
Slides for P2681R0:
Narrow Contracts and noexcept

Are Inherently Incompatible

Document #: P2949R0
Date:
Project:
Audience:
Reply-to:

2023-07-14
Programming Language
EWG and LEWG
John Lakos
<jlakos@bloomberg.net>

Note: The following slides were presented by John Lakos in EWG on Friday,
June 16, 2023, in Varna, Bulgaria, and reflect the essential ideas in P2861R0.

ABSTRACT
A contract is a plain-language specification of whatever essential behavior a
given function promises to deliver when invoked in contract. A function that
has at least one syntactically valid combination of state and input for which the
behavior is undefined has a precondition and is therefore said to have a narrow
contract. The Lakos Rule effectively prohibits placing the noexcept specifier
(introduced in C++11) on any function that would otherwise have a narrow
contract.

This talk begins with a reprise of contracts, essential behavior, and
preconditions. It then contrasts two classic software design principles, Design
by Contract and Liskov Substitutability, and uses the latter to explain how
both backward compatibility and wide implementations benefit from
scrupulously adhering to The Lakos Rule. We conclude that best practice is to
follow this rule, especially in the specification of the C++ Standard Library, and
we close with a welcome solution that satisfies essentially all needs and wants
of the eclectic C++ multiverse.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2861r0.pdf

© 2023 Bloomberg Finance L.P. All rights reserved.

Narrow Contracts and
noexcept
Are Inherently
Incompatible

C++ Standards Committee
 Varna, Bulgaria, June 16, 2023
 John Lakos Senior Architect

Narrow Contracts and noexcept Are Inherently Incompatible

P2861R0: The Lakos Rule

Objective for this presentation:
1. Demonstrate convincingly that The Lakos Rule is

fundamentally sound software-engineering advice.
2. Observe that, apart from move operations, noexcept

is unneeded in the Standard-Library specification.
3. Recommend appropriate use of noexcept in

(1) the Standard Library, (2) conforming
implementations, and (3) third-party or user libraries.

Narrow Contracts and noexcept Are Inherently Incompatible

Contracts

Function Contract
 A bilateral agreement between a function’s

implementor and its (human) client
 Typically written in a plain (natural) language but not

necessarily entirely so
 Represents (either explicitly or implicitly) any

preconditions and clearly delineates all essential
behavior promised when called in contract

Narrow Contracts and noexcept Are Inherently Incompatible

Contracts

Function Contract (example):
int half(int x);
 // Return a value that is numerically half of the
 // the specified `x` value rounded toward zero.

double sqrt(double x);
 // Return a value whose representation is
 // numerically as close as possible to that of
 // the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

Function Contract (example):
int half(int x);
 // Return a value that is numerically half of the
 // the specified `x` value rounded toward zero.

double sqrt(double x);
 // Return a value whose representation is
 // numerically as close as possible to that of
 // the positive square root of the specified `x`.

Function Contract (example):
int half(int x);
 // Return a value that is numerically half of the
 // the specified `x` value rounded toward zero.

double sqrt(double x);

Function Contract (example):
int half(int x);
 // Return a value that is numerically half the
 // specified `x` value rounded toward zero.

Function Contract (example):
int half(int x);

Function Contract (example):

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Essential Behavior
 Comply with expressed post conditions.

─ The function always returns with a result.
o The result is half of its input.
o The result is the positive square root of its input.

 Honor any other promised behavior.
─ The function runs in constant (O[1]) time.
─ The function is thread safe.

Implementation-Defined Behavior
 Behavior that is not specified, implied, or strongly

suggested as being essential within the valid domain.
struct Point { int x; int y; }

void mySort(Point *start, int length);
 // Sort the specified contiguous range of `Point`
 // objects in nondecreasing order of their
 // respective `x`-coordinate values, beginning at
 // the specified `start` address and extending for
 // (at least) the specified `length` objects.

Implementation-Defined Behavior
 Behavior that is not specified, implied, or strongly

suggested as being essential within the valid domain.
struct Point { int x; int y; }

void mySort(Point *start, int length);

Implementation-Defined Behavior
 Behavior that is not specified, implied, or strongly

suggested as being essential within the valid domain.
struct Point { int x; int y; }

Implementation-Defined Behavior
 Behavior that is not specified, implied, or strongly

suggested as being essential within the valid domain

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implementation-Defined Behavior

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

void mySort(Point *start, int length);
 // Sort the specified contiguous range of `Point`
 // objects in nondecreasing order of their
 // respective `x` coordinate values, beginning at
 // the specified `start` address and extending for
 // (at least) the specified `length` objects.

Is there any room for implementation-defined
behavior within the domain of this contract?

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implementation-Defined Behavior
void mySort(Point *start, int length);
 // Sort the specified contiguous range of `Point`
 // objects in nondecreasing order of their
 // respective `x` coordinate values, beginning at
 // the specified `start` address and extending for
 // (at least) the specified `length` objects.

1. a[]: { { 8, 3 }, { 9, 2 }, { 9, 1 } }

2. a[]: { { 8, 3 }, { 9, 1 }, { 9, 2 } }

Implementation-
Defined Behavior

 _static Point a[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } };

 _void f() { mySort(a, 3); } // after we call `f`

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implementation-Defined Behavior
int half(int x);
 // Return a value that is numerically half the
 // specified `x` value rounded toward zero

Is there any room for implementation-defined
behavior within the domain of this contract?
No

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implementation-Defined Behavior

No*
*https://stackoverflow.com/questions/22546534/accuracy-of-sqrt-of-integers

Is there any room for implementation-defined
behavior within the domain of this contract?

double sqrt(double x);
 // Return a value whose representation is
 // numerically as close as possible to that of
 // the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implementation-Defined Behavior

Yes*
*https://stackoverflow.com/questions/22546534/accuracy-of-sqrt-of-integers

Is there any room for implementation-defined
behavior within the domain of this contract?

float sqrt(long double x);
 // Return a value whose representation is
 // numerically as close as possible to that of
 // the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

Let z2 be the largest value for which z can be represented exactly as a float.
We can represent 9z2 exactly as a long double, but only 2z or 4z as a float.

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implementation-Defined Behavior
float sqrt(long double x);
 // Return a value whose representation is
 // numerically as close as possible to that of
 // the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

OBSERVATION
• The declaration of the function informs the contract.

(More on this later.) .

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Preconditions
 What must be true of

─ any inputs
─ all relevant object (or program) state

 Otherwise, the behavior of invoking that
function is undefined.
─ Undefined behavior is behavior for which there

are no requirements.

no
no
no
yes
yes
no

Preconditions w.r.t. std::vector<T>:
 vector()
 std::size_t capacity() const;
 void push_back(const T& v);
 const T& front() const;
 T& operator[](std::size_t i);
 T& at(std::size_t i);

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Preconditions w.r.t. std::vector<T>:
 vector() no
 std::size_t capacity() const; no
 void push_back(const T& v>; no
 const T& front() const; yes
 T& operator[](std::size_t i); yes
 T& at(std::size_t i); no

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Preconditions w.r.t. std::vector<T>:
 vector() no
 std::size_t capacity() const; no
 void push_back(const T& v>; no
 const T& front() const; yes
 T& operator[](std::size_t i); yes
 T& at(std::size_t i); no

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Explicit Preconditions

No.

int half(int x);
 // Return a value that is numerically half the
 // specified `x` value rounded toward zero.

Does this function explicitly call out any
preconditions?

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Explicit Preconditions

Yes.

Does this function explicitly call out any
preconditions?

double sqrt(double x);
 // Return a value whose representation is
 // numerically as close as possible to that of
 // the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

Importantly,
if we were to pass in -1.0, sqrt

doesn’t need to return i (nor can it).

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implicit Preconditions

Does this function have any implicit preconditions?
─Yes. (But perhaps not what you think.)

What if we pass in a NaN ?
─Nope, that’s UB.

double sqrt(double x);
 // Return a value whose representation is
 // numerically as close as possible to that of
 // the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

assert(0 <= NaN) // Fail!

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implicit Preconditions

What if we pass in an indeterminate value?
Does this function have any implicit preconditions?
Yes.
int f() { int x; return half(x); }

int half(int x);
 // Return a value that is numerically half the
 // specified `x` value rounded toward zero.

Undefined behavior!!

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implicit Preconditions

What if we pass in an indeterminate value?
Does this function have any implicit preconditions?
Yes.
int f() { int x; return half(x); }

int half(int x);
 // Return a value that is numerically half the
 // specified `x` value rounded toward zero. The
 // behavior is undefined if `x` has indeterminate value.

Reall
y?

Implicit Preconditions

 int read(int& x) { return x; } // #4 Must be initialized
 int read(const int& x) { return x; } // #5 Must be initialized
 int read(int&& x) { return x; } // #6 Must be initialized
 int read(const int&& x) { return x; } // #7 Must be initialized ??

 .

 int read(int* x) { return x; } // #8 Must point to an …
 int read(const int* x) { return x; } // #9 … initialized object

.

 int read(int x) { return x; } // #3 Must be initialized

void load(int& x) { x = 0; } // #0 None (UB if invalid)
void load(int&& x) { x = 0; } // #1 None (bad idea)

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

.
void load(int* x) { *x = 0; } // #2 Must point to an object

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Implicit Preconditions

OBSERVATION
Not all preconditions need

to be stated explicitly.
Arguments that are to be
•written are required to be in a constructed state.
• read are required to be in an initialized state.

Narrow Contracts and noexcept Are Inherently Incompatible

Declaration-Implied Essential Behavior

Does the declaration affect the contract?
 The function declaration provides the syntactic framework

to which the plain-language contract refers:
double sqrt(double x);
 // This function, `sqrt`, takes a single argument, of
 // type `double`, and returns a value, of type `double,
 // that is the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

 Each parameter or return type is apparent.
 We may choose not to restate what is already codified.

double sqrt(double x);
 // This function (`sqrt`) takes a single argument (of
 // type `double`) and returns a value (of type `double)
 // that is the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Declaration-Implied Essential Behavior

Does the declaration affect the contract?
 The function declaration provides the syntactic

framework to which the plain-language contract refers:
double sqrt(double x);
 // This function, `sqrt`, takes a single argument, of
 // type `double`, and returns a value, of type `double,
 // that is the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

 Any parameter or return types are apparent.
 We may choose not to restate what is already codified.

double sqrt(double x);
 // This function (`sqrt`) takes a single argument (of
 // type `double`) and returns a value (of type `double)
 // that is the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Declaration-Implied Essential Behavior

Does the declaration affect the contract?
 The function declaration provides the syntactic

framework to which the plain-language contract refers:
double sqrt(double x);
 // Return the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

 Any parameter or return types are apparent.
 We may choose not to restate what is already codified.

double sqrt(double x);
 // Return the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Declaration-Implied Essential Behavior

Does the declaration affect the contract?
 The function declaration provides the syntactic

framework to which the plain-language contract refers:
double sqrt(double x);
 // Return the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

 Any parameter or return types are apparent.
 We may choose not to restate what is already codified.

double sqrt(double x);
 // Return the positive square root of the specified `x`.
 // The behavior is undefined unless `0 <= x`.

/// Return the positive square root of the specified `x`.
/// The behavior is undefined unless `0 <= x`.
double sqrt(double x); Suboptimal for

development, but
more tool friendly

Three-slashes comments define the
contiguous syntactic element(s) below.

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Design by Contract (DbC) – Bertrand Meyer:
 An object of subtype D (of its supertype B) can be used in any

context in which B could have been used and more.
 Inheritance relationships must follow certain rules:

─ Derived preconditions must be a superset of those for the base.
─ Derived postconditions must be a subset of those for the base.
─ Importantly, postconditions result from the union of all input.

 The behavior must be compatible but not necessarily identical.
 His design principle applies to virtual functions only.

But called via the
base-class API?!

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Design by Contract (DbC) – Bertrand Meyer:
 An object of subtype D (of its supertype B) can be used in any

context in which B could have been used and more.
 Inheritance relationships must follow certain rules:

─ Derived preconditions must be a superset of those for the base.
─ Derived postconditions must be a subset of those for the base.
─ Importantly, postconditions result from the union of all input.

 The behavior must be compatible but not necessarily identical.
 His design principle applies to virtual functions only.

the same as

Acts as a wide
implementation.

We’ll talk more about
this topic shortly.

Narrow Contracts and noexcept Are Inherently Incompatible

Design by Contract (DbC)

Shape

Circle Rectangle Polygon

virtual int numVertices() const = 0
[[post r: 0 <= r]];

int numVertices() const
[[post r: 0 == r]];

int numVertices() const
[[post r: 4 == r]];

int numVertices() const
[[post r: 0 <= r]];

So how is DbC related to
the Liskov Substitution
Principle (LSP)?

Narrow Contracts and noexcept Are Inherently Incompatible

Design by Contract (DbC)

What is DbC good for?
 Heuristics for designing a sound hierarchy of

polymorphic objects
─ Virtual functions support variation in behavior.

 Should a C++ Contracts facility enforce it?
─ Of course not!
─ There are many valid reasons why one might

deviate from these guidelines in practice.
 We mention DbC only in contrast to our next topic.
* C++ Programming Style by Tom Cargill Paperback | Addison-Wesley Professional | Pub.
Date: 1992-07-10. ISBN: 0201563657 | ISBN-13: 9780201563658.

*
The Standard
Supports the
Multiverse!

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts

Liskov Substitutability (not what “LSP” connotes)
 An object of subtype D (of its supertype B) can be used in

any context in which B could have been used and more:
─ The behavior for D in the domain of B is (as-if) identical.
─ The behaviors in D are not limited to those in B.
─ Importantly, the behaviors in D are unconstrained outside

of the corresponding domain for B.

 Her design principle applies to non-virtual functions.
─ Concerns identical (not just similar) behavior in contract

Nonvirtual
Functions

 // Return a reference to the element at the specified `index`.
 // The behavior is undefined unless `index < this->size()`.

 // Return a reference to the element at the specified `index`
 // if `index < this->size()`; otherwise, throw `std::range_error`.

template <class T>
T& CheckedVec<T>::operator[](std::size_t index);

template <class T>
T& std::vector<T>::operator[](std::size_t index);

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability (not “LSP”)

std::vector

CheckedVec Structural
Inheritance

Nonvirtual
Functions

We can use CheckedVec to catch accidental contract violations.

Output: 2 1 0 4 3

i
t

 load(v);
 for (int i : v) { cout << v[i] << ' '; } cout << '\n';

 std::vector<int> v; // Soon to be: CheckedVec<int> v;

int main() // Version 1.0
try {

 return 0;
}
catch (std::exception& e) {
 std::cout << "Error: " << e.what() << '\n';
}

void sort(std::vector<int>& v); // Note: Use of index is NOT checked in `sort`.
void load(std::vector<int>& v); // Populate object with [2 1 0 4 3].

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability Use Case

 sort(v);

for (int i = 0; i <= v.size(); ++i) { cout << v[i] << ' ‘; } cout << '\n';

?

<

 0 1 2 3 4 8

i
t

 load(v);
 for (int i : v) { cout << v[i] << ' '; } cout << '\n';

 std::vector<int> v; // Soon to be: CheckedVec<int> v;

int main() // Version 1.0
try {

 return 0;
}
catch (std::exception& e) {
 std::cout << "Error: " << e.what() << '\n';
}

void sort(std::vector<int>& v); // Note: Use of index is NOT checked in `sort`.
void load(std::vector<int>& v); // Populate object with [2 1 0 4 3].

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability Use Case

 sort(v);

for (int i = 0; i <= v.size(); ++i) { cout << v[i] << ' ‘; } cout << '\n';

<

 0 1 2 3 4 8 0 1 2 3 4 Error: bad index

CheckedVec<int> v; // Was: std::vector<int> v;

?
Output: 2 1 0 4 3

With CheckedVec<int>
we safely detect the

contract violation
(no more UB).

With CheckedVec<int>
we safely detect the

contract violation
(no more UB).

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability (not “LSP”)

Why do we care about Liskov Substitutability ?!
 For the same reason we care about backward

compatibility across software versions.
 Our goal has always been for any correct C++

program written to date to continue to work,
with no observably different behavior, when
built against future C++ Standards.

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability (not “LSP”)

The actual Liskov-Substitution Principle:
 If, for all current programs*P written

(correctly) in terms of the current version V
of a library L, replacing V with V+1 of L
results in no change in observable behavior
for any P, then V+1 is substitutable for V.

*

*In theory, we mean any program that could be written (e.g., by Machiavelli).
 In practice, we mean one that might occur even accidently (e.g., by Murphy).

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and Versioning
Domain Range

void handler(int x); // version A3.0

void handler(int x); // version A1.0

void handler(int x); // version A2.0
narrow print

 terminate
 0 <= x throw

wide print
 terminate
 throw
 return

narrow print
 terminate
 1 <= x

 // Print the value of `x` to `stdout`. If `x`
 // is positive, call `std::terminate`;
 // otherwise, throw `std::logic_error`.
 // The behavior is undefined unless `0 <= x`.

 // Print the value of `x` to `stdout`. If `x`
 // is positive, call `std::terminate`; if `!x`,
 // throw `std::logic_error`; otherwise, return.

 // Print the value of `x` to `stdout`.
 // Call `std::terminate`.
 // The behavior is undefined unless `1 <= x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and Versioning
Domain Range

void handler(int x); // version A3.0

void handler(int x); // version A1.0

void handler(int x); // version A2.0
narrow print

 terminate
 0 <= x throw

wide print
 terminate
 throw
 return

narrow print
 terminate
 1 <= x

 // Print the value of `x` to `stdout`. If `x`
 // is positive, call `std::terminate`;
 // otherwise, throw `std::logic_error`.
 // The behavior is undefined unless `0 <= x`.

 // Print the value of `x` to `stdout`. If `x`
 // is positive, call `std::terminate`; if `!x`,
 // throw `std::logic_error`; otherwise, return.

 // Print the value of `x` to `stdout`.
 // Call `std::terminate`.
 // The behavior is undefined unless `1 <= x`.

int f(int x) // (since version A1.0)
 // if `x >= 10`, return 10;
 // otherwise, print `1` and terminate.
{
 if (x >= 10) return 10;
 handler(1);
}

int g(int x) // (since version A2.0)
 // if `x >= 20`, return 20;
 // otherwise, print `0` and throw.
{
 if (x >= 20) return 20;
 handler(0);
}

int h(int x) // (since version A3.0)
 // if `x >= 30`, return 30;
 // otherwise, print `-1` and return 0.
{
 if (x >= 30) return 30;
 handler(-1); return 0;
}

Stable accumulation of client usage (P)

wide print
 terminate
 throw
 return

 // Print the value of `x` to `stdout`. If `x`
 // is positive, call `std::terminate`; if `!x`,
 // throw `std::logic_error`; otherwise, return.

narrow print
 terminate
 0 <= x throw

 // Print the value of `x` to `stdout`. If `x`
 // is positive, call `std::terminate`;
 // otherwise, throw `std::logic_error`.
 // The behavior is undefined unless `0 <= x`.

narrow print
 terminate
 1 <= x

 // Print the value of `x` to `stdout`.
 // Call `std::terminate`.
 // The behavior is undefined unless `1 <= x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and Versioning

[[noreturn]] void handler(int x); // version B1.0

[[noreturn]] void handler(int x); // version B2.0

[[noreturn]] void handler(int x); // version B3.0

Domain Range

wide print
 terminate
 throw
 return

 // Print the value of `x` to `stdout`. If `x`
 // is positive call, `std::terminate`; if `!x`
 // throw `std::logic_error`; otherwise, return.

narrow print
 terminate
 0 <= x throw

 // Print the value of `x` to `stdout`. If `x`
 // is positive call `std::terminate`;
 // otherwise, throw `std::logic_error`.
 // The behavior is undefined unless `0 <= x`.

narrow print
 terminate
 1 <= x

 // Print the value of `x` to `stdout`.
 // Call `std::terminate`.
 // The behavior is undefined unless `1 <= x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and Versioning
Domain Range

void handler(int x); // version A1.0

void handler(int x); // version A2.0

void handler(int x); // version A3.0

int f(int x) // (since version A1.0)
 // if `x >= 10`, return 10;
 // otherwise, print `1` and terminate.
{
 if (x >= 10) return 10;

[[noreturn]] handler(1);
}

Stable accumulation of client usage (P)

Does not exist…
int g(int x) // (since version A2.0)
 // if `x >= 20`. return 20;
 // otherwise, print `0` and throw.
{
 if (x >= 20) return 20;

[[noreturn]] handler(0);
}

…but it probably should!
int h(int x) // (since version A3.0)
 // if `x >= 30`, return 30;
 // otherwise, print `-1` and return 0.
{
 if (x >= 30) return 30;
 handler(-1); return 0;
}

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and Versioning

Consider these two contracts:

Which is Liskov substitutable for the other?
That is, which one is usable in a (proper) superset
of situations for which the other one is ideal?

Domain Range
void handler(int x); // version A1.0

narrow print
 noreturn
 1 <= x

 // Print the value of `x` to `stdout`.
 // This function does not return.
 // The behavior is undefined unless `1 <= x`.

narrow print
 1 <= x noreturn
 // Print the value of `x` to `stdout`.
 // The behavior is undefined unless `1 <= x`.

[[noreturn]] void handler(int x); // version B1.0

slightly
better

codegen

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts (terminology)

Implementation Contracts
 Implied Contract

─ of an implementation
 Conforming Implementation

─ of a (public) interface/contract
 Wide Implementation

─ of a (public) interface/contract

Narrow Contracts and noexcept Are Inherently Incompatible

Function-Implementation Contracts

Implied Contract (of an implementation)

 The implied contract of a function is the envelope
of defined behavior that can be gleaned from its
declaration and implementation, including any
information contained in the public contracts of
any functions used in its implementation.

Narrow Contracts and noexcept Are Inherently Incompatible

Implied Contract (of an implementation)

Implementation:
int half(int a) {
 return a / 2;
}

int half(int a);
 // Return half the specified `value` rounded
 // toward zero.

Interface + implied contract:

Narrow Contracts and noexcept Are Inherently Incompatible

Implied Contract (of an implementation)

Implementation:
double sqrt(double value) {
 return std::sqrt(value);
}

double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is implementation defined
 // unless `value >= 0`. Note that this function
 // will return a `NaN`, if supported, when given a
 // negative `value`.

Interface + implied contract:

Narrow Contracts and noexcept Are Inherently Incompatible

Function-Implementation Contracts

Conforming Implementation (of an interface)

 If the implied contract of an implementation
(subtype) .c — with respect to the public contract
delineated by its interface (supertype) .h — satisfies
.h‘s contract in every context in which .h can be used
in contract (and perhaps more), then .c is a
conforming implementation of .h.

Narrow Contracts and noexcept Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {

 return (a + b)/2;
}

Implementation of above; is it conforming?

Narrow Contracts and noexcept Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {

 assert(a <= b);

 return a + (b – a)/2;
}

Implementation of above; is it conforming?

Narrow Contracts and noexcept Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {

 if (a > b) swap(a, b); // assert(a <= b)

 return a/2 + (b - a)/2;
}

Implementation of above; is it conforming?

Narrow Contracts and noexcept Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {

 if (a > b) std::swap(a, b); assert(a <= b);

 if (a >= 0) return a + (b - a) / 2;

 else if (b <= 0) return b + (a - b) / 2;

 else return (a + b)/ 2;
}

Implementation of above; is it conforming?

Narrow Contracts and noexcept Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {
 int r = a / 2 + b / 2;

int h = a % 2 + b % 2;
if (h/2) r += h/2;
else if (r > 0 && h < 0 || r < 0 && h > 0) r += h;

 return r;
}

Implementation of above; is it conforming?

Narrow Contracts and noexcept Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {

 return (static_cast<long long>(a) + b)/2;

 static_assert(sizeof(long long) > sizeof(int));
}

Implementation of above; is it conforming?

Narrow Contracts and noexcept Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {
 return std::midpoint(a, b);
}

Implementation of above; is it conforming?

Interface + Contract:
template <class T>
T std::midpoint::average(T a, T b);
 // Return half the sum of `a` and `b`. No overflow occurs. If `a` and `b`
 // have integer type and the sum is odd, the result is rounded toward `a`.

Narrow Contracts and b Are Inherently Incompatible

Conforming Implementation (of an interface)

Interface + Contract:
int average(int a, int b);
 // Return the midpoint between the specified
 // `a` and `b` values, rounded toward 0.

int average(int a, int b) {
 int r = std::midpoint(a, b);
 if (a < b) { if (r < 0) r += (a ^ b) & 1; }

else { if (r > 0) r -= (a ^ b) & 1; }
 return r;
}

Implementation of above; is it conforming?

Narrow Contracts and noexcept Are Inherently Incompatible

Function-Implementation Contracts

Wide Implementation (of a [narrow] interface)

 If the implied contract of an implementation, .c , is
(1) conforming and (2) offers a wide(r) usable domain
(e.g., no preconditions) than that of its interface, .h, (i.e.,
having a narrow contract) we refer to .c as a wide(r)
implementation.

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementation (of an interface)

Interface + Contract:
double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is undefined unless `value >= 0`.

double sqrt(double value) {
 return std::sqrt(value);
}

Wide (conforming) implementation:

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementation (of an interface)

Interface + Contract:
double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is undefined unless `value >= 0`.

double sqrt(double value) {
 [[assume 0 <= value]]
 return std::sqrt(value);
}

Wide (conforming) implementation:

Calling any C++ Standard
Library function out of

contract today is (language)
undefined behavior. Not so for any other functions

and need not be so for Standard-
Library implementations!

We should talk about this issue more later.

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementation (of an interface)

Interface + Contract:
double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is undefined unless `value >= 0`.

double sqrt(double value) {
 if (value < 0) return -1;
 return std::sqrt(value);
}

Wide (conforming) implementation:

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementation (of an interface)

Interface + Contract:
double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is undefined unless `value >= 0`.

double sqrt(double value) {
 if (value < 0) throw std::logic_error;
 return std::sqrt(value);
}

Wide (conforming) implementation:

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementation (of an interface)

Interface + Contract:
double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is undefined unless `value >= 0`.

double sqrt(double value) {
 assert(value >= 0);
 return std::sqrt(value);
}

Wide (conforming) implementation:

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementation (of an interface)

Interface + Contract:
double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is undefined unless `value >= 0`.

double sqrt(double value) {
 [[assert: value >= 0]];
 return std::sqrt(value);
}

Wide (conforming) implementation:

Contracts
Attribute
Notation

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementation (of an interface)

Interface + Contract:
double sqrt(double value);
 // Return the positive square root of the specified
 // `value`. The behavior is undefined unless `value >= 0`.

double sqrt(double value) [[pre: value >= 0]]
{
 return std::sqrt(value);
}

Wide (conforming) implementation:

Contracts
Attribute
Notation

Narrow Contracts and noexcept Are Inherently Incompatible

Function Contracts and noexcept

The noexcept specifier
 Ensures that a function does not throw.

─ Often connotes that a function does not fail.
 void f(int x);

─ static_assert(false == noexcept(f(*(int*)(0)));
 void g(int x) noexcept;

─ static_assert(true == noexcept(g(*(int*)(0)));

unevaluated operands

operator,
not specifier

specifier

Argument
values are
irrelevant!

 Note that
 // `noexcept(sqrt(x))` is `false` for all `x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Implied Contract (of an implementation)

Implementation:
double sqrt(double value) {

 if (value < 0) throw std::logic_error(“negative”);
 return std::sqrt(value);
}

double sqrt(double value);
 // Return the positive square root of the
 // specified `value` if `value >= 0`; otherwise,
 // throw `std::logic_error(“negative”)`.

Interface + implied contract:

Narrow Contracts and noexcept Are Inherently Incompatible

Implied Contract (of an implementation)

Implementation:
double sqrt(double value) {

 if (value < 0) return 0.0;
 return std::sqrt(value);
}

double sqrt(double value);
 // Return the positive square root of the
 // specified `value` if `value >= 0`; otherwise,
 // return 0.

Interface + implied contract:

 Throws nothing and `noexcept(sqrt(x))`
 // is `false` for all `x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Implied Contract (of an implementation)

Implementation:
double sqrt(double value) noexcept {
 if (value < 0) return 0.0;
 return std::sqrt(value);
}

double sqrt(double value);
 // Return the positive square root of the
 // specified `value` if `value >= 0`; otherwise,
 // return 0.

Interface + implied contract:

 Throws nothing and `noexcept(sqrt(x))`
 // is `true` for all `x`.

Narrow Contracts and noexcept Are Inherently Incompatible

Implied Contract (of an implementation)

Implementation:
double sqrt(double value) noexcept {
 if (value < 0) throw std::logic_error(“negative”);
 return std::sqrt(value);
}

double sqrt(double value);
 // Return the positive square root of the
 // specified `value` if `value >= 0`; otherwise,
 // call `std::terminate()`.

Interface + implied contract:

 Throws nothing and
 // `noexcept(sqrt(x))` is `true` for all `x`.

 // Return the element at the specified `i` position.
 // Throws nothing.

 narrow return

 i < size()

 narrow return

 i <= size()

 // Return the element at the specified `i` position.
 // Throws nothing.

T& operator[](std::size_t i); // version A3.0
 // Return the element at the specified `i` position
 // if `i <= size`; otherwise, throw `std::range_error()`.

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

 wide return
 throw

 // The behavior is undefined unless `i < size()`.

 // The behavior is undefined unless `i <= size()`.

T& operator[](std::size_t i); // version A2.0

Domain Range
T& operator[](std::size_t i); // version A1.0

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

 narrow return

 i <= size()

 // Return the element at the specified `i` position.
 // Throws nothing.

 narrow return

 i < size()

 // Return the element at the specified `i` position.
 // Throws nothing.

T& operator[](std::size_t i); // version A3.0
 // Return the element at the specified `i` position
 // if `i <= size`; otherwise, throw `std::range_error()`.

 // The behavior is undefined unless `i < size()`.

 // The behavior is undefined unless `i <= size()`.

T& operator[](std::size_t i); // version A2.0

Domain Range
T& operator[](std::size_t i); // version A1.0

 wide return
 throw

T f(C<T>& c, std::size_t j) // (since version A1.0)
 // Return `c[j]`.
 // The behavior is undefined unless `j < c.size()`.
{
 return c[j];
}

T f(C<T>& c, std::size_t j) // (since version A2.0)
 // Return `c[j]`.
 // The behavior is undefined unless `j <= c.size()`.
{
 return c[j];
}

T f(C<T>& c, std::size_t j) // (since version A3.0)
 // If `j <= c.size()` return c[j]; otherwise, throw something.
{
 return c[j];
}

Stable accumulation of client usage (P)

 // Return the element at the specified `i` position.
 // Throws nothing.

 // Return the element at the specified `i` position.
 // Throws nothing.

noexcept
 narrow return

 i < size()

noexcept
 narrow return

 i <= size()

noexcept
 wide return
 throw

 // Return the element at the specified `i` position
 // if `i <= size`; otherwise, throw `std::range_error()`.

T& operator[](std::size_t i) noexcept; // version B3.0

T& operator[](std::size_t i) noexcept; // version B2.0

 // The behavior is undefined unless `i < size()`.

 // The behavior is undefined unless `i <= size()`.

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept
Domain Range

T& operator[](std::size_t i) noexcept; // version B1.0

call `std::terminate()`. terminate

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept
Consider these two contracts:

Which is Liskov substitutable for the other?
That is, which one is usable in a (proper) superset
of situations for which the other one is ideal.

Domain Range

 narrow return

 i < size()

 // Return the element at the specified `i` position.
 // Throws nothing.

 // The behavior is undefined unless `i < size()`.

T& operator[](std::size_t i); // version A1.0

 // Return the element at the specified `i` position.
 // Throws nothing.

noexcept
 narrow return

 i < size()

 // The behavior is undefined unless `i < size()`.

T& operator[](std::size_t i) noexcept; // version B1.0

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept
Consider these two contracts:

Which is Liskov substitutable for the other?
That is, which one is usable in a (proper) superset
of situations for which the other one is ideal.

Domain Range

 // The behavior is undefined unless `x < size()`.

 narrow return

 x < size()

 // Return the element at the specified `i` position.
 // Throws nothing.

T& operator[](std::size_t i); // version A1.0

noexcept
 narrow return

 x < size()

 // The behavior is undefined unless `x < size()`.

 // Return the element at the specified `i` position.
 // Throws nothing.

T& operator[](std::size_t i) noexcept; // version B1.0

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

std::vector
template <class T>
T& std::vector<T>::operator[](std::size_t index);
 // Return a reference to the element at the specified `index`.
 // The behavior is undefined unless `index < this->size()`.

CheckedVec

To see why, consider two similar checked vectors,
each derived structurally from std::vector:

template <class T>
T& CheckedVec<T>::operator[](std::size_t index);
 // Return a reference to the element at the specified `index`
 // if `index < this->size()`; otherwise, throw `std::range_error`.

CheckedVec<T>::operator[]

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

std::vector

template <class T>
T& CheckedVec<T>::operator[](std::size_t index);
 // Return a reference to the element at the specified `index`
 // if `index < this->size()`; otherwise, throw `std::range_error`.

template <class T>
T& std::vector<T>::operator[](std::size_t index);
 // Return a reference to the element at the specified `index`.
 // The behavior is undefined unless `index < this->size()`.

CheckedVec CheckedVek

noexcept;

throw `std::range_error`.
call `std::terminate`

To see why, consider two similar checked vectors,
each derived structurally from std::vector:

CheckedVek<T>::operator[]CheckedVek<T>::operator[]

 if (index >= this->size()) throw std::range_error("bad index");

std::cout << “[CheckedVec] " << std::flush;

 return std::vector<T>::operator[](index);

T& operator[](std::size_t index) {

 }

 using std::vector<T>::vector; // inheriting constructors

template<class T>
struct CheckedVec : std::vector<T>
{

};

 const T& operator[](std::size_t index) const {
 if (index >= this->size()) throw std::range_error("bad index");
 return std::vector<T>::operator[](index);
 }

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept
Checked vector with throwing operator[]:

 if (index >= this->size()) throw std::range_error("bad index");

std::cout << “[CheckedVec] " << std::flush;

 return std::vector<T>::operator[](index);

T& operator[](std::size_t index) {

 }

 using std::vector<T>::vector; // inheriting constructors

template<class T>
struct CheckedVec : std::vector<T>
{

};

 const T& operator[](std::size_t index) const {
 if (index >= this->size()) throw std::range_error("bad index");
 return std::vector<T>::operator[](index);
 }

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept
Checked vector with nonthrowing operator[]:

CheckedVek

noexcept {
“[CheckedVek]

 return c[i]; // If `i > c.size()` then `noexcept(c[i]) == false`.

 If
 // `noexcept(c[i]) == true` and `i >= c.size()` throw `std::logic_error`;

template <typename C>
typename C::value_type& lookup(C& c, std::size_t i);

 if constexpr (noexcept(c[i])) // Bracket operator is `noexcept(true)`.
 {
 if (i > c.size()) throw std::logic_error("BAD INDEX");
 }

 // otherwise, the behavior is whatever is defined (in the current build
 // mode) for `c`’s `noexcept(false)` non-`const` `operator[]`.

 // Using the bracket operator for the specified container, `c`, return
 // the element at the specified index, `i`, unless `i >= c.size()`.

Then, consider this generic lookup function:

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

{

}

For i > size, operator[] is called iff it is noexcept(false).

Without
contracts,
bugs are
features.

 try {

CheckedVek<int> vek; // Bracket operator is `noexcept(true)`.

 }

 catch (...) { std::cout << "Caught `noexcept(true)`.\n"; }

 catch (...) { std::cout << "Caught `noexcept(false)`.\n"; }

 ret = lookup(vec, 0);

 const int init = 0xDeadBeef; int ret = init;
 try {
 CheckedVec<int> vec; // Bracket operator is `noexcept(false)`.

 }

assert(ret == init); return 0; // status

Now, consider this main program, which calls lookup:

 ret = lookup(vek, 0);

[CheckedVec] Caught `noexcept(false)`.

int main() {

}

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

[CheckedVec] Caught `noexcept(false)`.
[CheckedVek] terminate called after throwing an instance of 'std::range_error’

 what(): bad index
Aborted (core dumped) Status = -1

vec is empty.
vec.size() == 0

vek is empty.

Let’s take another look at our generic lookup function:

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

template <typename C>
typename C::value_type& lookup(C& c, std::size_t i);
 // Using the bracket operator for the specified container, `c`, return
 // the element at the specified index, `i`, unless `i >= c.size()`. If
 // `noexcept(c[i]) == true` and `i >= c.size()` throw `std::logic_error`;
 // otherwise, the behavior is whatever is defined (in the current build
 // mode) for `c`’s `noexcept(false)` non-`const` `operator[]`.
{
 if constexpr (noexcept(c[i])) // Bracket operator is `noexcept(true)`.
 {
 if (i > c.size()) throw std::logic_error("BAD INDEX");
 }
 return c[i]; // If `i > c.size()` then `noexcept(c[i]) == false`.
}

If `i == c.size()` then `noexcept(c[i])` might be `true`!

Let’s take another look at our generic lookup function:

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

template <typename C>
typename C::value_type& lookup(C& c, std::size_t i);
 // Using the bracket operator for the specified container, `c`, return
 // the element at the specified index, `i`, unless `i >= c.size()`. If
 // `noexcept(c[i]) == true` and `i >= c.size()` throw `std::logic_error`;
 // otherwise, the behavior is whatever is defined (in the current build
 // mode) for `c`’s `noexcept(false)` non-`const` `operator[]`.
{
 if constexpr (noexcept(c[i])) // Bracket operator is `noexcept(true)`.
 {
 if (i >= c.size()) throw std::logic_error("BAD INDEX");
 }
 return c[i]; // If `i >= c.size()` then `noexcept(c[i]) == false`.
}

If `i == c.size()` then `noexcept(c[i])` might be `true`!

For i >= size, operator[] is called iff it is noexcept(false).

 try {

CheckedVek<int> vek; // Bracket operator is `noexcept(true)`.

 }

 catch (...) { std::cout << "Caught `noexcept(true)`.\n"; }

 catch (...) { std::cout << "Caught `noexcept(false)`.\n"; }

 ret = lookup(vec, 0);

 const int init = 0xDeadBeef; int ret = init;
 try {
 CheckedVec<int> vec; // Bracket operator is `noexcept(false)`.

 }

assert(ret == init); return 0; // status

Now, consider this main program, which calls lookup:

 ret = lookup(vek, 0);

[CheckedVec] Caught `noexcept(false)`.

int main() {

}

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability and noexcept

[CheckedVec] Caught `noexcept(false)`.
Caught `noexcept(true)`. Status = 0

Distinct Essential Behaviors!
For i >= size, operator[] is called iff it is noexcept(false).

Backward compatibility is subjective:
A. Pure Liskov –

 E.g., even unspecified object size (introspection) doesn’t change.
B. Applied Liskov –

 E.g., parsing `>>` as individual tokens for nested templates.
C. Backward Compatible –

 E.g., adding a keyword, such as noexcept or co_return.
D. Incompatible –

 E.g., when variables defined in a for statement became local.

Narrow Contracts and noexcept Are Inherently Incompatible

Liskov Substitutability/Backward Compatibility

can’t write a program that would break.

wouldn’t write one that would break.

good enough for C++ Standard.

inherently conflicting essential behavior.

Narrow Contracts and noexcept Are Inherently Incompatible

Backward Compatibility and noexcept
Let’s take one more look at these two contracts:

Neither is Liskov substitutable for the other!
Which is backward compatible with the other?

Domain Range

 narrow return

 i < size()

 // Return the element at the specified `i` position.
 // Throws nothing.

 // The behavior is undefined unless `i < size()`.

T& operator[](std::size_t i); // version A1.0

Why?

 // The behavior is undefined unless `i < size()`.

T& operator[](std::size_t i) noexcept; // version B1.0 noexcept
 narrow return

 i < size()

 // Return the element at the specified `i` position.
 // Throws nothing.

Narrow Contracts and noexcept Are Inherently Incompatible

Backward Compatibility and noexcept
Why adding noexcept is backward compatible
 Either adding or removing noexcept might affect the

behavior of an arbitrary client in arbitrary ways.
 Adding noexcept to a function that doesn’t throw should —

if anything — act as a pure optimization in practice.
 Removing noexcept might act as a pessimization.

─ E.g., from a move or copy constructor could result in slower copy
algorithm to preserve the strong exception-safety guarantee.

 Only if generic client uses noexcept operator on the function!
─ Otherwise, the function’s object code might be larger but not faster.

Template <typename F, int x>
void f(F x) {

}

 else { // slow algo
 // ...
 // ... (might throw)
 // ...
 }

Why adding noexcept is backward compatible

 if constexpr (noexcept(F(x)) { // fast algo
 // ... (cannot throw)
 }

Narrow Contracts and noexcept Are Inherently Incompatible

Backward Compatibility and noexcept

Narrow Contracts and noexcept Are Inherently Incompatible

The “need” for noexcept
A. Declaring non-throwing move operations

─ The raison d'être of the noexcept specifier (and operator).
B. Wrapper redeclaring move operations

─ A practical way to improve performance based on global knowledge.
C. Callback framework directly supporting noexcept functions

─ Easy alternatives are to provide (1) a default or (2) nonthrowing wrapper.
D. Enforce explicit documentation

─ A simple alternative is to document the function as “nonthrowing.”
E. Reduce object-code size

─ An often-preferable alternative is to build with exceptions disabled.
F. Unrealizable runtime-performance benefits

─ The zero-cost exception model renders any such effort futile in practice.

Narrow Contracts and noexcept Are Inherently Incompatible

The trouble with noexcept
Why adding noexcept can be problematic
 Accidental termination

─ Having more functions than necessary declared
noexcept doesn’t help matters.

─ Especially for those who make use of exceptions.
 Incompatibility with narrow contracts

─ Precludes wide implementations that might throw.
─ Critical for the C++ Standard-Library Specification.

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementations of the C++ Standard Library

The C++ Standard-Library Specification
minimal noexcept

Vendor D
MAXIMAL
noexcept

Checked

Vendor A
minimal

noexcept

unchecked

Vendor B
MAXIMAL
noexcept

unchecked

Vendor C
minimal

noexcept

Checked

Vendor C
minimal

noexcept

Checked

Narrow Contracts and noexcept Are Inherently Incompatible

Wide Implementations of the C++ Standard Library

The C++ Standard-Library Specification
MAXIMAL noexcept

Vendor D
MAXIMAL
noexcept

Checked

Vendor A
minimal

noexcept

unchecked

Vendor B
MAXIMAL
noexcept

unchecked

Some folks need/want
Vendor C!

Narrow Contracts and noexcept Are Inherently Incompatible

Our universe versus The Multiverse
What happens when a logic defect is detected?
 Terminate immediately.
 Save client data, release resources, and terminate.
 Signal an error and then block or busy wait.
 Log a diagnostic, continue, and hope for the best.
 Snapshot, then throw std::logic_error .
 Throw some other kind of object.

Narrow Contracts and noexcept Are Inherently Incompatible

Our universe versus The Multiverse

Any of these might be optimal, depending on the
 industry
 organization
 application

What happens when a logic defect is detected?
 Terminate immediately.
 Save client data, release resources, and terminate.
 Signal an error and then block or busy wait.
 Log a diagnostic, continue, and hope for the best.
 Snapshot, then throw std::logic_error .
 Throw some other kind of object.

Barbara Liskov
is a Rockstar!

Liskov Substitutability is the goal!

Liskov Substitutability Backward Compatibility

But not vice versa!

Narrow Contracts and noexcept Are Inherently Incompatible

Conclusion

The C++ Standard is for the multiverse!

Narrow Contracts and noexcept Are Inherently Incompatible

Conclusion

1. Never require the noexcept specifier on any
standard function unless effective use of that function
might reasonably require (direct or indirect) use of the
noexcept operator (e.g., from a generic context) — i.e.,
move operations only.

2. Allow implementations to strengthen exception
specifications (i.e., add noexcept specifiers) unless a
function’s contract is (1) narrow or (2) involves callbacks
that have narrow contracts or might throw in contract.

1. Never require the noexcept specifier on any
standard function unless effective use of that function
might reasonably require (direct or indirect) use of the
noexcept operator (e.g., from a generic context) — i.e.,
move operations only.

2. Allow implementations to strengthen exception
specifications (i.e., add noexcept specifiers) unless a
function’s contract is (1) narrow or (2) involves callbacks
that have narrow contracts or might throw in contract.

© 2023 Bloomberg Finance L.P. All rights reserved.

Thank you!

© 2023 Bloomberg Finance L.P. All rights reserved.

We are hiring!

Questions?

https://www.bloomberg.com/careers

https://www.bloomberg.com/careers

