
Allocators and swap
Respectng the contract of primary templates

Document #: P0178R1
Date: 2024-12-17
Project: Programming Language C++
Audience: Library
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision history 2

3 Introduction 3

4 The Basic Problem 4

5 Feedback from field experience 5

6 Proposed Solution 6

7 Wording 8

8 Acknowledgements 9

9 References 9

1

mailto:ameredith1@bloomberg.net

1 Abstract
The free function template swap in namespace std has a wide contract. However, standard containers provide
better matching overloads of swap in the same namespace with narrow contract. Substituting a function with
another having a narrower contract is known to be problematic, especially in generic contexts where ADL-swap
is often an implementation detail. This paper proposes widening the container swap functions by defining the
currently undefined behavior to behave the same as a call to the primary swap template.

2 Revision history
R1 December 2024 (post-Wrocław mailing)

— Revised proposal reflecting changes of the last 9 years
— standard dismantled container requirement tables

— now free-function swap calls member swap
— adopted proposal banning user specializations of allocator_traits, [P2652R2]

— Deliberately not touching node-handles due to lack of field experience
— it looks like the same issue though

R0 February 2016 (pre-Jacksonville mailing)

Initial draft of this paper.

2

3 Introduction
The C++11 standard introduced allocator_traits as a way to easily support a variety of allocator models,
especially those where allocators hold some kind of state that might affect allocator, such as a pointer to a memory
resource, [N3916]. One of the problems that had to be tackled was the effect of calling swap on containers (or
other allocator-aware types) that have allocators that do not compare equal. The committee at the time took
the conservative option of simply making this undefined behavior, and a couple of issues have since been filed
regarding some of the problems this causes: [LWG2152], [LWG2153]. The last time the Library Working Group
looked at these issues, it called for a paper to better describe the issues and propose a solution (with wording!)
This is that paper.

3

4 The Basic Problem
When support for stateful allocators was added to C++11, it became important to answer the question of
what should happen when two containers with allocators that cannot allocate/deallocate memory on behalf of
the other are swapped. The conservative position adopted at the time was to simply declare such calls out of
contract, and make them undefined behavior. This gave us the maximum freedom to revise our position later,
if necessary. It also matched the contract Bloomberg documented for their library, which was one of the code
bases known to make widespread use of stateful allocators.

The problem with giving the free-function swap a narrow contract is that it does not satisfy the contract of the
generic swap function in the same namespace. This greatly harms the ability to use std::swap in generic code,
as the calling template must now be aware if the type it is instantiated for is a standard library container, and
if so, whether its allocators compare equal. Conversely, this is not a problem for the swap member function, as
the caller either knows exactly which container they are dealing with, or should document the container concept
they are dealing with if it differs in some way from the standard. In some sense, the generic free function is
more fundamental than the member function.

There has been some concern raised that the standard library cannot make arbitrary constraints on swap function
found via ADL, so this exercise is vain. That is not entirely true, as if we assume the container requirements apply
to user code, then we are already changing their swap contract by introducing undefined behavior. However,
in practice, the current Container Requirements tables do not document Concepts, but are rather a form of
common documentation to avoid redundant wording through each of the container sub-clauses. In this context,
the standard library has broken its own swap function by adding an overload in its own namespace that, if not
present, would allow the container to “do the right thing”, and with move-semantics enabled for each container,
do so efficiently with the correct exception-safety guarantees. The optimization offered by the overload, in a
modern compiler, is tiny (but still worth taking, especially for containers with additional predicates).

The breakage of swap has more subtle implications too. The author of generic code could, by defining their own
is_standard_container trait, rewrite their algorithm to allow for exchanging states of containers with unequal
allocators. In fact, this is necessary for any generic algorithm that expects to work with containers unless the
contract explicitly calls out this problem. The standard library offers no support for users trying to help their
users in this manner. However, the further subtlety is that is_standard_container is not sufficient, as swap
for pair and tuple is similarly undefined, and would need to be detected and supported separately. This problem
further eats into any other type that wraps a standard container and can support stateful allocators.

4

5 Feedback from field experience
Bloomberg have over a decade of experience with a stateful allocator model in their standard library. When
this was first introduced, the undefined behavior described by the current standard was added to all of our swap
contracts, but the (undocumented) implementation performs the double-copy/swap described in this paper. This
allowed existing code, written without stateful allocators in mind, to continue to function while the new contract
was slowly adopted. A decade on, we still get large resistance any time we try to enable assertions on these
narrow contracts, as perfectly sensible use-cases exist (frequently, not always, in generic code) for continuing to
support this behavior. Given the choice between linear and potentially-throwing swap vs. undefined behavior,
our users have been very clear which they prefer — as long as the constant-time, non-throwing behavior remains
when the allocators do compare equal.

5

6 Proposed Solution
Due to the complexities of multiple traits affecting allocator propagation, absent adopting an update to [P0177R2]
for force trait consistency, we must consider several scenarios:

— allocators compare as equal
— allocators propagate on swap
— allocators do not propagate on swap

— allocators compare not equal
— allocators (consistently) always propagate
— allocators (consistently) never propagate
— allocators propagate on swap, but not on assignment
— allocators propagate on assignment, but not on swap

As you can see, the easiest scenario is when the allocators compare as equal:

When allocators compare equal, we expect a container to have a fast-path to exchange internal handles to
the dynamic data structure. That is a runtime property from some allocators, and the test can be skipped
for allocators with the allocators_always_compare_equal allocator trait. Likewise, if the trait for allocator
propagate on swap is true, allocators should be exchanged, even if equal, in case there is associated data in the
allocator such as a name.

When allocators do not compare equal
void CONTAINER_TYPE::swap(CONTAINER_TYPE & other) {

if(std::allocator_traits<allocator_type>::is_always_equal // compiler will optimize to compile-time
|| this->get_allocator() == other.get_allocator()) {

// take the fast path

if constexpr(std::allocator_traits<allocator_type>::propagate_on_container_swap) {
using std::swap;
swap(this->get_allocator(), other.get_allocator());

}
}
else ...

}

Now let us consider the case that allocators have a consistent set of propagation traits — all true or all false. In
this case we can rely on assignment to propagate, or not, the allocator as needed, and the swap implementation
remains the simple swap-through-a-temporary implementation.

That leaves the final concern, that [P0177R2] would rule out, where assignment and swap diverge on propagation.
In this case, we create two buffers using the corresponding allocator of the other container. Once we have
constructed both of these buffer containers, we have the guaranteed fast-path swap of two containers having the
same allocator.

The last wrinkle is whether the allocators were supposed to propagate when not equal but do propagate on
assignment — and you will notice that case should be covered by the fast path, so we can add that check there.
void CONTAINER_TYPE::swap(CONTAINER_TYPE & other) {

if(std::allocator_traits<allocator_type>::propagate_on_container_swap
|| std::allocator_traits<allocator_type>::is_always_equal
|| this->get_allocator() == other.get_allocator()) {

// trust compiler will optimize the compile-time branching

// take the fast path

if constexpr(std::allocator_traits<allocator_type>::propagate_on_container_swap) {
using std::swap;

6

swap(this->get_allocator(), other.get_allocator());
}

}
else if constexpr(all traits are consistent) {

CONTAINER buffer{std::move(other)};
other = std::move(*this);
*this = std::move(buffer);

}
else {

// Copy into buffer having the right allocator
CONTAINER buffer_this {std::move(other), this->get_allocator()};
CONTAINER buffer_other{std::move(*this), other.get_allocator()};

this->swap(buffer_this);
other.swap(buffer.other);

}
}

The simplest implementation of the swap overload (for a given CONTAINER_TYPE) should be efficient and correct,
without preconditions:
void swap(CONTAINER_TYPE & left, CONTAINER_TYPE & right) {

std::swap<CONTAINER_TYPE>(left, right);
}

However, the optimal algorithm for swapping containers (or any other allocator-aware type) might be more like:
void swap(CONTAINER_TYPE & left, CONTAINER_TYPE & right) {

if (allocators are compatible) {
left.swap(right);

}
else if (allocator propagation traits are sane) {

std::swap<TYPE>(left, right);
}
else {

CONTAINER_TYPE tempLeft {std::move(right), left.get_allocator() };
CONTAINER_TYPE tempRight{std::move(left), right.get_allocator()};
swap(left, tempLeft);
swap(right, tempRight);

}
}

7

7 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N5001], the latest draft at
the time of writing.

23.2.2.1 [container.intro.reqmts] Introduction
65 The expression a.swap(b), for containers a and b of a standard container type other than array and

inplace_vector, shall exchange the values of a and b without invoking any move, copy, or swap operations
on the individual container elements. Any Compare, Pred, or Hash types belonging to a and b shall meet
the Cpp17Swappable requirements and shall be exchanged by calling swap as described in 16.4.4.3 [swap-
pable.requirements]. If allocator_traits<allocator_type>::propagate_on_container_swap::value is
true, then allocator_type shall meet the Cpp17Swappable requirements and the allocators of a and b shall
also be exchanged by calling swap as described in 16.4.4.3 [swappable.requirements]. Otherwise, the allocators
shall not be swapped , and the behavior is undefined unless a.get_allocator() == b.get_allocator().
Every iterator referring to an element in one container before the swap shall refer to the same element in the
other container after the swap. It is unspecified whether an iterator with value a.end() before the swap will
have value b.end() after the swap.

66 Unless otherwise specified (see 23.2.7.2 [associative.reqmts.except], 23.2.8.2 [unord.req.except], 23.3.5.4
[deque.modifiers], 23.3.14.5 [inplace.vector.modifiers], and 23.3.11.5 [vector.modifiers]) all container types
defined in this Clause meet the following additional requirements:

—(66.1) If an exception is thrown by an insert() or emplace() function while inserting a single element, that
function has no effects.

—(66.2) If an exception is thrown by a push_back(), push_front(), emplace_back(), or emplace_front() func-
tion, that function has no effects.

—(66.3) No erase(), clear(), pop_back() or pop_front() function throws an exception.
—(66.4) No copy constructor or assignment operator of a returned iterator throws an exception.
—(66.5) No swap() function throws an exception unless

—(66.5.1) allocator_traits<allocator_type>::propagate_on_container_swap::value is false, and
—(66.5.2) a.get_allocator() != b.get_allocator().

—(66.6) No swap() function invalidates any references, pointers, or iterators referring to the elements of the con-
tainers being swapped unless

—(66.6.1) allocator_traits<allocator_type>::propagate_on_container_swap::value is false, and
—(66.6.2) a.get_allocator() != b.get_allocator().

[Note 4: The end() iterator does not refer to any element, so it can be invalidated. —end note]

23.2.2.2 [container.reqmts] Container requirements

t.swap(s)

48 Result: void.
49 Effects: Exchanges the contents of t and s.
50 Complexity: Linear for array and inplace_vector, and constant for all other standard containers unless

—(50.1) allocator_traits<allocator_type>::propagate_on_container_swap::value is false, and
—(50.2) t.get_allocator() != s.get_allocator().

8

https://wg21.link/container.intro.reqmts
https://wg21.link/swappable.requirements
https://wg21.link/swappable.requirements
https://wg21.link/swappable.requirements
https://wg21.link/associative.reqmts.except
https://wg21.link/unord.req.except
https://wg21.link/deque.modifiers
https://wg21.link/inplace.vector.modifiers
https://wg21.link/vector.modifiers
https://wg21.link/container.reqmts

8 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

9 References
[LWG2152] Robert Shearer. Instances of standard container types are not swappable.

https://wg21.link/lwg2152

[LWG2153] Robert Shearer. Narrowing of the non-member swap contract.
https://wg21.link/lwg2153

[N3916] Pablo Halpern. 2014-02-14. Polymorphic Memory Resources - r2.
https://wg21.link/n3916

[N5001] Thomas Köppe. 2024-12-17. Working Draft Programming Languages — C++.
https://wg21.link/n5001

[P0177R2] Alisdair Meredith. 2016-03-21. Cleaning up allocator_traits.
https://wg21.link/p0177r2

[P2652R2] Pablo Halpern. 2023-02-09. Disallow user specialization of allocator_traits.
https://wg21.link/p2652r2

9

https://wg21.link/lwg2152
https://wg21.link/lwg2153
https://wg21.link/n3916
https://wg21.link/n5001
https://wg21.link/p0177r2
https://wg21.link/p2652r2

	Abstract
	Revision history
	Introduction
	The Basic Problem
	Feedback from field experience
	Proposed Solution
	Wording
	Acknowledgements
	References

