
Remove Deprecated Volatile Features from C++26
Proposal to remove easily misunderstood feature

Document #: P2866R5
Date: 2028-12-17
Project: Programming Language C++
Audience: EWG, CWG, LWG
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2

3 Introduction 4

4 Feature Analysis 4
4.1 Background . 4
4.2 Core language . 4
4.3 Library . 5

5 C++23 Feedback 6
5.1 Initial EWG review . 6
5.2 Subsequent feedback . 6

6 Proposed Changes for C++26 7
6.1 Core language . 7
6.2 Library . 9
6.3 Concerns raised by core/library interaction . 9

7 C++26 Design Review 15
7.1 SG1 initial review: Varna 2023 . 15
7.2 LEWG initial review: Kona 2023 . 15
7.3 EWG review: Wrocław 2024 . 15

8 C++26 Wording Review 16
8.1 Wording plan for core clauses . 16
8.2 LWG initial review: Tokyo 2024 . 16
8.3 Core initial review: St Louis 2024 . 16
8.4 Core review: Wrocław 2024 . 16

9 Proposed Wording Changes 17
9.1 Update core wording . 17
9.2 Update library wording . 24
9.3 Update cross-reference for stable labels for C++23 . 27

10 Acknowledgements 27

11 References 28

1

mailto:ameredith1@bloomberg.net

1 Abstract
C++ has deprecated a number of features related to volatile semantics in both the core-language specification
and in the library specification. This paper proposes removing those features from C++26.

2 Revision History
R5: December 2024 (Wrocław meeting)

— Simplified the outline without losing content, to reflect maturity of this proposal
— Added EWG concern to the core-language analysis
— Captured the Core review from Wrocław
— Updated and clarified wording following Core review

— Rebased wording onto latest working draft, [N5001?]
— Changed “volatile qualified” to “volatile-qualified”
— Avoid repeating ourselves in 7.6.2.3 [expr.pre.incr]
— Moved grammar to the top of 7.6.19 [expr.ass]
— Split 9.3.4.6 [dcl.fct]p3 into two paragraphs
— Added an example of a volatile function parameter to 9.3.4.6 [dcl.fct]
— Used “single access”, not “atomic operation”, in C.1.2 [diff.cpp23.expr]

R4: July 2024 (post-St Louis mailing)

— Recorded Core working group review from St Louis
— Update Core wording plan to explain subtle changes

— moved wording plan to the C++26 Review section
— described why the current plan no longer touches 12.5 [over.built]

— Sent to SG22 to capture any concerns regarding C compatibility
— Raised EWG concerns for removal of volatile-qualified function parameters
— Updated core wording

— fixed typos and grammar nits highlight in Core review
— restored support for operator= as unevaluated operand
— cleaned up the wording for the pre-increment operators
— fixed the specification for compound assignment to a volatile lvalue
— removed changes to 12.5 [over.built] as unnecessary
— simplified rationale for removing support for operator=
— updated Annex C examples to use preferred ISO form

— Updated library wording
— describe tuple_element and tuple_size as type traits rather than metafunctions
— completed the list of library types affected by removing volatile from tuple traits
— unmerged the rationale for removing volatile variant support from volatile tuple support
— drive-by fix to include specializations of tuple traits for const-qualified types in <complex>

R3: June 2024 (St Louis meeting)

— Recorded summary of the reviews for C++26 in all working groups
— Deferred non-deprecated changes to class template atomic to a new paper
— Updated wording

— Rebased wording onto latest working draft, N4981
— Provided missing rationales for Annex C

R2: April 2024 (post-Tokyo mailing)

— Updated wording
— Rebased wording onto latest working draft, N4971

2

https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/dcl.fct
https://wg21.link/dcl.fct
https://wg21.link/diff.cpp23.expr
https://wg21.link/over.built
https://wg21.link/over.built

— Annex C: changed “will not compile” to “may become ill-formed”
— Simplified note that removing trait specializations for volatile types does not remove support for

volatile-qualified elements

R1: September 2023 (midterm mailing)

— Removed revision history’s redundant subsection numbering
— Noted proposal passed EWG review, but awaiting LEWG confirmation before passing to Core
— Added SG22 C Interoperability to target audience
— Provided the missing Library Analysis
— Analyzed the remaining structured binding dependency on volatile in the library
— Updated wording

— Applied initial Core wordsmith preview from Jens Maurer
— Rebased onto latest working draft, N4958
— Updated stable label cross-reference to C++23

R0: May 2023 (pre-Varna mailing)

Original version of this document, extracted from the C++23 proposal [P2139R2].

Key changes since that earlier paper

— Combined core and library updates in a single paper
— C++23 undeprecated compound assignment
— Rebased wording onto N4944

3

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863], will track the overall analysis, but for features that the
author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the delays
on a single feature do not hold up progress on all.

This paper takes up the deprecated operations on volatile types, D.4 [depr.volatile.type], and the associated
deprecated library features.

4 Feature Analysis
4.1 Background
The volatile keyword is an original part of the C legacy for C++ and describes constraints on programs
intended to model hardware changing values beyond the program’s control. As this entered the type system of
C++, certain interactions were discovered to be troublesome, and latent bugs that could be detected at the time
of program translation go unreported. [P1152R4] breaks down each context where the volatile keyword can
be used and it deprecated for C++20 those uses that are unconditionally dangerous or serve no good purpose.

Following the C++20 deprecations, the C committee looked to adopt a similar stance on volatile and were
given feedback that a number of vendors were strongly opposed to the deprecation of compound-assignment
operators because, among other reasons, many hardware APIs and device drivers would expect to use volatile
compound assignment to communicate with their devices. This subset of the deprecated functionality was
undeprecated for C++23 by [P2327R1], followed by further undeprecations in [CWG2654].

4.2 Core language
A quick micro-analysis suggests the main concerns of the first two paragraphs are read/modify/write operations
where, by the nature of volatile objects, the value being rewritten may have changed since read and modified.
This kind of pattern is most likely in old (pre-C++11) code using volatile as a poor proxy for atomic. Since
we will have well over a decade of real atomic support in the language when C++26 ships, further encouraging
such code (when compiled in the latest dialect) to adapt to the memory model and its stronger guarantees could
be desirable.

The third paragraph addresses function arguments and return values. These temporary or elided objects are
created entirely by the compiler and guaranteed to not display the uncertainty of value implied by the volatile
keyword. As such, any use is redundant and misleading, so removing this facility sooner rather than later would
be helpful and would also mean one fewer oddity to teach when learning (and understanding) the language. The
biggest concern would be compatibility with C code that may still use this feature in its headers. To mitigate, me
might consider removing volatile function parameters and return values for only functions with extern "C++"
linkage.

The fourth paragraph considers the volatile qualifier in structured bindings, and can affect only code written
since C++17. When C++23 is published such use of the qualifier will have been deprecated as long as it was
nondeprecated. It would be good to remove this qualifier now, before more deprecated code is written.

The recommendation is to remove support for all these deprecated use cases from C++26 since we have had
seven years of deprecation warnings to address any concerns. Reviewing each of the four noted usages separately
would also be possible, as would be removing only those features having the lowest risk from removal — notably
paragraphs 3 and 4.

4

https://wg21.link/depr.volatile.type

4.3 Library
Three distinct feature sets were deprecated as part of the deprecating volatile work for C++20. Both
std::tuple and std::variant have an API to query how many elements or alternates a type contains, and
another to query what the type of a given element or alternate is. These APIs support volatile-qualified tuple
and variant types, yet a corresponding get API to retrieve the value of that type has never been available,
making these interfaces largely redundant.

The other use of volatile in the Standard Library is as part of the atomic APIs. Several volatile-qualifier
overloads for atd::atomic should be constrained to exist only when the operations are lock-free, per the primary
library specification, but remain deprecated in Annex D.

4.3.1 Deployment experience

By testing the following program with all the latest compilers and Standard Library implementations available
through Godbolt Compiler Explorer, we discovered that none of the existing library implementations are warning
on use of the deprecated tuple and variant APIs. Deeper analysis may be needed to confirm whether this is
a library issue, or whether such usage is something the compiler finds difficult to warn about when using the
[[deprecated]] attribute.
#include <tuple>
#include <type_traits>
#include <variant>

using TypeT = std::tuple<int, char, float> volatile;
using TypeV = std::variant<int, char, float> volatile;

static_assert(std::is_same_v<std::tuple_element<0, TypeT>::type, int volatile>);
static_assert(std::is_same_v<std::tuple_element_t<0, TypeT>, int volatile>);

static_assert(std::is_same_v<std::variant_alternative<0, TypeV>::type, int volatile>);
static_assert(std::is_same_v<std::variant_alternative_t<0, TypeV>, int volatile>);

5

5 C++23 Feedback
5.1 Initial EWG review
The following feedback was provided when this core-language feature was originally discussed in the EWG telecon
on July 30, 2020.

This clause is effectively four different subfeatures, that were reviewed and polled independently. The author
offered to pull this whole section out into another paper if there were concerns about processing a complex topic
in this simplified omnibus paper (which has effectively happened in this paper), but relatively little contention
arose throughout the discussion, so it will remain here for now.

Some concerns were raised that by removing some of these features, we would be creating inconsistencies between
the treatment of const and volatile in the language. Others suggested that this inconsistency was a good
thing and that one of the early concerns Bjarne expressed about the design and evolution of C++ was too much
consistency in the treatment of these two qualifiers that do different things in practice.

The observation was made — several times — that volatile qualifiers on locally scoped variables, such as
function arguments, rarely mean what naive users expect them to mean, and can be freely ignored by an
optimizing compiler. By removing support for some of those declarations, we make writing misleading (but
otherwise correct) code more difficult.

5.2 Subsequent feedback
Following feedback from WG14 and their progress for C23, reading the deprecated result of compound assignment
to a volatile lvalue for the bitwise operators was undeprecated for C compatibility in C++23 by [P2327R1].
Subsequently, responding to NB comment US 16-045, reading the result of the remaining compound assignment
operators was undeprecated by [CWG2654], reintroducing a potential C incompatibility in favor of consistency
and a simpler language.

6

6 Proposed Changes for C++26
This paper proposes removing from C++26 all the deprecated features regarding the use of volatile.

6.1 Core language
Remove the following language interactions:

— increment and decrement operators on volatile lvalues
— volatile qualifier on nonreference function parameters
— volatile qualifier on nonreference function return types
— volatile-qualified structured bindings

In addition, built-in assignment operator functions for volatile lvalues should be declared to return void.
C++23 deprecates calling assignment operators with volatile lvalues unless they are a discarded-value expression
or an unevaluated operand. We can enforce this by simply removing the return value from the function signature.
However, this change is bigger than strictly necessary since it further removes the nondeprecated use case as
an unevaluated operand. This is the recommended choice as it means that code written to detect valid return
types using SFINAE constraints will report only valid code; otherwise, we would risk breaking metaprograms.

6.1.1 A superposition problem

Core review on November 22, 2024, highlighted a problem in which we must choose between a specification
that supports one of two currently valid semantics, and that cannot support both. The issue is how to indicate
that the result of assignment to a volatile object can be used only in a discarded value expression, or as an
unevaluated operand.

In one resolution we simply state that condition and let the compiler diagnose misuse. In the second resolution
we change the result type of such expressions to void so that the existing compiler rules enforce that constraint.

The trade-off is that in the first case, the result type of the unevaluated expression does not change, as might be
detected in its use in a sizeof expression or similar. However, such usage would also satisfy a requires clause
since the expression is not evaluated in the requires clause itself, allowing overload resolution to select a template
instantiation that will fail to compile because it expects the requires clause to remove that instantiation from
the overload set.

The following program is valid in C++23.
#include <cstdio>

template <class T>
void fn(T& a)

requires requires{ a = a -= a; }
{

std::puts("constrained");

a = a -= a; // deprecated
}

template <class T>
void fn(T& a) {

std::puts("unconstrained");
}

int main() {
volatile int v = sizeof(v -= v); // unevaluated operand is not deprecated
fn(v); // instantiate template with reference to `volatile int`

}

7

Note that the latest Clang and MSVC releases give no deprecation warnings on this code; gcc and EDG correctly
warn on the selected “constrained” overload; and EDG erroneously warns on the sizeof expression too.

We should consider which of the alternative resolutions we prefer for C++26.

Retain result type void result type

#include <cstdio>

template <class T>
void fn(T& a)

requires requires{ a = a -= a; }

{
std::puts("constrained");

// selected instantiation is ill-formed
a = a -= a; // error

}

template <class T>
void fn(T& a) {

std::puts("unconstrained");
}

int main() {
// unevaluated operand is not deprecated
volatile int v = sizeof(v -= v);

// intantiate constrained overload
fn(v);

}

#include <cstdio>

template <class T>
void fn(T& a)

requires requires{ a = a -= a; }
// constraint not satisfied

{
std::puts("constrained");

a = a -= a;
}

template <class T>
void fn(T& a) { // seclected overload

std::puts("unconstrained");
}

int main() {
// unevaluated operand is invalid
volatile int v = sizeof(v -= v); // error

// intantiate unconstrained overload
fn(v);

}

If we compare the solutions, the first form — the currently proposed wording — breaks only deprecated code,
and that is usually our preferred path. However, the second form looks more like the behavior we would prefer,
even though it could break existing nondeprecated code.

The paper author prefers the second form, but seeks guidance before updating the wording again.

8

6.2 Library
6.2.1 tuple API

Remove deprecated tuple traits of volatile-qualified types. I tried and failed to demonstrate the need to support
a customization point of structured bindings of volatile-qualified types. Structured bindings of volatile-
qualified std::tuple objects already fail to compile due to a lack of get support, and my test cases of trying
to set up a user customization for their own types compiled without the volatile specializations.

6.2.2 variant API

Remove deprecated variant interface.

6.2.3 Non-lock-free atomics

Remove deprecated volatile members of atomic<T> when atomic<T>::is_lock_free is false.

6.2.4 (Deferred) Change volatile atomic interface to match nonatomic types

The following changes are deferred and not part of the proposed wording of this paper; instead, they shall be
revisited in a separate, specific paper. The design questions to address are concerns that these functions have not
yet been deprecated, unless their implementation is not lock-free. The forms that are not lock-free are removed
by this paper, so we will not touch the specification for the forms that remain.

atomic<intergal-type> and atomic<pointer-type> should remove volatile-qualified increment and
decrement operators in all cases.

All nondeleted volatile-qualified atomic<T> assignment operators should change their return value to void,
although this might be an ABI-breaking change.

In each case, the atomic operation returns a nonatomic value, rather than a reference to the atomic object
itself, and so avoids the concerns that to removing these operations from the volatile scalars. However, having
operations on the volatile atomic types that do not exist on the corresponding volatile scalar types seems odd.
That consistency, however, is a design question better raised with SG1.

6.3 Concerns raised by core/library interaction
One corner case retains a core-language dependency on tuple_size and tuple_element through structured bind-
ings. Let us build up an example to demonstrate the specific corner that this paper proposes removing (without
deprecation) from the Core specification, allowing LWG to remove the partial specializations of tuple_size and
tuple_element for volatile-qualified types.

6.3.1 Tailored structured binding

First, demonstrate the feature that has been deprecated for the last two editions of the Standard. Below, we
create a type in namespace test, struct Binding, that is a simple aggregate-like class that defines all the
customization points necessary to use that type in a structured binding.
#include <tuple>
#include <type_traits>
#include <utility>

namespace test {
struct Binding {

int data{};
char code{};
float value{};

9

Binding() = default;
Binding(Binding const&) = default;

};

template<unsigned N>
auto get(Binding& obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {
return obj.value;

}

std::unreachable();
}

template<unsigned N>
auto get(Binding const & obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {
return obj.value;

}

std::unreachable();
}

}

namespace std {

template <>
struct tuple_size<test::Binding> : std::integral_constant<unsigned, 3> {};

template <>
struct tuple_element<0, test::Binding> {

using type = int;
};

template <>
struct tuple_element<1, test::Binding> {

using type = char;

10

};

template <>
struct tuple_element<2, test::Binding> {

using type = double;
};

}

int main() {
test::Binding x = {};
auto [a,b,c] = x;
return a;

}

Here, explicitly specialize the templates std::tuple_size and std::tuple_element for our class type, and add
get overloads in its own namespace that are found via ADL. This is a basic demonstration of supporting our
own type in a structured binding.

6.3.2 Deprecated volatile structured binding

Then we update the main program:
int main() {

test::Binding x = {};
auto volatile [a,b,c] = x;
return a;

}

This program gives warnings that this use of volatile is deprecated and is the usage this paper proposes
removing.

6.3.3 Nondeprecated structured binding to a volatile-qualified lvalue

Next, we bind from a volatile-qualified lvalue instead:
int main() {

test::Binding volatile x = {};
auto [a,b,c] = x;
return a;

}

This example fails to compile as the structure binding wants to make a copy of x, but no constructor that can
take a volatile-qualified argument is found, so we update Binding as follows:
struct Binding {

int data{};
char code{};
float value{};

Binding() = default;
Binding(Binding const&) = default;
Binding(Binding const volatile &) {} // construct with default intiializers

};

11

By overloading with the const volatile & copy constructor, the program with the volatile-qualified x now
compiles:
int main() {

test::Binding volatile x = {};
auto [a,b,c] = x; // this will compile now
return a;

}

Note that this use of volatile is not deprecated and should remain supported. However, we may be wondering
if this uses tuple_size on a volatile-qualified type? So let us test that!

Define explicit specializations of tuple_size for all cv-qualified variations of test::Binding so that only the
unqualified version provides the integral constant base characteristics required by the structured binding protocol:
template <>
struct tuple_size<test::Binding> : std::integral_constant<unsigned, 3> {};

template <>
struct tuple_size<test::Binding const> {}; // canary

template <>
struct tuple_size<test::Binding volatile> {}; // canary

template <>
struct tuple_size<test::Binding const volatile> {}; // canary

If the structured binding attempted to find the tuple_size of a volatile-qualified object, it should fail to
compile; however, our program continues to compile just fine, indicating that structured bindings are querying
the non-volatile-qualified copy of x used for the by-value binding. Hence, this valid use of volatile is not
impacted by the proposal to remove volatile support from tuple_size (and tuple_element).

6.3.4 Binding by reference to a volatile-qualified lvalue

Now, let us try to make a structured binding by-reference to a volatile lvalue. Note that according to the
core-language wording, this is well-defined behavior that is not deprecated in C++23:
int main() {

test::Binding volatile x = {};
auto & [a,b,c] = x;
return a;

}

Here we find that the structured binding relies upon the deprecated library value
tuple_size<volatile test::Binding>::value, suggesting that our proposal would break this code. However,
retaining the volatile-qualified support for tuple_size is not yet enough for the above code to compile, even in
the original C++17 specification that preceded the deprecations. The remaining issue is that our get overloads
do not accept references to volatile-qualified types. Hence, to complete our implementation and as required
for C++17 (which is not affected by any changes proposed by this paper) we must add the ADL-discoverable
volatile-qualified overloads:

12

template<unsigned N>
auto get(Binding volatile & obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {
return obj.value;

}

std::unreachable();
}

template<unsigned N>
auto get(Binding const volatile & obj) {

if constexpr (0 == N) {
return obj.data;

}

if constexpr (1 == N) {
return obj.code;

}

if constexpr (2 == N) {
return obj.value;

}

std::unreachable();
}

Adding these two overloads is sufficient to create a structured binding by-reference to our volatile-qualified lvalue.
Note that the get overloads in namespace std for native arrays, std::array, std::pair, and std::tuple do
not support volatile-qualified objects and never have. Hence, support for reference bindings to volatile lvalues
has only ever been supported for user-provided types that supply the necessary ADL-discoverable overloads of
get.

If we adopt this proposal to remove support for volatile-qualified types in the tuple metafunctions, then users
will have to add their own specializations for tuple_size and tuple_element for their own type in addition to
their existing get overloads:
template <>
struct tuple_size<test::Binding> : std::integral_constant<unsigned, 3> {};

template <>
struct tuple_size<test::Binding const>

: tuple_size<test::Binding>::type {};

template <>
struct tuple_size<test::Binding volatile>

: tuple_size<test::Binding>::type {};

13

template <>
struct tuple_size<test::Binding const volatile>

: tuple_size<test::Binding>::type {};

Note that whether users are currently permitted to specialize tuple_size in this way is unclear. However, if
such specializations are not allowed, the original example and all like it are also not allowed, so no breakage of
well-defined code would occur under this proposal.

6.3.5 Proposed resolution

We preemptively reject any proposal that would, without a period of deprecation, disqualify structured binding
to volatile-qualified lvalues. Perhaps such a deprecation was intended by the original paper, [P1152R4], but if
so, that has not been explicitly drafted.

The only breakage that occurs by removing the tuple_size and tuple_element specializations is binding
by-reference to a volatile-qualified lvalue, and that already requires a user to provide partial and/or explicit
specializations of the primary template for their type as well as a larger set of get overloads in their namespace
(or as template-member functions of the class) than provided in namespace std for standard types, supporting
volatile-qualified objects.

Assuming a user has already done all the above so that their program would fail to compile with C++26, the
specification is already clear on how users can fix their programs: The compiler is going to look for those
specializations of tuple_size and tuple_element for their type, and being a user-provided type, the users have
permission to provide those specializations themselves.

Hence, the recommendation of this paper is to remove the deprecated tuple API, and maybe to add a note to
the structured bindings clause to sugges how the user may support this edge case.

14

7 C++26 Design Review
i ## EWG initial review: Varna 2023

There were some concerns with removing the support for top-level volatile qualifiers in structured binding, but
a stronger consensus to proceed with the full proposal as written.

Forward to Core after the paper passes LEWG review

7.1 SG1 initial review: Varna 2023
Reviewed the section of this paper that has specific concerns for SG1, notably the deprecated atomic members
that should SFINAE away when is_lock_free is false.

Consensus to forward to LEWG for final review, despite concerns about removing any feature forcing breakage
on working code.

7.2 LEWG initial review: Kona 2023
Author plays devil’s advocate to ensure that concerns are heard, but the room is comfortable that the less the
library says about volatile the better, so it would be good to remove these last few vestiges that are not needed.

Forward the library component of “P2866R1 Remove Deprecated Volatile Features From C++26” (8.2, and
parts of 8.3) to LWG, to be confirmed by electronic polling.

The paper was submitted to the December 2023 LEWG electronic poll, [P3053R0], and was forwarded to LWG
following a successful result [P3054R0].

7.3 EWG review: Wrocław 2024
During Core review in St Louis and the subsequent SG22 C Liaison review, there was a request for EWG to
reconsider removing support for volatile-qualified function parameters, and to instead consider undeprecating
them.

The suggested use case was that while a valid C++ program cannot observe the difference whether a parameter
is declared as volatile or not, external tooling is known to hook into extensions built around this facility. For
example, a debugger might be better able to change the value of a function argument while execution is suspended
when the runtime knows that the function parameter is volatile and hence subject to change without notice —
in this case by the debugger.

EWG polled and indicated that its preference was to continue with the removal, since such extensions rightly
belong outside the Standard. It was also observed that implementation can continue to support such volatile
function parameters if they choose, as long as they diagnose that such usage is an extension not present in a
strictly conforming compiler.

This proposal was then sent back to Core to complete the wording review.

15

8 C++26 Wording Review
8.1 Wording plan for core clauses
First, where we want to restrict operations to modifiable lvalues that no longer support volatile-qualified types,
we will call out “modifiable non-volatile lvalues”, which excludes all cv-qualifiers, so we can strike cv-qualification
too.

When it comes to using the result of a volatile-qualified assignment expression we note that be removing the
deprecated support from the grammar, we never get into the situation that a volatile return types in 12.5
[over.built] are encountered as part of a valid expression. Rather than change the grammar to return void in
such cases, we prefer to make the minimal change and leave this part of the grammar untouched, minimizing
the risk of accidental breakage should we discover some path into these calls in an unevaluated operand where
the changing the return type would be observable.

Finally, we remove support for the volatile qualifier without a reference qualifier when declaring a structured
binding.

8.2 LWG initial review: Tokyo 2024
Several corrections were made live during review and are incorporated in the proposed wording below. Most
significant changes were simplifying the note that removing trait specializations for volatile types does not remove
support for volatile-qualified elements, as the original phrasing was quite confused, and broadly updating Annex
C wording in all related papers to use the phrase “may become ill-formed” rather than “will not compile”.

8.3 Core initial review: St Louis 2024
Other than simple typos and grammar nits, concerns were raised about making the assignment operator ill-
formed for unevaluated operands, since it should be well-formed to have an unevaluated operand that would be
a discarded-value expression; a wording fix was suggested that preserved all the intended properties.

Concerns were raised about removing support for volatile-qualified function parameters, because at least one
attendee believed they had an active use case. A paper that instead proposed undeprecating volatile function
parameters was planned to be written, and sent to EWG along with this paper to confirm the preferred direction
at the next meeting. No such concerns were raised about the function return types.

Concerns were raised about the changes to signatures in 12.5 [over.built], with the belief that the changes in
7 [expr] already preempt hitting the problem cases, and it would be safer to make only the minimal necessary
change.

Further concerns were raised whether SG22, the C/C++ compatibility study group, had seen this paper. The
next revision will be sent to SG22 for feedback.

8.4 Core review: Wrocław 2024
Minor corrections and wording updates were suggested, and the author did not manage to complete the revisions
in time for a second review. It is hoped that the next revision should be close to complete.

However, one issue was raised to send back to EWG regarding the preferred return type of assignment operators
to volatile-qualified types. Specifically, there is a choice to make between preserving the behavior of unevaluated
operands in sizeof and decltype expressions (make no change) or changing the return type to void (enforcing
that all use must be a discarded value expression) which supports the expected behavior in requires clauses of
rejecting code that will not compile when instantiated.

The currently proposed wording favors keeping the return type, respecting use as an unevaluated operand.

16

https://wg21.link/over.built
https://wg21.link/over.built
https://wg21.link/expr

9 Proposed Wording Changes
Make the following changes to the C++ Working Draft. All wording is relative to [N5001?], the latest draft at
the time of writing.

9.1 Update core wording
9.1.1 Changes to core clauses

7.6.1.6 [expr.post.incr] Increment and decrement
1 The value of a postfix ++ expression is the value obtained by applying the lvalue-to-rvalue conversion(7.3.2

[conv.lval]) to its operand.

[Note 1: The value obtained is a copy of the original value. —end note]

The operand shall be a modifiable non-volatile lvalue. The type of the operand shall be an arithmetic type
other than cv bool, or shall be a pointer to a complete object type. An operand with volatile-qualified type is
deprecated; see D.4 [depr.volatile.type]. The value of the operand object is modified (3.1 [defns.access]) as if it
were the operand of the prefix ++ operator (7.6.2.3 [expr.pre.incr]). The value computation of the ++ expression is
sequenced before the modification of the operand object. With respect to an indeterminately-sequenced function
call, the operation of postfix ++ is a single evaluation.

[Note 2: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect
associated with any single postfix ++ operator. —end note]

The result is a prvalue. The type of the result is the cv-unqualified version of the type of the operand.
2 The operand of postfix -- is decremented analogously to the postfix ++ operator.

[Note 3: For prefix increment and decrement, see 7.6.2.3 [expr.pre.incr]. —end note]

7.6.2.3 [expr.pre.incr] Increment and decrement
1 The operand of prefix ++ or -- shall not be of type cv bool. An operand with volatile-qualified type is deprecated;

see D.4 [depr.volatile.type]. The expression ++x is otherwise equivalent to x+=1 and the expression --x is
otherwise equivalent to x-=1 (7.6.19 [expr.ass]).

[Note 1: For postfix increment and decrement, see 7.6.1.6 [expr.post.incr]. —end note]

7.6.19 [expr.ass] Assignment and compound assignment operators

assignment-expression:
conditional-expression
yield-expression
throw-expression
logical-or-expression assignment-operator initializer-clause

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=

Editor’s Note: defining simple assignment operator improves the xref in 6.7.4 [basic.indet]p2.2
1 The assignment operatorsimple assignment operator (=) and the compound assignment operators all group right-

to-left. All require a modifiable lvalue as their left operand; their result is an lvalue of the type of the left operand,
referring to the left operand. If the operator is the simple assignment operator, the left operand shall not be
volatile-qualified unless the (possibly parenthesized) assignment is a discarded-value expression or an unevaluated
operand (7.2.3 [expr.context]), in which case its result is a prvalue of type void. The result in all cases is a
bit-field if the left operand is a non-volatile bit-field. In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression. The

17

https://wg21.link/expr.post.incr
https://wg21.link/conv.lval
https://wg21.link/depr.volatile.type
https://wg21.link/defns.access
https://wg21.link/expr.pre.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.pre.incr
https://wg21.link/depr.volatile.type
https://wg21.link/expr.ass
https://wg21.link/expr.post.incr
https://wg21.link/expr.ass
https://wg21.link/basic.indet
https://wg21.link/expr.context

right operand is sequenced before the left operand. With respect to an indeterminately-sequenced function call,
the operation of a compound assignment is a single evaluation.

[Note 1: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect
associated with any single compound assignment operator. —end note]

assignment-expression:
conditional-expression
yield-expression
throw-expression
logical-or-expression assignment-operator initializer-clause

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), let V be the result of the right operand; the object referred to by the left operand
is modified(3.1 [defns.access]) by replacing its value with V or, if the object is of integer type, with the value
congruent(6.8.2 [basic.fundamental]) to V.

3 If the right operand is an expression, …
5 An assignment whose left operand is of a volatile-qualified type is deprecated (D.4 [depr.volatile.type]) un-

less the (possibly parenthesized) assignment is a discarded-value expression or an unevaluated operand (7.2.3
[expr.context]).

6 The behavior of an expression of the form E1 op= E2 is equivalent to E1 = E1 op E2 except that E1 is evaluated
only once and if E1 is volatile-qualified, the result is an lvalue referring to E1.

9.3.4.6 [dcl.fct] Functions
1 …
2 The parameter-declaration-clause determines the arguments that can be specified, and their processing, when

the function is called.

[Note 1: The parameter-declaration-clause is used to convert the arguments specified on the function call; see
7.6.1.3 [expr.call]. —end note]

If the parameter-declaration-clause is empty, the function takes no arguments. A parameter list consisting of
a single unnamed non-object parameter of non-dependent type void is equivalent to an empty parameter list.
Except for this special case, a parameter shall not have type cv void. A parameter with shall not have a
volatile-qualified type is deprecated; see D.4 [depr.volatile.type].

[Example N:
using t = volatile int;
using f = void(*)(t); // error: volatile-qualified parameter type

—end example]
x If the parameter-declaration-clause terminates with an ellipsis or a function parameter pack (13.7.4

[temp.variadic]), the number of arguments shall be equal to or greater than the number of parameters that do
not have a default argument and are not function parameter packs. Where syntactically correct and where
“...” is not part of an abstract-declarator, “...” is synonymous with “, ...”. A parameter-declaration-clause
of the form parameter-declaration-list ... is deprecated ([depr.ellipsis.comma]).

[Example 1: The declaration
int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.

18

https://wg21.link/defns.access
https://wg21.link/basic.fundamental
https://wg21.link/depr.volatile.type
https://wg21.link/expr.context
https://wg21.link/dcl.fct
https://wg21.link/expr.call
https://wg21.link/depr.volatile.type
https://wg21.link/temp.variadic
https://wg21.link/depr.ellipsis.comma

printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char*. —end example]

[Note 2: The standard header <cstdarg> (17.13.2 [cstdarg.syn]) contains a mechanism for accessing arguments
passed using the ellipsis (see 7.6.1.3 [expr.call] and 17.13 [support.runtime]). —end note]

3 The type of a function is determined using the following rules. The type of each parameter (including function
parameter packs) is determined from its own parameter-declaration (9.3 [dcl.decl]). After determining the type
of each parameter, any parameter of type “array of T” or of function type T is adjusted to be “pointer to T”.
After producing the list of parameter types, any top-level cv-qualifiers const-qualifier modifying a parameter
type are is deleted when forming the function type. The resulting list of transformed parameter types and the
presence or absence of the ellipsis or a function parameter pack is the function’s parameter-type-list.

[Note 3: This transformation does not affect the types of the parameters. For example,
int(*)(const int p, decltype(p)*) and int(*)(int, const int*) are identical types. —end note]

[Example 2:

...

—end example]
4 …

13 The return type shall be a non-volatile non-array object type, a reference type, or cv possibly const-qualified
void.

[Note 8: An array of placeholder type is considered an array type. —end note]
14 A volatile-qualified return type is deprecated; see D.4 [depr.volatile.type].

9.6 [dcl.struct.bind] Structured binding declarations
1 A structured binding declaration introduces the identifiers v0, v1, v2, …, v𝑁−1 of the sb-identifier-list as names.

An sb-identifier that contains an ellipsis introduces a structured binding pack(13.7.4 [temp.variadic]). A struc-
tured binding is either an sb-identifier that does not contain an ellipsis or an element of a structured binding
pack. The optional attribute-specifier-seq of an sb-identifier appertains to the associated structured bindings.
Let cv denote the cv-qualifiers in the decl-specifier-seq and S consist of the storage-class-specifiers of the decl-
specifier-seq (if any). A cv that includes volatile is deprecated; see D.4 [depr.volatile.type] ill-formed. First, a
variable with a unique name e is introduced. If the assignment-expression in the initializer has array type cv1
A and no ref-qualifier is present, e is defined by

attribute-specifier-seqopt S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of the assignment-
expression as specified by the form of the initializer. Otherwise, e is defined as-if by

attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the declaration other than
the declarator-id are taken from the corresponding structured binding declaration. The type of the id-expression
e is called E.

[Note 1: E is never a reference type (7.2 [expr.prop]). —end note]
2 The structured binding size of E, as defined below, …
8 Otherwise, …

[Example 3:

19

https://wg21.link/cstdarg.syn
https://wg21.link/expr.call
https://wg21.link/support.runtime
https://wg21.link/dcl.decl
https://wg21.link/depr.volatile.type
https://wg21.link/dcl.struct.bind
https://wg21.link/temp.variadic
https://wg21.link/depr.volatile.type
https://wg21.link/expr.prop

struct S { mutable int x1 : 2; volatile double y1; };
S f();
const auto [x, y] = f();
volatile auto [a, b] = f(); //error: E is volatile

The type of the id-expression x is “int”, the type of the id-expression y is “const volatile double”. —end
example]

9.1.2 Update Annex C for differences to C++23

C.1.2 [diff.cpp23.expr] Clause 7: expressions
2 Affected subclause: 7.6.1.6 [expr.post.incr] and 7.6.2.3 [expr.pre.incr]

Change: Cannot increment or decrement volatile scalars.

Rationale: The load and the store are not a single access, which is a common source of bugs. Such operations
are better expressed as a = a + 1 to ensure the separate load and separate store are seen.

Effect on original feature: A valid C++ 2023 program that applies the increment or decrement operators to
a volatile-qualified scalar object becomes ill-formed.

[Example 1:
volatile int x = 0;
++x; // ill-formed, OK in C++23
x--; // ill-formed, OK in C++23

—end example]
3 Affected subclause: 7.6.19 [expr.ass]

Change: Cannot use the result of assignment to a volatile-qualified type.

Rationale: Relying on the result of assigning to a volatile object is a subtle source of bugs that are not easy to
observe by reading the code. Given the expression

a = b = c;

where a, b, and c are lvalues of the same type, but b is also volatile, it is not immediately obvious that the
assignment to a involves an additional load from b, which might produce a different value than c.

Effect on original feature: A valid C++ 2023 program that uses the result of assignment to a volatile-qualified
object becomes ill-formed.

[Example 2:
volatile int b = 0;
int c = b = 1; // ill-formed, in C++23 would assign 1 to b

// and the subsequent value of b to c

—end example]

C.1.3 [diff.cpp23.dcl.dcl] Clause 9: declarations
2 Affected subclause: 9.3.4.6 [dcl.fct]

Change: Cannot declare volatile-qualified function parameter types and function return types.

Rationale:

20

https://wg21.link/diff.cpp23.expr
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/diff.cpp23.dcl.dcl
https://wg21.link/dcl.fct

Cv-qualification on parameter types apply only within the scope of the function definition, where volatile qual-
ification is effectively meaningless as the compiler can see the whole lifetime of the object where there is no
opportunity for some well-defined external process to change its value asynchronously.

Effect on original feature: A valid C++ 2023 program that declares volatile-qualified function parameters
or functions with a volatile-qualified return type becomes ill-formed.

[Example 1:
int f(volatile int v) { return v; } // ill-formed, valid in C++23

—end example]
4 Affected subclause: 9.6 [dcl.struct.bind]

Change: Volatile-qualified structured binding declarations are no longer valid.

Rationale: Volatile-qualified structured binding declarations require customization by users to support volatile-
qualified get calls, which is not possible for templates in namespace std such as pair and tuple.

Effect on original feature: A valid C++ 2023 program that declares a volatile-qualified structured binding
becomes ill-formed.

[Example 2:
int main() {

int x[] = {1, 2, 3};
std::tuple y{1, 2, 3};

auto volatile [a, b, c] = x; // ill-formed, valid in C++23
auto volatile [d, e, f] = y; // always ill-formed

}

—end example]

9.1.3 Update Annex C for differences to ISO C

C.7.4 [diff.expr] Clause 7: expressions
x Affected subclause: 7.6.1.6 [expr.post.incr] and 7.6.2.3 [expr.pre.incr]

Change: Cannot increment or decrement volatile scalars.

Rationale: The load and the store are not a single access, which is a common source of bugs. Such operations
are better expressed as a = a + 1 to ensure the separate load and separate store are seen.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation.

How widely used: Seldom.
y Affected subclause: 7.6.19 [expr.ass]

Change: Cannot use the result of assignment to a volatile-qualified type.

Rationale: Relying on the result of assigning to a volatile object is a subtle source of bugs that are not easy to
observe by reading the code. Given the expression

a = b = c;

where a, b, and c are lvalues of the same type, but b is also volatile, it is not immediately obvious that the
assignment to a involves an additional load from b, which might produce a different value than c.

Effect on original feature: Deletion of semantically well-defined feature.

21

https://wg21.link/dcl.struct.bind
https://wg21.link/diff.expr
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass

Difficulty of converting: Semantic transformation.

How widely used: Seldom.

C.7.6 [diff.dcl] Clause 9: declarations
x Affected subclause: 9.3.4.6 [dcl.fct]

Change: Cannot declare volatile-qualified function parameter types and function return types.

Rationale: Cv-qualification on parameter types applies only within the scope of the function definition, where
volatile qualification is effectively meaningless since the compiler can see the whole lifetime of the object where
there is no opportunity for some well-defined external process to change its value asynchronously.

Simplifying the language by removing a feature that is rarely used.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation.

How widely used: Seldom.

9.1.4 Strike core wording from Annex D

D.4 [depr.volatile.type] Deprecated volatile types
1 Postfix ++ and -- expressions (7.6.1.6 [expr.post.incr]) and prefix ++ and -- expressions (7.6.2.3 [expr.pre.incr])

of volatile-qualified arithmetic and pointer types are deprecated.

[Example 1:
volatile int velociraptor;
++velociraptor; // deprecated

—end example]
2 Certain assignments where the left operand is a volatile-qualified non-class type are deprecated; see 7.6.19

[expr.ass].

[Example 2:
int neck, tail;
volatile int brachiosaur;
brachiosaur = neck; // OK
tail = brachiosaur; // OK
tail = brachiosaur = neck; // deprecated
brachiosaur += neck; // OK

—end example]
3 A function type (9.3.4.6 [dcl.fct]) with a parameter with volatile-qualified type or with a volatile-qualified return

type is deprecated.

[Example 3:
volatile struct amber jurassic(); // deprecated
void trex(volatile short left_arm, volatile short right_arm); // deprecated
void fly(volatile struct pterosaur* pteranodon); // OK

—end example]
4 A structured binding (9.6 [dcl.struct.bind]) of a volatile-qualified type is deprecated.

[Example 4:

22

https://wg21.link/diff.dcl
https://wg21.link/dcl.fct
https://wg21.link/depr.volatile.type
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/dcl.fct
https://wg21.link/dcl.struct.bind

struct linhenykus { short forelimb; };
void park(linhenykus alvarezsauroid) {
volatile auto [what_is_this] = alvarezsauroid; // deprecated
// ...

}

—end example]

23

9.2 Update library wording
9.2.1 No changes to zombie names

As all the entities being struck are overloads of identifiers that retain their original meaning, no new names need
be added to 16.4.5.3.2 [zombie.names].

22.4.7 [tuple.helper] Tuple helper classes

template<class T> struct tuple_size<const T>;

4 …
6 In addition to being available via inclusion of the <tuple> header, the template is available when any of the head-

ers <array> (23.3.2 [array.syn]), <complex> (29.4.2 [complex.syn]), <ranges> (25.2 [ranges.syn]), or <utility>
(22.2.1 [utility.syn]) are included.
template<size_t I, class T> struct tuple_element<I, const T>;

7 …
8 In addition to being available via inclusion of the <tuple> header, the template is available when any of the head-

ers <array> (23.3.2 [array.syn]), <complex> (29.4.2 [complex.syn]), <ranges> (25.2 [ranges.syn]), or <utility>
(22.2.1 [utility.syn]) are included.

9.2.2 Add Annex C Library wording for differences to C++23

C.1.X Annex D: compatibility features [diff.cpp23.depr]
x Change: Remove volatile support for volatile-qualified array, complex, pair, ranges::subrange, and tuple

in the type traits tuple_element and tuple_size.

Rationale: The library does not make extra effort to support volatile types and the support offered by just
these type traits without support from the function get provided little value.

Effect on original feature: A valid C++ 2023 program using these type traits for volatile-qualified array,
complex, pair, ranges::subrange, or tuple may become ill-formed.

[Note N : This change does not remove support for volatile-qualified types stored in an array, pair,
ranges::subrange, or tuple. —end note]

y Change: Remove volatile support for volatile-qualified variant in the type traits variant_alternative, and
variant_size.

Rationale: The library does not make extra effort to support volatile types and the support offered by just
these type traits without support from the function get provided little value.

Effect on original feature: A valid C++ 2023 program using these type traits for volatile-qualified variant
may become ill-formed.

[Note N : This change does not remove support for volatile-qualified types stored in a variant. —end note]
z Change: Remove support for operations on volatile atomic<T> unless atomic<T>::is_always_lock_free

is true.

Rationale: Implementations that are not able to be implemented lock-free risk introducing word tearing, which
is not permitted for correct behavior of atomic operations.

Effect on original feature: A valid C++ 2023 program using such operations on an atomic<T> object may
become ill-formed.

24

https://wg21.link/zombie.names
https://wg21.link/tuple.helper
https://wg21.link/array.syn
https://wg21.link/complex.syn
https://wg21.link/ranges.syn
https://wg21.link/utility.syn
https://wg21.link/array.syn
https://wg21.link/complex.syn
https://wg21.link/ranges.syn
https://wg21.link/utility.syn

9.2.3 Strike Library wording from Annex D

D.15 [depr.tuple] Tuple
1 The header <tuple> (22.4.2 [tuple.syn]) has the following additions:

namespace std {
template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;
template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

}

template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

2 Let TS denote tuple_size<T> of the cv-unqualified type T. If the expression TS::value is well-
formed when treated as an unevaluated operand (7.2.3 [expr.context]), then specializations of each
of the two templates meet the Cpp17TransformationTrait requirements with a base characteristic of
integral_constant<size_t, TS::value>. Otherwise, they have no member value.

3 Access checking is performed as if in a context unrelated to TS and T. Only the validity of the immediate context
of the expression is considered.

4 In addition to being available via inclusion of the <tuple> (22.4.2 [tuple.syn]) header, the two templates are
available when any of the headers <array> (23.3.2 [array.syn]), <ranges> (ranges.syn), or <utility> (22.2.1
[utility.syn]) are included.
template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

5 Let TE denote tuple_element_t<I, T> of the cv-unqualified type T. Then specializations of each of the
two templates meet the Cpp17TransformationTrait requirements with a member typedef type that names the
following type:

— for the first specialization, add_volatile_t<TE>, and
— for the second specialization, add_cv_t<TE>.

6 In addition to being available via inclusion of the <tuple> (22.4.2 [tuple.syn]) header, the two templates are
available when any of the headers <array> (23.3.2 [array.syn]), <ranges> (ranges.syn), or <utility> (22.2.1
[utility.syn]) are included.

D.16 [depr.variant] Variant
1 The header <variant> (22.6.2) has the following additions:

namespace std {
template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;
template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

}

template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;

2 Let VS denote variant_size<T> of the cv-unqualified type T. Then specializations of each of the two templates
meet the Cpp17UnaryTypeTrait requirements with a base characteristic of integral_constant<size_t, VS::value>.
template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

25

https://wg21.link/depr.tuple
https://wg21.link/tuple.syn
https://wg21.link/expr.context
https://wg21.link/tuple.syn
https://wg21.link/array.syn
https://wg21.link/utility.syn
https://wg21.link/tuple.syn
https://wg21.link/array.syn
https://wg21.link/utility.syn
https://wg21.link/depr.variant

3 Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then specializations of each of the
two templates meet the Cpp17TransformationTrait requirements with a member typedef type that names the
following type:

— for the first specialization, add_volatile_t<VA::type>, and
— for the second specialization, add_cv_t<VA::type>.

D.22.2 [depr.atomics.volatile] Volatile access
1 If an atomic specialization has one of the following overloads, then that overload participates in overload resolu-

tion even if atomic<T>::is_always_lock_free is false:
void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator=(T desired) volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
operator T() const volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator op=(T operand) volatile noexcept;
T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;

D.22.3 [depr.atomics.nonmembers] Non-member functions

template<class T>
void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

template<class T>
void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

x Constraints: For the volatile overload of this function, atomic<T>::is_always_lock_free is true.
1 Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);

26

https://wg21.link/depr.atomics.volatile
https://wg21.link/depr.atomics.nonmembers

9.3 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.arith.conv.enum removed
depr.atomics.volatile removed
depr.codecvt.syn removed
depr.conversions removed
depr.conversions.buffer removed
depr.conversions.general removed
depr.conversions.string removed

// …

depr.strstreambuf removed
depr.strstreambuf.cons removed
depr.strstreambuf.general removed
depr.strstreambuf.members removed
depr.strstreambuf.virtuals removed
depr.util.smartptr.shared.atomic removed
depr.tuple removed
depr.variant removed
depr.volatile.type removed

mismatch see alg.mismatch

10 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks again to Matt Godbolt for maintaining Compiler Explorer, the best public resource for C++ compiler
and library archaeology, especially when researching the history of deprecation warnings!

Thanks to JF Bastien for the original deprecation, and help with the Annex C wording.

Thanks to Jens Maurer for the initial wording review and corrections.

Thanks to Brian Bi for subsequent wording reviews and corrections, particularly for help applying the feedback
from Core reviews. Any remaining errors are entirely my own from ignoring Brian’s advice!

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

27

11 References
[CWG2654] US. 2022-11-03. Un-deprecation of compound volatile assignments.

https://wg21.link/cwg2654

[P1152R4] JF Bastien. 2019-07-22. Deprecating volatile.
https://wg21.link/p1152r4

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2327R1] Paul M. Bendixen, Jens Maurer, Arthur O’Dwyer, Ben Saks. 2021-10-04. De-deprecating volatile
compound operations.
https://wg21.link/p2327r1

[P2863] Alisdair Meredith. Review Annex D for C++26.
https://wg21.link/p2863

[P3053R0] Inbal Levi, Fabio Fracassi, Ben Craig, Nevin Liber, Billy Baker, Corentin Jabot. 2023-12-15. 2023-12
Library Evolution Polls.
https://wg21.link/p3053r0

[P3054R0] Inbal Levi, Fabio Fracassi, Ben Craig, Billy Baker, Nevin Liber, Corentin Jabot. 2024-01-13. 2023-12
Library Evolution Poll Outcomes.
https://wg21.link/p3054r0

28

https://wg21.link/cwg2654
https://wg21.link/p1152r4
https://wg21.link/p2139r2
https://wg21.link/p2327r1
https://wg21.link/p2863
https://wg21.link/p3053r0
https://wg21.link/p3054r0

	Abstract
	Revision History
	Introduction
	Feature Analysis
	Background
	Core language
	Library

	C++23 Feedback
	Initial EWG review
	Subsequent feedback

	Proposed Changes for C++26
	Core language
	Library
	Concerns raised by core/library interaction

	C++26 Design Review
	SG1 initial review: Varna 2023
	LEWG initial review: Kona 2023
	EWG review: Wrocław 2024

	C++26 Wording Review
	Wording plan for core clauses
	LWG initial review: Tokyo 2024
	Core initial review: St Louis 2024
	Core review: Wrocław 2024

	Proposed Wording Changes
	Update core wording
	Update library wording
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

