Ordering of constraints involving fold expressions

Document #: P2963R0

Date: 2023-09-15

Programming Language C++

Audience: EWG

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

Fold expressions, which syntactically look deceptively like conjunctions/subjections for the
purpose of constraint ordering are in fact atomic constraints We propose rules for the nor-
malization and ordering of fold expressions over && and ||.

Motivation
This paper is an offshoot of P2841R0 [1] which described the issue with lack of subsumption
for fold expressions. This was first observed in a Concept TS issue.
This question comes up ever so often on online boards and various chats.
+ [StackOverflow] How are fold expressions used in the partial ordering of constraints?
* [StackOverflow] How to implement the generalized form of std::same_as?

In Urbana, core observed "We can’t constrain variadic templates without fold-expressions”
and almost folded (!) fold expressions into the concept TS. The expectation that these features
should interoperate well then appear long-standing.

Subsumption and fold expressions over && and | |

Consider:

template <class T> concept bool A
template <class T> concept bool B
template <class T> concept bool C

std::is_move_constructible_v<T>;
std::is_copy_constructible_v<T>;
A<T> && B<T>;

template <class... T>
requires (A<T> && ...)
void g(T...);

template <class... T>
requires (C<T> && ...)
void g(T...);

mailto:corentin.jabot@gmail.com
https://wg21.link/P2841R0
http://cplusplus.github.io/concepts-ts/ts-active.html#28
https://stackoverflow.com/questions/34843745
https://stackoverflow.com/questions/58724459/

We want to apply the subsumption rule to the normalized form of the requires clause (and its
arguments). As of C++23, the above g is ambiguous.

This is useful when dealing with algebraic-type classes. Consider a concept constraining a
(simplified) environment implementation via a type-indexed std: : tuple. (In real code, the
environment is a type-tag indexed map.)

template <typename X, typename... T>
concept environment_of = (... && requires (X& x) { { get<T>(x) } -> std::same_as<T&>; });

auto f(sender auto&& s, environment_of<std::stop_token> auto env); // uses std::allocator
auto f(sender auto&& s, environment_of<std::stop_token, std::pmr::allocator> auto env); //
uses given allocator

Without the subsumption fixes to fold expressions, the above two overloads conflict, even
though they should by rights be partially ordered.

Impact on the standard

This change makes ambiguous overload valid and should not break existing valid code.

Implementabiliy

This was partially implemented in Clang. Importantly, we know that what we propose does
not affect compilers’ ability to partially order functions by constraints without instantiating
them, nor does it affect the caching of subsumption, which is important to minimize the cost
of concepts on compile time.

What this paper is not

When the pattern of the fold-expressions is a ‘concept’ template parameter, this paper does
not apply. In that case, we need different rules which are covered in P2841R0 [1] along with
the rest of the "concept template parameter” feature (specifically, for concepts patterns we
need to decompose each concepts into its constituent atomic constraints and produce a fully
decomposed sequence of conjunction/disjunction)

Design and wording strategy

To simplify the wording, we first normalize fold expressions to extract the non-pack expression
of binary folds into its own normalized form, and transform (... && A) into (A & ...) as
they are semantically identical for the purpose of subsumption. We then are left with either
(A & ...) or (A || ...),and for packs of the same size, the rules of subsumptions are the
same as for that of atomic constraints.

https://wg21.link/P2841R0

Wording

\ g

Constraint normalization [temp.constr.normal]

The normal form of an expression E is a constraint[temp.constr.constr] that is defined as follows:

\ g

* The normal form of an expression (E) is the normal form of E.

* The normal form of an expression E1 || E2 is the disjunction[temp.constr.op] of the
normal forms of E1 and E2.

* The normal form of an expression E1 && E2 is the conjunction of the normal forms of E1
and E2.

* The normal form of a concept-id C<A;, As, ..., A,>isthe normal form of the constraint-
expression of C, after substituting A, As, ..., A, forC's respective template parameters
in the parameter mappings in each atomic constraint. If any such substitution results
in an invalid type or expression, the program is ill-formed; no diagnostic is required.
[Example:

template<typename T> concept A = T::value || true;
template<typename U> concept B = A<Ux>;
template<typename V> concept C = B<V&>;

Normalization of B's constraint-expression is valid and results in T: : value (with the map-
ping T — Ux) V true (with an empty mapping), despite the expression T::value being
ill-formed for a pointer type T. Normalization of C's constraint-expression results in the
program being ill-formed, because it would form the invalid type V& in the parameter
mapping. —end example]

* The normal form of an expression (... fold-operator E) is (E fold-operator...).

* The normal form of an expression (E && ... && Pack) or (Pack && ... && E) where
Pack is an unexpanded pack is the conjunction of the normal forms of (Pack &&...) and
E.

* The normal form of an expression (E || ... || Pack)or (Pack || ... || E) where
Pack is an unexpanded pack is the disjunction of the normal forms of (Pack || ...) and
E.

* The normal form of any other expression E is the atomic constraint whose expression is
E and whose parameter mapping is the identity mapping.

Partial ordering by constraints [temp.constr.order]

A constraint P subsumes a constraint Q if and only if, for every disjunctive clause P; in the
disjunctive normal form of P, P; subsumes every conjunctive clause @; in the conjunctive
normal form of), where

+ a disjunctive clause P; subsumes a conjunctive clause Q; if and only if there exists an
atomic constraint P, in P; for which there exists an atomic constraint @Q;; in Q; such that
P;, subsumes Q;;, and

+ an atomic constraint A subsumes another atomic constraint B if and-enlyifAand-B-are
dentical using les.d ibed-in{ _ ' e

« Ais a fold-expression of the form (P &&...), B is a fold-expression of the form (Q &&...)
or (Q || ...) and let P’ be the template-argument corresponding to P in the parameter
mapping of 4, and let Q’ be the template-argument corresponding to @ in the parameter
mapping of B, sizeof...(Q') == sizeof...(Q') is true P subsumes Q.

« Ais a fold-expression of the form (P ||...) or (P &&...) and B is a fold-expression
of the form (@ ||...) and let P’ be the template-argument corresponding to P in the
parameter mapping of 4, and let @’ be the template-argument corresponding to @ in
the parameter mapping of B, sizeof...(Q') == sizeof...(Q’) is true, P subsumes Q.

« A and B are identical using the rules described in [temp.constr.atomic].

[Example: Let A and B be atomic constraints [temp.constr.atomic]. The constraint A A B
subsumes A4, but A does not subsume A A B. The constraint A subsumes AV B, but AV B
does not subsume A. Also note that every constraint subsumes itself. —end example]

Acknowledgments

Thanks to Robert Haberlach for creating the original Concept TS issue.

References
[1] Corentin Jabot and GaSper AZzman. P2841R0: Concept template parameters. https:
//wg21.1ink/p2841r0, 5 2023.

[N4958] Thomas Kdppe Working Draft, Standard for Programming Language C++
https://wg21.1ink/N4958

http://cplusplus.github.io/concepts-ts/ts-active.html#28
https://wg21.link/p2841r0
https://wg21.link/p2841r0
https://wg21.link/N4958

	1 Abstract
	2 Motivation
	2.1 Subsumption and fold expressions over && and ||
	2.2 Impact on the standard
	2.3 Implementabiliy
	2.4 What this paper is not
	2.5 Design and wording strategy

	3 Wording
	3.1 Constraint normalization
	3.2 Partial ordering by constraints

	4 Acknowledgments

