expression, to be evaluated at compile time, that produces a constexpr object whose type and
value might be used to control properties of a CCA’s evaluation. This functionality would be
in lieu of allowing a sequence of user-defined labels that have a new name-lookup rule and
distinct syntax.

void h()
[[ pre<std::contracts::audit | std::contracts::review> : true ]];

Here we can see that this option could be used by the Standard to provide static constants
that can be combined with overloaded operators to produce a single object that controls the
behavior of a CCA. This approach would preclude the use of keywords for labels, conflicting
with the desires expressed in the [future.meta.keyword] requirement. Such controls, however,
should likely not be used to do anything that impacts the parsing and interpretation of a
CCA’s predicate, and thus both syntactic locations might be useful. Expressions like this
might also benefit from choosing a Standard Library namespace, such as std::contracts, that
is implicitly searched when parsing the expression so that the Standard can provide simple
names for commonly recognized use cases. A form of using namespace declaration that applies
to CCA control expressions such as this, which the Standard Library <contracts> header
could then take advantage of, would be an even more general solution with this purpose.

Finally, since the meat of the CCA is its predicate, perhaps labels should be placed in a
secondary position that comes after the predicate to thus minimize the amount of syntactic
noise that must be visually parsed prior to getting to the predicate. For that purpose, labels
could easily be added after the predicate in a number of ways with varying delimiters:

void a1()
[[ pre : true : audit ]];

void a2()
[[ pre : true ; audit ]];

void a3()
[[ pre : true ]]<audit>;

Using a second colon (:) would possibly conflict with the syntax for statement labels, but those
are not viable in an expression such as the predicate. Using a semicolon (;) would similarly
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cause difficulties if some of the terser proposals for expression statements were adopted. Placing
metadata outside the closing brackets, ]], would require significant consideration related to
where the CCA might be allowable in the grammar.

• [future.meta.noignore]40 — None of the alternatives proposed for this syntax place user-
defined labels or other meta-annotations within nested attributes or attributes that might be
positioned to appertain to a CCA. This fundamental decision leaves open the full freedom to
define behavior for such features which would innately conflict with the current consensus of
what an attribute is allowed to do (see [P2552R3]).

• [future.invar]41 — Class invariants are, fundamentally, a different kind of CCA that would
be specified within a class and then applied as preconditions and postconditions to a subset of
the functions of that class (and possibly elsewhere).

The syntax for specifying such invariants is quite natural:
class T {

int d_x, d_y;

[[ invariant : d_x < d_y ]];
};

Invariants are likely to need a fair bit of bespoke CCA-metadata to control to what functions
each individual invariant should be applied. In particular, some invariants should apply to
all functions, and others might apply to only public functions. From experience, attempting
to apply most invariants to const member functions is folly (and often leads to circular
invocations as invariants get written in terms of public accessors), so by default invariants
might not apply to such functions, but metadata to override that default would seem advisable
when invariants that relate to mutable members should be checked.

Syntax to check the invariants of a certain form of a particular object would also benefit
friend functions in opting in to verification that they have not inadvertently broken an object.
Checks could be evaluated with another kind of CCA that, similar to an assertion, can be
used within a function body:

void f(T& lhs, T& rhs)
{

// ...
[[ check_invariants : lhs ]];
[[ check_invariants : rhs ]];

}

This CCA’s predicate is not a conditional expression, but an arbitrary expression whose return
value is inspected for any invariants. In a nongeneric context, making this construct ill-formed
if the return value has no actual invariants could be considered.

Another option to evaluate checks would be to provide a core-language–provided label that
identifies any precondition, postcondition, or assertion CCA as being a check of invariants,

40See [P2885R3], Section 7.9, “Non-ignorable meta-annotations” [future.meta.noignore].
41See [P2885R3], Section 7.11, “Invariants” [future.invar].

25



in which case the contract expression would be used to denote the object whose invariants
should be checked:

struct S {
friend void foo(const S&, const S&);
// ...

};
void foo(const S& lhs, const S& rhs)

[[ pre invariants_of : lhs ]]
[[ pre invariants_of : rhs ]]
[[ post invariants_of : lhs ]]
[[ post invariants_of : rhs ]]

{
// .. Do stuff.

}

• [future.interface]42 — Procedural function interfaces, as introduced in [P0465R0], offer a
powerful way to express many aspects of how a function expects to interact with control flows
that come in and out of it. Unlike the simpler pre and post, these interfaces provide a robust
way to specify complex, related conditions as well as checks related to exceptions.

To provide this functionality, specifying interfaces could be done with a new kind of CCA,
interface:

int f( int low, int hi)
[[ interface :

int old_low = low;
int old_hi = hi;
[[ assert : old_low < org_hi ]];
auto rval = implementation;
[[ assert rval >= old_low ]];
[[ assert rval <= old_hi ]];

]]

Obviously, semantic rules would be attached to this syntax.

– When evaluated, the identifier with special meaning, implementation, will invoke the
associated function with the original function arguments. All control flows must evaluate
implementation exactly once. If it is ambiguous whether implementation will be invoked
the correct number of times, such as when implementation appears on only one branch
of an if statement, or in a for loop, then the program is ill-formed.

– The implementation expression produces a const lvalue reference to the return value of
the function.

– Any code that potentially follows implementation must follow the rules of postconditions;
in particular, only reference or const function parameters may be named.

– An exception that escapes the evaluation of implementation will be rethrown automatically
if control flow reaches the end of the interface:

42See [P2885R3], Section 7.12, “Procedural interfaces” [future.interface].
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void f()
[[ interface :

try {
implementation;

} catch (...) {
}

]];

This rethrowing prevents an interface from hiding exceptions thrown by the function
when the interface is checked.

– Any exception that is thrown by the interface — other than the automatic rethrowing of
an exception emitted by implementation or the use of throw when an exception emitted
by the implementation is in flight — will be caught and will invoke the contract-violation
handler.

– Control flow returns to the original caller when it reaches a return statement after
invoking implementation or it reaches the end of the interface block. If the function does
not return void the return value of implementation is always returned to the caller. An
interface is not intended to alter what is actually returned by a function invocation;
therefore a return statement with an argument is always ill-formed in an interface.

As with all other CCA kinds, an interface would support labels and requires clauses in the
same location:

template <typename T>
void g(T&& t)

// audit-level check of strong exception-safety guarantee
[[ interface audit requires(is_copyable<T>) :

T old = t;
try {

implementation;
} catch (...) {

[[ assert : old == t ]];
}

]];

• [future.requires]43 — Placing a requires clause within the CCA-metadata sequence is
relatively straightforward, although a normal requires clause is challenging to place when
other functions or expressions might follow it. To alleviate that difficulty, we could introduce
a new grammar form for a requires clause that has parentheses placed around the constraint:

contract-requires-clause :
requires ( constraint-logical-or-expression )

These requires expressions could then be placed anywhere within the CCA-metadata se-
quence:

template <typename Iter>
void f(Iter lhs, Iter rhs)

[[ pre requires(random_access_iterator<Iter>) : std::distance(lhs,rhs) < 17 ]];

43See [P2885R3], Section 7.13, “requires clauses” [future.requires].
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When a requires clause is not satisfied, the rest of the CCA will be discarded, including any
following capture lists and the CCA predicate.

This form of type-based conditional control over which preconditions and postconditions (or
even assertions) are expressed can greatly aid the writing of thorough CCAs in generic code.
Note that selective compilation such as this is hard to do within a postcondition expression
itself, especially when features outside the expression, such as a postcondition’s ability to
capture values, is dependent on properties of the type:

template<typename T>
class myVector {

// ...
void push_back(T&& value)

[[ post requires(std::is_copy_constructible_v<T>) [old_value = value]
: back() == old_value ]];

// ...
}

Here we see that we can check that the correct value is placed at the end of our vector by the
push_back function only when we can capture a copy of that value prior to beginning to invoke
push_back. When the element type is not copyable, this form of the check is clearly nonviable.
Without this feature, separate functions could be defined with the distinct postconditions and
identical implementations:

template<typename T>
class myVector {

// ...
void push_back(T&& value) requires (std::is_copy_constructible_v<T>)

[[ post [old_value = value]
: back() == old_value ]]

{ /* implementation */ }
void push_back(T&& value) requires (!std::is_copy_constructible_v<T>)

{ /* implementation */ }
// ...

}

Taking duplication of this sort to the extreme, however, leads to an eventual 2n varieties of a
function, all of which likely have exactly the same implementation, a problem we might hope
to avoid.

• [future.abbrev]44 — An abbreviated syntax for allowing a single-parameter function that
returns bool to be used as a shorthand for preconditions on a single function parameter could
easily be considered with no support for features beyond being an unadorned precondition
check:

bool positive(double d);

double sqrt0(double x) [[ pre : positive(x) ]];
double sqrt1(double x : positive);

44See [P2885R3], Section 7.14, “Abbreviated syntax on parameter declarations” [future.abbrev].
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A less-abbreviated form that supports all features could also be considered:
double sqrt2(double x [[ pre : positive ]])

Here the pre could even be optional:
double sqrt3(double x [[: positive ]]);

The alternative syntaxes proposed that would not be hard to distinguish from an attribute
could even be used without the seemingly stray colon (:), inferring the kind of the CCA based
on the location and not the presence of the pre token:

double sqrt3(double x [{ positive }] );
double sqrt3(double x @( positive) );

The primary difference between an embedded and abbreviated precondition check, such as this
and one declared at the end of the function declaration, is that, in an abbreviated precondition
check, the expression would be implicitly treated as a function of one parameter and would
be passed the function parameter. This transformation would be similar to that applied to
Concepts in many situations, but specifics would need to be explored to apply this same form
of transformation to functions instead.

• [future.general]45 —The CCA-metadata sequence is well structured to add in other metadata
or features that might be desired for CCAs in general. All of the kinds specified in this proposal
have identical capabilities to include such a sequence of metadata.

The attribute syntax in general for new kinds is also relatively easy to include in arbitrary
locations in the language that have not already been foreseen; the [[ ... ]] that surrounds a
CCA is ambiguous only with other attributes, and the kind makes disambiguating a CCA
from another attribute simpler for compilers and humans. (We hope that the Standard will
not introduce an attribute that uses the same token as a CCA kind.)

The one major limitation is that future syntax choices must avoid features where the CCA-
metadata sequence begins with an opening parenthesis (. In such cases, assertions would
contain a sequence of tokens that would be expanded into something wholely incompatible by
the assert() macro defined in <cassert>. Note, however, that this limitation has not prevented
any of the other use cases above from having viable evolutionary routes which avoid this
problem.

• [app.fwddecl]46 — Placing only a subset of information that makes up a precondition or
postcondition CCA on a declaration allows presenting the most relevant information to a user
while retaining specific implementation details for a later declaration, perhaps one that is even
in an implementation file and not directly visible to clients.

A token can be chosen to place on on precondition and postcondition CCAs to mark them as
CCA declarations:

void f() [[ pre* : x ]];

45See [P2885R3], Section 7.15, “General extensibility” [future.general].
46See [P2885R3], Appendix A.2, “Forward-declaration of Contract labels” [app.fwddecl].
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If the definition of f is found with a set of CCAs that does not match the list attached to
this declaration of f, (or has no CCAs) the program will be ill-formed. On the other hand,
the definition could easily add more labels or even additional CCAs while keeping that excess
information from cluttering the function’s initial declaration:

void f()
[[ pre audit, mylib::some_complex_contract_label<17> : x ]]
[[ post : y ]];
// OK, redeclaration has CCAs definitions.

• [app.functype]47 — The attribute-like syntax, by design, would easily allow attaching pre-
condition and postcondition CCAs to function types. It is already a feature of attributes in
general that this location would allow for unambiguously placing CCAs so it is always clear
which function they appertain to.

Choosing the trailing CCA syntax presented in Section 5.2 would largely prevent allowing
CCAs on function types as there would be a host of ambiguities, such as when a function with
a trailing return type returns a pointer to a function.

auto f() -> int(*)() [[ pre : x ]];

With the default attribute-like syntax, the above precondition is attached to the returned
function pointer type. With the trailing syntax, the precondition is attached to f.

8 Conclusion
The C++20 Contracts facility was the product of enormous effort over many years, multiple
organizations, and a variety of noteworthy individual contributors, culminating in a feature with a
syntax that had sound reasoning and concrete benefits.

As the course laid out in [P2695R0] completes, the attribute-like syntax presented here is imminently
suitable.

• CCAs with this syntax are clear, distinct, and recognizable as CCAs on function declarations.

• Ample flexibility exists in the syntax style to adopt new features applicable to all CCAs, such
as labels or requires clauses.

• The attribute-like syntax is general enough to apply this syntactic style to additional contract
kinds, such as interfaces and invariants, conveying commonality with the Contracts MVP
kinds via a shared basic syntactic structure.

• Any other future extensions in this syntax, placed within the easily distinguished delimiters,
is insulated from the rest of the grammar in its specification . E.g., such extensions may make
novel use of keywords, or have lists of values without the need for commas to separate them.

• Implementation experience with this syntax shows that it is both viable and readable.

Two binary decisions have been presented in this paper
47See [P2885R3], Appendix A.3, “Contracts on function types” [app.functype].
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We conclude with the concrete syntax proposals made by this paper for SG21 to consider. Given two
binary decisions for SG21 that were presented in Section 5.2 and Section 5.3 we have four proposals
to consider:

Proposal 1.A: Attribute-like Syntax

Adopt the Attribute-like syntax for Contracts proposed described in Section 1 and Section 3
of this paper.

Proposal 1.B: Post-Declaration Attribute-like Syntax

Adopt the Attribute-like syntax for Contracts proposed described in Section 1 and Section 3
of this paper, with the alternate grammar location for function CCAs described in Section 5.2.

Proposal 1.C: Attribute-like Syntax with Assertion Expressions

Adopt the Attribute-like syntax for Contracts proposed described in Section 1 and Section 3
of this paper, with the assertions allowed as expressions as described in Section 5.3.

Proposal 1.D: Post-Declaration Attribute-like Syntax with Assertion Expressions

Adopt the Attribute-like syntax for Contracts proposed described in Section 1 and Section 3
of this paper, with the alternate grammar location for function CCAs described in Section 5.2
and with the assertions allowed as expressions as described in Section 5.3.
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