

Document D2014R1

Date 2020-02-11

Reply To Lewis Baker <lbaker@fb.com>,
Gor Nishanov <gorn@microsoft.com>

Audience Evolution

Target C++20

Proposed resolution for US061+US063 - aligned
allocation of coroutine frames
Evolution reviewed NB comments US061 and US063 in Belfast 2019 and voted to consider
resolving these NB comments for C++20. However, the proposed resolutions in the comments
were not sufficiently detailed to be able to put forward as a resolution and so it was requested
that a paper be written detailing a proposed resolution.

This paper contains some context on the NB comments, proposed wording for three design
alternatives and some design discussion about some of the more subtle aspects of the
proposed resolutions.

Option 1 for the proposed wording attempts to maintain behaviour consistent with [expr.new]
and [expr.delete] with regards to only preferring std::align_val_t overloads when the
storage to be allocated has new-extended alignment. This results in a more complicated set of
rules for lookup, including needing to perform two lookups and then delaying the choice of which
one to call until later in the compilation phases when the coroutine-frame layout requirements
are known.

Option 2 for the proposed wording instead always prefers to call the std::align_val_t overloads
of allocation/deallocation functions regardless of whether the storage required for the coroutine
state has new-extended alignment or not. This design is simpler but is inconsistent with the
behaviour of [expr.new] and [expr.delete].

Option 3 for the proposed wording further simplifies the rule for resolving the allocation function
to use by only considering the std::align_val_t overloads of allocation functions.

These options are put forward for consideration by the Evolution Working Group.

US061
Coroutine allocation does not consider std::align_val_t overloads introduced in C++17

Proposed change:

mailto:lbaker@fb.com
mailto:gorn@microsoft.com
P

Add them to the sequence of operator new calls that are attempted using wording similar to
7.6.2.7/18

US063
The construction of the argument list for the call to the allocation function to allocate the
'coroutine state' does not call the overload of operator new() that accepts a
std::align_val_t in the case that the allocation required for the coroutine has
'new-extended alignment'. This means that allocations of coroutine frames may not be correctly
aligned in cases where the coroutine state contains overaligned types.

Proposed change:
Apply similar wording from [expr.new]p18:
Insert "If the coroutine state has new-extended alignment then the next argument is
std::align_val_t." after "has type size_t."

Insert at end of paragraph:
If no matching function is found and the allocated coroutine state has new-extended alignment,
the alignment argument is removed from the argument list, and overload resolution is performed
again.

Current wording (N4835):

[dcl.fct.def.coroutine] p9

An implementation may need to allocate additional storage for a coroutine. This storage is
known as the coroutine state and is obtained by calling a non-array allocation function
(6.7.5.4.1). The allocation function’s name is looked up in the scope of the promise type. If this
lookup fails, the allocation function’s name is looked up in the global scope. If the lookup finds
an allocation function in the scope of the promise type, overload resolution is performed on a
function call created by assembling an argument list. The first argument is the amount of space
requested, and has type std::size_t. The lvalues p1 . . . pn are the succeeding arguments. If no
viable function is found (12.4.2), overload resolution is performed again on a function call
created by passing just the amount of space required as an argument of type std::size_t.

[dcl.fct.def.coroutine] p12

The deallocation function’s name is looked up in the scope of the promise type. If this lookup
fails, the deallocation function’s name is looked up in the global scope. If deallocation function
lookup finds both a usual deallocation function with only a pointer parameter and a usual
deallocation function with both a pointer parameter and a size parameter, then the selected
deallocation function shall be the one with two parameters. Otherwise, the selected deallocation

https://wg21.link/N4835

function shall be the function with one parameter. If no usual deallocation function is found, the
program is ill-formed. The selected deallocation function shall be called with the address of the
block of storage to be reclaimed as its first argument. If a deallocation function with a parameter
of type std::size_t is used, the size of the block is passed as the corresponding argument.

Reference (other related sections)
[expr.new] p18

Overload resolution is performed on a function call created by assembling an argument list. The
first argument is the amount of space requested, and has type std::size_t. If the type of the
allocated object has new-extended alignment, the next argument is the type’s alignment, and
has type std::align_val_t. If the new-placement syntax is used, the initializer-clauses in its
expression-list are the succeeding arguments. If no matching function is found and the allocated
object type has new-extended alignment, the alignment argument is removed from the
argument list, and overload resolution is performed again.

[basic.stc.dynamic.deallocation] p3

Each deallocation function shall return void. If the function is a destroying operator delete
declared in class type C, the type of its first parameter shall be C*; otherwise, the type of its first
parameter shall be void*. A deallocation function may have more than one parameter. A usual
deallocation function is a deallocation function whose parameters after the first are

● optionally, a parameter of type std::destroying_delete_t, then
● optionally, a parameter of type std::size_t, then
● optionally, a parameter of type std::align_val_t.

A destroying operator delete shall be a usual deallocation function. A deallocation function may
be an instance of a function template. Neither the first parameter nor the return type shall
depend on a template parameter. A deallocation function template shall have two or more
function parameters. A template instance is never a usual deallocation function, regardless of its
signature.

[expr.delete] p10

If deallocation function lookup finds more than one usual deallocation function, the function to
be called is selected as follows:

● If any of the deallocation functions is a destroying operator delete, all deallocation
functions that are not destroying operator deletes are eliminated from further
consideration.

● If the type has new-extended alignment, a function with a parameter of type
std::align_val_t is preferred; otherwise a function without such a parameter is preferred.

If any preferred functions are found, all non-preferred functions are eliminated from
further consideration.

● If exactly one function remains, that function is selected and the selection process
terminates.

● If the deallocation functions have class scope, the one without a parameter of type
std::size_t is selected.

● If the type is complete and if, for an array delete expression only, the operand is a
pointer to a class type with a non-trivial destructor or a (possibly multi-dimensional) array
thereof, the function with a parameter of type std::size_t is selected.

● Otherwise, it is unspecified whether a deallocation function with a parameter of type
std::size_t is selected.

Proposed wording (Option 1):

Modify [dcl.fct.def.coroutine] p9 as follows:

An implementation may need to allocate additional storage for a coroutine. This storage is
known as the coroutine state and is obtained by calling a non-array allocation function
(6.7.5.4.1). The allocation function’s name is looked up in the scope of the promise type. If
the lookup finds an allocation function in the scope of the promise type, then;

● A first overload resolution is performed on a function call created by assembling an
argument list. The first argument is the amount of space requested and has type
std::size_t . The second argument is the coroutine state's alignment and has type
std::align_val_t . The lvalues p1 ... pn are the succeeding arguments. If a viable
function is found (12.4.2), and the type of the second parameter is
std::align_val_t and is not a dependent type then then let the found overload be
the overaligned-allocation-function, otherwise overload resolution is performed again
on a function call created by passing just the first two arguments. If a viable function is
found (12.4.2), and the type of the second parameter is std::align_val_t and is
not a dependent type then let the found overload be the
overaligned-allocation-function.

● A second overload resolution is performed on a function call created by assembling an
argument list. The first argument is the amount of space requested and has type
std::size_t . The lvalues p1 ... pn are the succeeding arguments. If noa viable
function is found (12.4.2), then let the found overload be the normal-allocation-function,
otherwise overload resolution is performed again on a function call created by passing
just the amount of space required as an argument of type std::size_t . If a viable
function is found (12.4.2), then let the found overload be the normal-allocation-function.

Otherwise;
● Let the overaligned-allocation-function be ::operator new(std::size_t,

std::align_val_t) and let the normal-allocation-function be ::operator
new(std::size_t)

If the coroutine state has new-extended alignment and an overaligned-allocation-function
was found then the coroutine state is allocated by a call to the
overaligned-allocation-function. Otherwise, if the normal-allocation-function was found then
the coroutine state is allocated by a call to the normal-allocation-function. Otherwise, the
program is ill-formed.

Modify [dcl.fct.def.coroutine] p10 as follows:

The unqualified-id get_return_object_on_allocation_failure is looked up in the scope of the
promise type by class member access lookup (6.5.5). If any declarations are found, then the

result of a call to an allocation function used to obtain storage for the coroutine state is
assumed to return nullptr if it fails to obtain storage, and if a global allocation function is
selected, then if the coroutine frame has new-extended alignment the ::operator new(size_t,
align_val_t, const nothrow_t&) form is used, otherwise the ::operator new(size_t, const
nothrow_t&) form is used. The allocation function used in this case shall have a
non-throwing noexcept-specification. If the allocation function returns nullptr, the coroutine
returns control to the caller of the coroutine and the return value is obtained by a call to
T::get_return_object_on_allocation_failure(), where T is the promise type.

Modify [dcl.fct.def.coroutine] p12 as follows:

The deallocation function’s name is looked up in the scope of the promise type. If this lookup
fails, the deallocation function’s name is looked up in the global scope. If deallocation
function lookup finds more than one usual deallocation function, the function to be called is
selected as follows:
● If any deallocation functions found in the scope of the promise type are a destroying

operator delete, the program is ill-formed.
● If the coroutine state has new-extended alignment, a function with a parameter of type

std::align_val_t is preferred; otherwise a function without such a parameter is
preferred. If any preferrred functions are found, all non-preferred functions are eliminated
from further consideration.

● If exactly one function remains, that function is selected and the selection process
terminates.

● Otherwise, a function with a parameter of type std::size_t is preferred to a function
without a parameter of type std::size_t .

both a usual deallocation function with only a pointer parameter and a usual deallocation
function with both a pointer parameter and a size parameter, then the selected deallocation
function shall be the one with two parameters. Otherwise, the selected deallocation function
shall be the function with one parameter. If no usual deallocation function is found, the
program is ill-formed. The selected deallocation function shall be called with the address of
the block of storage to be reclaimed as its first argument. If a deallocation function with a
parameter of type std::size_t is used, the size of the block is passed as the
corresponding argument. If a deallocation function with a parameter of type
std::align_val_t is used, the requested alignment of the block is passed as the
corresponding argument.

Proposed Wording (Option 2)
The design of this option does not attempt to maintain consistent behaviour with [expr.new] and
[expr.delete] with respect to only calling std::align_val_t overloads in cases where the allocation
has new-extended alignment. Instead it opts to always prefer calling the std::align_val_t

overload of the allocation and deallocation functions in over calling an overload without the
std::align_val_t parameter.

Modify [dcl.fct.def.coroutine] p9 as follows:

An implementation may need to allocate additional storage for a coroutine. This storage is
known as the coroutine state and is obtained by calling a non-array allocation function
(6.7.5.4.1). The allocation function’s name is looked up in the scope of the promise type. If
this lookup fails, the allocation function’s name is looked up in the global scope. If the lookup
finds an allocation function in the scope of the promise type, overload resolution is
performed on a function call created by assembling an argument list. The first argument is
the amount of space requested, and has type std::size_t. The second argument is the
requested alignment and has type std::align_val_t . The lvalues p1 . . . pn are the
succeeding arguments. If noa viable function is found (12.4.2), and the type of the second
parameter is std::align_val_t and is not a dependent type then this overload is
selected. Otherwise, overload resolution is performed again on a function call created by
passing the amount of space requested as an argument of type std::size_t as the first
argument, and the requested alignment as an argument of type std::align_val_t as
the second argument. If a viable function is found (12.4.2) and the type of the second
parameter is std::align_val_t and is not a dependent type then this overload is
selected. Otherwise, overload resolution is performed again on a function call created by
passing the amount of space requested as an argument of type std::size_t as the first
argument, and the lvalues p1 ... pn as the succeeding arguments. If a viable function is
found (12.4.2) then this overload is selected. Otherwise, overload resolution is performed
again on a function call created by passing just the amount of space required as an
argument of type std::size_t.
If the lookup did not find an allocation function in the scope of the promise type then storage
is allocated by calling ::operator new(std::size_t, std::align_val_t)
passing the amount of space requested as an argument of type std::size_t as the first
argument and passing the requested alignment as an argument of type
std::align_val_t as the second argument.

Modify [dcl.fct.def.coroutine] p10 as follows:

The unqualified-id get_return_object_on_allocation_failure is looked up in the scope of the
promise type by class member access lookup (6.5.5). If any declarations are found, then the
result of a call to an allocation function used to obtain storage for the coroutine state is
assumed to return nullptr if it fails to obtain storage, and if a global allocation function is
selected, the ::operator new(size_t, align_val_t, const nothrow_t&) form is used. The
allocation function used in this case shall have a non-throwing noexcept-specification. If the
allocation function returns nullptr, the coroutine returns control to the caller of the coroutine
and the return value is obtained by a call to T::get_return_object_on_allocation_failure(),
where T is the promise type.

Modify [dcl.fct.def.coroutine] p12 as follows:

The deallocation function’s name is looked up in the scope of the promise type. If this lookup
fails, the deallocation function’s name is looked up in the global scope. If deallocation
function lookup finds a usual deallocation function with a pointer parameter, size parameter
and alignment parameter then this will be the selected deallocation function, otherwise if
lookup finds both a usual deallocation function with only a pointer parameter and a usual
deallocation function with both a pointer parameter and a size parameter, then thethis will be
the selected deallocation function. Otherwise, if lookup finds a usual deallocation function
with only a pointer parameter, then this will be shall be the one with two parameters.
Otherwise, the selected deallocation function shall be the function with one parameter. If no
usual deallocation function is found, the program is ill-formed. The selected deallocation
function shall be called with the address of the block of storage to be reclaimed as its first
argument. If a deallocation function with a parameter of type std::size_t is used, the size of
the block is passed as the corresponding argument. If a deallocation function with a
parameter of type std::align_val_t is used, then if the block was allocated by a call that
included a requested alignment parameter, then the requested alignment is passed as the
corresponding argument, otherwise __STDCPP_DEFAULT_NEW_ALIGNMENT__ is
passed as the corresponding argument.

Proposed Wording (Option 3)
The design of this option further seeks to simplify the resolution of allocation functions by only
considering overloads with both size_t and align_val_t.

Modify [dcl.fct.def.coroutine] p9 as follows:

An implementation may need to allocate additional storage for a coroutine. This storage is
known as the coroutine state and is obtained by calling a non-array allocation function
(6.7.5.4.1). The allocation function’s name is looked up in the scope of the promise type. If
this lookup fails, the allocation function’s name is looked up in the global scope. If the lookup
finds an allocation function in the scope of the promise type, overload resolution is
performed on a function call created by assembling an argument list. The first argument is
the amount of space requested, and has type std::size_t . The second argument is the
requested alignment and has type std::align_val_t . The lvalues p1 . . . pn are the
succeeding arguments. If no viable function is found (12.4.2), overload resolution is
performed again on a function call created by passing just the amount of space required as
an the first argument of type std::size_t and the request alignment as the second
argument of type std::align_val_t .
If the lookup did not find any allocation function in the scope of the promise type then
storage is allocated by calling ::operator new(std::size_t,
std::align_val_t) passing the amount of space requested as an argument of type

std::size_t as the first argument and passing the requested alignment as an argument
of type std::align_val_t as the second argument.

Modify [dcl.fct.def.coroutine] p10 as follows:

The unqualified-id get_return_object_on_allocation_failure is looked up in the scope of the
promise type by class member access lookup (6.5.5). If any declarations are found, then the
result of a call to an allocation function used to obtain storage for the coroutine state is
assumed to return nullptr if it fails to obtain storage, and if a global allocation function is
selected, the ::operator new(size_t, align_val_t, const nothrow_t&) form is used. The
allocation function used in this case shall have a non-throwing noexcept-specification. If the
allocation function returns nullptr, the coroutine returns control to the caller of the coroutine
and the return value is obtained by a call to T::get_return_object_on_allocation_failure(),
where T is the promise type.

Modify [dcl.fct.def.coroutine] p12 as follows:

The deallocation function’s name is looked up in the scope of the promise type. If this lookup
fails, the deallocation function’s name is looked up in the global scope. If deallocation
function lookup finds a usual deallocation function with a pointer parameter, size parameter
and alignment parameter then this will be the selected deallocation function, otherwise if
lookup finds both a usual deallocation function with only a pointer parameter and a usual
deallocation function with both a pointer parameter and a size parameter, then thethis will be
the selected deallocation function. Otherwise, if lookup finds a usual deallocation function
with only a pointer parameter, then this will be shall be the one with two parameters.
Otherwise, the selected deallocation function shall be the function with one parameter. If no
usual deallocation function is found, the program is ill-formed. The selected deallocation
function shall be called with the address of the block of storage to be reclaimed as its first
argument. If a deallocation function with a parameter of type std::size_t is used, the size of
the block is passed as the corresponding argument. If a deallocation function with a
parameter of type std::align_val_t is used then the requested alignment is passed as
the corresponding argument.

Discussion

Issue #1 - Potential ambiguity with interpretation of templated operator
new() overload

[basic.stc.dynamic.allocation]/3.1
If the allocation function takes an argument of type std::align_val_t, the storage will have the
alignment specified by the value of this argument.

This paragraph has some potentially interesting interactions with coroutine frame allocation
which allows an overload of promise_type::operator new() to be defined that will
receive the arguments to the coroutine function.

This means that if I have:
struct task {

 struct promise_type {

 template<typename... Args>

 static void* operator new(std::size_t, Args...);

 ...

 };

};

task foo(std::align_val_t x) {

 co_return;

}

foo(std::align_val_t(1'000'000));

Then the compiler will generate a call to promise_type::operator new(std::size_t,
std::align_val_t) if needed to allocate storage for the coroutine frame.

Does this mean that the implementation of this operator new() needs to ensure that the
allocation is required to have an alignment of 1'000'000 bytes? Will compilers make any
assumptions about this? ie. if the align_val_t argument was not injected by the compiler?

The proposed wording above tries to avoid this case being considered a valid overload for the
std::align_val_t case by requiring that the found overload not have a parameter in the
alignment position that is a dependent-type.

Issue #2 - Destroying operator delete does not make sense

Need to exclude destroying operator delete from being considered for operator delete overloads
found within the scope of the promise type.

When destroying the coroutine state we are not actually destroying an object. The coroutine
state has no type and so we cannot pass a pointer to the coroutine state type as required by
destroying operator delete calls.

Issue #3 - Alignment requirements not known by compiler front-end

The alignment and size of the coroutine state is not known at template instantiation time and
can depend on the result of optimisation passes that run in later compilation phases.

Optimisation passes of the compiler may end up eliding storage of some overaligned
local-variables if it determines that the construction of those variables is never reachable (ie.
dead-code), thus potentially reducing the alignment requirements of the coroutine state
compared to what an analysis by a compiler-front end could determine.

Conversely, it's possible that the compiler might inline the allocation of a nested coroutine frame
into the caller, which itself may contain overaligned variables, thus potentially increasing the
alignment requirement of the coroutine state compared to what an analysis by a compiler-front
end could determine.

This means that the choice of whether to call the new-extended alignment allocation function or
the normal allocation function will typically be made by the compiler middle/back-end once the
coroutine frame layout has been determined, long after template instantiation has completed.

Thus a compiler front-end will typically need to perform lookup, and instantiate if necessary,
both flavours of allocation functions, and if both are found, defer the decision about which one to
call until after the coroutine frame layout has been calculated.

The proposed wording above attempts to describe this process of performing two allocation
function overload resolutions, one for new-extended alignment and one for normal alignment.

While, in some cases, it may be possible for the compiler front-end to determine which one will
be called, there is no obvious way to normatively specify when this should occur. Thus even in
this situation the compiler should be forced to instantiate both allocation function flavours so that
the validity of the program is not determined by some unspecified property of the coroutine
being compiled. eg. one of the allocation functions may have been ill-formed were it to be
instantiated.

If a particular compiler skipped instantiating the allocation function in cases where it could
determine that it was never going to be called then this might mean the difference between a
program being valid on one compiler and one being ill-formed on another compiler that did not
have this ability to skip the instantiation.

Issue #4 - Order of resolution (Option 1)
When resolving the overloads of operator new() and operator delete() to call when
allocating/deallocating a coroutine frame, the overload resolution order is different depending on
whether the coroutine frame is overaligned or not.

This is how the current wording of option 1 is intended to be interpreted with regards to order of
preference of different overloads.

If the coroutine frame has new-extended alignment then the order of preference for overload
resolution of the allocation function is:

● promise_type::operator new(std::size_t, std::align_val_t, Args...)

● promise_type::operator new(std::size_t, std::align_val_t)

● promise_type::operator new(std::size_t, Args...)

● promise_type::operator new(std::size_t)

● ::operator new(std::size_t, std::align_val_t)

and the order of resolution of the deallocation function is:
● promise_type::operator delete(void*, std::size_t, std::align_val_t)

● promise_type::operator delete(void*, std::align_val_t)

● promise_type::operator delete(void*, std::size_t)

● promise_type::operator delete(void*)

● ::operator delete(void*, std::size_t, std::align_val_t)

Otherwise, if the coroutine frame has normal (non-extended) alignment then the order of
preference for overload resolution is:

● promise_type::operator new(std::size_t, Args...)

● promise_type::operator new(std::size_t)

● ::operator new(std::size_t)

and the order of resolution of the deallocation function is:
● promise_type::operator delete(void*, std::size_t)

● promise_type::operator delete(void*)

● promise_type::operator delete(void*, std::size_t, std::align_val_t)

● promise_type::operator delete(void*, std::align_val_t)

● ::operator delete(void*, std::size_t)

Note that there is a slight inconsistency between operator new() and operator
delete() here. If the coroutine frame is not overaligned then the overloads of operator
new() that contain std::align_val_t are not considered. However, for deallocation
function, it still considers std::align_val_t overloads, it just prefers the overloads without
std::align_val_t .

Also, there is not currently a requirement to also provide a class-member deallocation function if
you provide a class-member allocation function. It will fall-back to global operator delete()
if you only provide a promise_type::operator new() .

Similarly, if you provide only a promise_type::operator delete() , it will still fall back to
::operator new() for the allocation-function.

This seems to be consistent with the behaviour of ordinary class allocation functions, however.

