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Abstract

In this paper, we propose a Contracts facility for C++ that has been carefully considered by
SG21 with a high bar set for level of consensus. The proposal includes syntax for specifying
three kinds of contract assertions: precondition assertions, postcondition assertions, and assertion
statements. In addition, we specify four evaluation semantics for these assertions — one non-
checking semantic, ignore, and three checking semantics, observe, enforce, and quick-enforce — as
well as the ability to specify a user-defined handler for contract violations. The features proposed
in this paper allow C++ users to leverage contract assertions in their ecosystems in numerous
ways.
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Revision History
Revision 12 (Post-Wrocław November 2024 Meeting EWG/LEWG/CWG Feedback)

• Added restriction on naming a nonstatic data member and invoking nonstatic member functions
in preconditions of constructors and postconditions of destructors

• Defined contract termination as a set of concrete options rather than just “termination in an
implementation-defined fashion”

• Made it ill-formed to redeclare a function-contract-assertion sequence in the same TU if it
contains a lambda expression

• Dropped the requirement for explicit const (but not const on the type) for nonreference
function parameters odr-used in a postcondition assertion

• Removed the concept of consecutive contract assertions separated by vacuous operations

• Added library feature test macro __cpp_lib_contracts

• Applied wording changes from initial CWG review; wording review is still ongoing

Revision 11 (Pre-Wrocław November 2024 Meeting SG21 Consensus)

• Added requirement that if a nonreference parameter is odr-used in post on a virtual function,
the corresponding parameter on all declarations of all overriding functions must also be
declared const

• Added requirement that a nonreference parameter that is odr-used in post must have an
explicit const qualifier even if its type is dependent

• Added member functions is_terminating and evaluation_exception to class
contract_violation

• Added missing values for ignore and quick-enforce to enum evaluation_semantic

• Added a new subsection, “Mixed Mode”

• Changed term enforcing semantic to terminating semantic

• Clarified intended behavior for objects passed and returned via registers

• Clarified that in a nontemplated function, the result name is late parsed, not dependent

• Clarified that trivial copies of the result object are in sequence with the evaluation of postcon-
dition assertions

• Clarified the semantics of lambda expressions inside the redeclaration of a function-contract-
assertion sequence

• Various minor clarifications and additional code examples

Revision 10 (October 2024 Mailing)

• Added support for pre and post on coroutines
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Revision 9

• Made implicit const in contract predicates apply to all variables, rather than just those with
automatic storage duration

• Added clarifications to the “Design Principles” section acknowledging the existence of programs
that can detect the presence and semantics of a contract assertion

• Wording improvement: Added contract-assertion scopes to the list of scopes where lambdas
may appear

Revision 8 (Post–St. Louis June 2024 Meeting EWG Feedback)

• Added support for pre and post on virtual functions

• Made contract assertions observable checkpoints

• Added discussion of pointers to member functions

• Added a clarification regarding constant evaluation of contract assertions

• Added discussion of concurrent invocation of contract-violation handlers

• Clarified that contract predicates are full expressions

• Numerous language and grammar edits

Revision 7 (Post-Tokyo March 2024 Meeting EWG and LEWG Feedback)

• Added the quick-enforce evaluation semantic

• Changed the enforce evaluation semantic from calling std::abort() back to terminating in an
implementation-defined fashion, making it consistent with quick-enforce

• Added an implementation-defined upper bound to the number of repetitions of a contract-
assertion evaluation; added a recommendation to provide an option to perform a specified
number of repetitions, with no repetitions being the default

• Made it ill-formed for the predicate of a postcondition assertion to odr-use an array parameter

• Made it ill-formed to use va_start in a contract predicate

• Made underlying type of proposed enums unspecified rather than int

• Renamed enum contract_kind to assertion_kind

• Renamed enum contract_semantic to evaluation_semantic

• Renamed checked and unchecked evaluation semantics to checking and non-checking,
respectively

• Added a new subsection, “Function Type Aliases”

• Added a new subsection, “Constructors and Destructors”

• Added a new subsection, “Differences Between Contract Assertions and the assert Macro”

• Expanded the “Design Principles” section
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• Various minor clarifications and additional code examples

• Numerous language and grammatical edits

Revision 6 (Pre-Tokyo March 2024 Meeting, Forwarded to EWG and LEWG for Design Review)

• Allowed attributes in general and [[maybe_unused]] specifically to appertain to the result
name

• Made ill-formed an await-expression or yield-expression appearing in the predicate of
contract_assert

• Clarified that evaluating a predicate with side effects during constant evaluation might lead to
an odr violation

• Expanded the “Design Principles” section

• Various minor clarifications and additional code examples

Revision 5 (February 2024 Mailing)

• Added proposed wording

• Made contract_assert a statement rather than an expression

• Made ill-formed pre and post on virtual functions

• Removed function contract_violation::will_continue()

• Removed enum value detection_mode::evaluation_undefined_behavior

• Introduced the distinct terms function contract specifier for the syntactic construct and
function contract assertion for the entity it introduces

• Added rules for equivalence of two function-contract-specifier-seqs

• Allowed repeating the function-contract-specifier-seq on redeclarations

• Renamed return name to result name

• Added syntactic location for attributes appertaining to contract assertions

• Added a new subsection, “Function-Template Specializations”

• Added a new subsection, “Friend Declarations Inside Templates”

• Expanded the “Design Principles” section

• Various minor clarifications

Revision 4 (January 2024 Mailing)

• Added rules for constant evaluation of contract assertions

• Made header <contracts> freestanding

• Changed enforce from terminating in an implementation-defined fashion to calling std::abort()
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• Clarified that side effects in checked predicates may be elided only if the evaluation returns
normally

• Clarified that the memory for a contract_violation object is not allocated via operator new
(similar to the memory for exception objects)

• Added a new subsection, “Design Principles”

Revision 3 (December 2023 Mailing)

• Made ill-formed pre and post on deleted functions

• Allowed pre and post on lambdas

• Added rule that contract assertions cannot trigger implicit lambda captures

• Added function std::contracts::invoke_default_contract_violation_handler

• Made local entities inside contract predicates implicitly const

• Clarified the semantics of the return name in post

• Added a new section, “Overview”

• Added a new subsection, “Recursive Contract Violations”

Revision 2 (Post November 2023 Kona Meeting SG21 Feedback)

• Adopted the “natural” syntax

• Made ill-formed pre and post on defaulted functions and on coroutines

Revision 1 (October 2023 Mailing)

• Added new subsections, “Contract Semantics” and “Throwing Violation Handlers”

• Added a synopsis of header <contracts>

• Various minor additions and clarifications

Revision 0 (Post-Varna June 2023 Meeting SG21 Feedback)

• Original version of the paper gathering the post-Varna SG21 consensus for the contents of the
Contracts facility
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1 Introduction
Behind the attempts to add a Contracts facility to C++ is a long and storied history. The next
step for us, collectively, in that journey is for SG21 to produce a Contracts MVP (minimum viable
product) as part of the plan set forth in [P2695R0]: This paper is that MVP.

This paper has three primary sections. “Overview“ introduces the general concepts and the termi-
nology that will be used throughout this paper and provides a view of the scope of the proposal.
“Proposed Design“ carefully, clearly, and precisely describes the design of the proposed Contracts
facility. “Proposed Wording“ contains the formal wording changes needed (relative to the current
draft C++ Standard) to add Contracts to the C++ language. This paper is intended to contain
enough information to clarify exactly what we intend for Contracts to do as well as the wording
needed to match that information.

This paper is explicitly not a collection of motivations for using Contracts, instructions on how to
use the facility, the history of how this design came to be, or an enumeration of alternative designs
that have been considered. To avoid an excessively long paper, we have extracted all this information
into a forthcoming companion paper, [P2899R0], “Contracts for C++ — Rationale.” [P2899R0] will
contain, for each subsection of the design section of this paper, a history — as complete as possible

— for the decisions in that section. That paper will also describe our current implementation and
deployment experience with the proposed Contracts facility and, importantly, contain citations to
the many papers written by members of WG21 and SG21 that have contributed to making this
proposal a complete thought.

2 Overview
We will begin by providing the general concepts and the terminology that will be used throughout
this paper and, we hope, in many of the other papers discussing these topics. Then we will discuss
the basic features and scope of the proposed Contracts facility.

For a summary of motivating use cases for Contracts and the history of Contracts in C++ and
other programming languages, see [P2899R0], Section 2.

2.1 What Are Contracts?

A contract is a formal interface specification for a software component such as a function or a class.
It is a set of conditions that expresses expectations about how the component interoperates with
other components in a correct program and in accordance with a conceptual metaphor with the
conditions and obligations of legal contracts.

A contract violation occurs when a condition that is part of a contract does not hold when the
relevant program code is executed. A contract violation usually constitutes a bug in the code, which
distinguishes it from an error. Errors are often recoverable at run time, whereas contract violations
can usually be addressed only by fixing the bug in the code.

A correct program is one that will not violate any contracts under any circumstances. In general, we
focus more on correct behavior where a particular program execution — with a particular set of
inputs — violates no contracts applicable to any part of that evaluation.
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Contracts are often specified in human language in software documentation, e.g., in the form of
comments within the code or in a separate specification document; a contract specified this way is
called a plain-language contract. For example, the C++ Standard defines plain-language contracts —
preconditions, postconditions, and effects clauses — for the functions in the C++ Standard Library.

The various provisions of a plain-language contract fall into a variety of different categories.

• A precondition is a part of a function contract, and the responsibility for satisfying the
precondition rests with the caller of the function. Typically, preconditions are requirements
placed on the arguments passed to a function and/or on the global state of the program upon
entry into a function.

• A postcondition is a part of a function contract, and the responsibility for satisfying the
postcondition lies with the callee, i.e., the implementer of the function itself. Postconditions
are generally conditions that will hold true regarding the return value of the function or the
state of objects modified by the function when it completes execution normally.

• An invariant is a condition on the state of an object or a set of objects that is maintained
over a certain amount of time. A class invariant is one kind of invariant and is a condition
that a class type maintains throughout the lifetime of an object of that type between calls
to its public member functions. Other invariants are often expected to hold on the entry or
exit of functions or at specific points in control flow, and they are thus amenable to checking,
using the same facilities that check preconditions and postconditions.

Some provisions of a plain-language contract can often be checked via an algorithm — one that
either verifies compliance with that provision of the contract or identifies a violation of the contract.
A contract assertion is a syntactic construct that specifies such an algorithm in code. When used
correctly, contract assertions can significantly improve the safety and correctness of software.

A language feature that allows the programmer to specify such contract assertions is called a
Contracts facility. Programming languages such as Eiffel and D have a Contracts facility; this paper
proposes a Contracts facility for C++.

Note that not all parts of a contract can be specified via contract assertions, and of those that can,
some cannot be checked at run time without violating the complexity guarantees of the function (e.g.,
the precondition of binary search that the input range is sorted), without additional instrumentation
(e.g., a precondition that a pair of pointers denotes a valid range), or at all (e.g., a precondition
that a passed-in function, if called, will return). Therefore, we do not expect that function contract
assertions can, in general, specify the entire plain-language contract of a function; however, they
should always specify a subset of the plain-language contract.

A corollary of this gap is that contract assertions, in general, cannot be used to verify compliance
with the entire contract — i.e., to prove that the program is correct — but can only identify a
subset of potential violations.

2.2 Proposed Features

The Contracts facility we propose will enable adding contract assertions to C++ code. We propose
three kinds of contract assertions: precondition assertions, postcondition assertions, and assertion
statements.
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Precondition and postcondition assertions are placed on function declarations and collectively called
function contract assertions. Assertion statements are placed inside function bodies. The following
example contains all three kinds of contract assertions:

int f(const int x)
pre (x != 1) // a precondition assertion
post(r : r != x) // a postcondition assertion; r names the result object of f

{
contract_assert (x != 3); // an assertion statement
return x;

}

Each contract assertion has a predicate, which is a potentially evaluated expression that will be
contextually converted to bool to identify a contract violation. When the predicate evaluates to
true, no contract violation has been identified. When the predicate evaluates to false or when
evaluation of the predicate exits via an exception, a contract violation has been identified. Other
results that do not return control back up the stack through the evaluation of the contract assertion,
such as terminating, entering an infinite loop, or invoking longjmp, happen as they would when
evaluating any other C++ expression.

In the above code example, a contract violation will occur if f is called with a value of 1, 2, or 3:
void g()
{

f(0); // no contract violation
f(1); // violates precondition assertion of f
f(2); // violates postcondition assertion of f
f(3); // violates assertion statement within f
f(4); // no contract violation

}

Each contract assertion has a point of evaluation based on its kind and syntactic position. Precon-
dition assertions are evaluated immediately after function parameters are initialized and before
entering the function body. Postcondition assertions are evaluated immediately after local variables
in the function are destroyed when a function returns normally. Assertion statements are executed
at the point in the function where control flow reaches them.

Each individual evaluation of a contract assertion is performed with a specific evaluation semantic.
We propose four evaluation semantics (see Section 3.5.6): ignore, observe, enforce, and quick-
enforce. Which evaluation semantic is chosen for any particular evaluation of a contract assertion is
implementation-defined.

The ignore semantic does nothing, whereas the observe, enforce, and quick-enforce semantics
determine the value of the predicate to identify a contract violation. If a contract violation occurs,
the observe and enforce semantic will invoke a function called the contract-violation handler (see
Section 3.5.11). When this function returns normally, observe will continue program execution and
enforce will terminate the program; quick-enforce will not call the contract-violation handler but
will instead immediately terminate the program.

Users can install their own user-defined contract-violation handler at link time by defining their own
function with the appropriate name and signature. This function takes one argument of type const
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reference to std::contracts::contract_violation. This type is defined in a new header, <contracts>
(see Section 3.7). When the contract-violation handler is called, an object of this type is created
by the implementation and passed in, providing access to some information about the contract
violation that occurred, such as its source location and the used evaluation semantic.

Contract assertions can also be evaluated during constant evaluation (see Section 3.5.14), in
which case the evaluation semantics behave slightly differently (notably, there is no compile-time
contract-violation handler).

2.3 Features Not Proposed

To keep the scope of this MVP proposal minimal (while still viable), the following features are
intentionally excluded from this proposal; we expect these features to be proposed as post-MVP
extensions at a later time.

• The ability to specify precondition and postcondition assertions on pointers to functions,
pointers to member functions, or type aliases for such types

• The ability to refer to the original values of parameters and other entities during the evaluation
of the predicate of a postcondition

• The ability to assume that an unchecked contract predicate would evaluate to true and to
allow the compiler to optimize based on that assumption, i.e., the assume semantic

• The ability to express the desired evaluation semantic directly on the contract assertion

• The ability to assign an assertion level to a contract assertion or, more generally, to specify in
code properties of contracts and how they map to a contract semantic

• The ability to express postconditions of functions that do not exit normally, e.g., a postcondition
that a function does or does not exit via an exception

• The ability to write a contract predicate that cannot be evaluated at run time, e.g., because it
calls a function with no definition

• The ability to maintain state, for the purpose of evaluating contract assertions, that is
populated and used beyond the scope of a single contract assertion, similar to what can be
done with an #ifndef NDEBUG block when using assert.

• The ability to express invariants

• The ability to express procedural interfaces

Most of the above features were, in some shape or form, part of previous Contracts proposals; as a
general rule, however, nothing in previous Contracts proposals should be assumed to be true about
this proposal unless explicitly stated in this paper.
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3 Proposed Design

3.1 Design Principles

The Contracts facility in this proposal has been guided by certain common principles that have
helped clarify the optimal choices for how the facility should work and how it should integrate with
the full breadth of the C++ language.

3.1.1 Contract Assertions Are Redundant Checks

The primary goal of this facility is to enable identifying, in code, when a program is correct or
incorrect. To do so, making use of Contracts should be possible in ways that do not, just by being
used, change whether a program is correct or incorrect. Time has made clear that this principle is,
in fact, the foundation on which the rest of the design for Contracts is built.

Principle 1: Prime Directive

The presence or evaluation of a contract assertion in a program should not alter the correctness
of that program (i.e., the property that evaluation of the program does not violate any
provisions of its plain-language contract).

Closely related to the Prime Directive is another foundational principle of our proposed Contracts
facility, the Redundancy Principle.

Principle 2: Redundancy Principle

In a correct program (i.e., one that does not violate any provisions of its plain-language
contract), contract assertions are redundant; removal of any subset of the program’s contract
assertions should not alter the correctness of that program.

To maximize a programmer’s ability to satisfy these foundational principles with regard to the
mere presence or absence of contract assertions in their program, we can find the following three
actionable secondary design principles.

Principle 3: Concepts Do Not See Contracts

The mere presence of a contract assertion on a function or in a block of code should not
change the satisfiability of a concept, the result of overload resolution and SFINAE, the
branch selected by if constexpr, or the value returned by the noexcept operator.

Principle 4: Zero Overhead

The presence of a contract assertion that is not actually checked — i.e., that is ignored —
should not impact how a program behaves,1 e.g., by triggering additional lambda captures
that result in the inclusion of additional member variables to closure objects.
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Principle 5: Independence from Chosen Semantic

Which evaluation semantic will be used for any given evaluation of a contract assertion and
whether that evaluation semantic is a checking semantic should generally not be detectable at
compile time; such detection might result in different programs being executed when contract
checks are enabled.

When the above principles are violated, a contained program could be substantially changed by
using Contracts in such a way. Therefore, we discourage this ability and have removed a number of
places where, by adding even the simplest contract assertion, a program could, at compile time,
implicitly be changed and thus made potentially incorrect.

Writing programs that violate the design principles 3–5 remains possible, and when written cleverly
enough, such programs are not necessarily incorrect, but the general recommendation is to avoid
employing such techniques.

3.1.2 Side Effects

Beyond the effect that the mere presence or absence of a contract assertion can have, we need to
ensure, at run time, that another property can satisfy our foundational principles; i.e., the evaluation
(or nonevaluation) of a contract-assertion predicate will, in and of itself, not change the correctness
of a program.

We call a predicate whose presence or evaluation would change a program’s correctness a destructive
predicate, and we call any side effects that cause that change in correctness destructive side effects.
With this definition, we can introduce our next principle, which is as foundational with respect to
runtime evaluation as the Prime Directive is with respect to compile-time evaluation:

Principle 6: No Destructive Side Effects

Contract assertions whose predicates, when evaluated, could affect the correctness of the
program should not be supported.

Note that a contract-assertion predicate whose evaluation does not have any side effects observable
outside the cone of its evaluation is much more likely to satisfy this property but cannot guarantee
it. Such a predicate might still violate complexity guarantees or other promises that are made in
the plain-language contract and that are unknowable to the compiler, and thus the predicate might
still be destructive under the above definition.

Further, such a restriction would be too limiting; e.g., for debugging, adding logging to a function
called during the evaluation of a contract predicate might be useful, and such logging does not
necessarily change the correctness of a program. Whether it does depends on the plain-language
contract of that particular program (e.g., whether the program makes certain guarantees about
what will be logged), which is unknowable to the compiler.

1Note that neither this proposal nor the C++ Standard itself can prescribe which or how many instructions are
actually being emitted by the compiler; we can only reason about the behavior of the program within the C++
Abstract Machine.
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To enable local reasoning about contract assertions and, more importantly, to enable global reasoning
about how contract assertions are configured without needing to inspect each one, we should ensure
the following important secondary principles that are related to the absence of destructive predicates.

Principle 7: Completeness of Contract Assertions

Each individual contract assertion encapsulates a complete check of a provision of the
plain-language contract.

Principle 8: Independence of Contract Assertions

The result of evaluating a contract assertion should never affect the result of evaluating any
other contract assertions.

Principle 9: Independence of Contract-Assertion Evaluations

The result of evaluating a contract assertion should never affect the result of subsequent
evaluations of the same contract assertion.

A corollary of these principles is that contract-assertion predicates that, when evaluated, have
side effects that maintain state affecting the correctness of the contract assertions themselves are
destructive and therefore are not a correct use of the proposed Contracts facility.

Side effects in predicates are not ill-formed nor are they undefined behavior because the compiler
cannot know which side effects are destructive; however, such side effects are not guaranteed to
occur any particular number of times or at all and cannot be relied upon for correctness (see
Section 3.5.10). We, therefore, do not, in this initial proposal, support contract assertions that, for
example, increment a counter and then check whether the value of the counter is below a certain
number or contract assertions in which one assertion sets a flag and another assertion unsets it. Note
that existing macro-based facilities do nothing to prevent or dissuade their use with such predicates,
which is one fundamental difference between this proposal and such facilities (see Section 3.6.7).

3.1.3 Contract Assertions and Plain-Language Contracts

Some additional principles involve defining our common understanding of the relationship between
contract assertions and plain-language contracts.

Principle 10: Contract Assertions Check a Plain-Language Contract

The evaluation of a function contract assertion must be tied to the evaluation of the function
to which the function contract assertion is attached so that the assertion will verify the
plain-language contract (or some subset of the plain-language contract) of that function, not
of some other function.

As an example of applying this principle, the function contract assertions attached to a virtual
function (see Section 3.5.3) must not implicitly be applied to all overriding functions but rather
should apply only when that function is the statically called function or when it is the final overrider
selected by virtual dispatch.
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Principle 11: Function Contract Assertions Serve Both Caller and Callee

A function contract assertion, much like a function declaration, is highly relevant to both
the caller of and implementer of a function. In particular, as part of the agreement between
callers and callees, two pairs of promises are made.

1. Callers promise to satisfy a function’s preconditions, resulting in callees being able to
rely upon those preconditions being true.

2. Callees (i.e., function implementers) promise to satisfy a function’s postconditions when
invoked properly, resulting in a caller’s ability to rely upon those postconditions.

The answer to the commonly asked question of whether a function contract assertion is part of the
interface of a function or of its implementation is, therefore, that it is part of both.

Principle 12: Contract Assertions Are Not Flow Control

While a contract assertion provides an algorithm to validate correctness, nothing about a
contract assertion guarantees any particular runtime behavior associated with that syntactic
construct.

Consequently, an unadorned contract assertion2 might enforce the associated condition, terminating
the program if it is violated, but might equally do nothing at all in another build, allowing violations
to happen.

Importantly, this aspect of Contracts is why contract assertions must not be used for error handling
and input validation: If a function has in-contract requirements to report certain events as errors,
that handling must be done with standard C++ control statements that are not optional, never
with contract assertions.3

3.1.4 Extensibility

The design of this proposal has been guided by two additional principles regarding how to address
open design questions for which solutions are not yet agreed upon or known.

For any behavior that we define as part of a Contracts facility, certain rules must be followed in many
cases. Those rules can be enforced in two primary ways: making violations ill-formed or making the
behavior undefined when the rule is broken. For the specification and behavior of Contracts, we
prioritize programs having well-defined behavior when using the new facility.

Principle 13: Explicitly Define All New Behavior

Contracts never explicitly introduce new undefined behavior when evaluating contract
assertions.

Note that undefined behavior can still occur when the evaluation of a contract assertion encounters
an expression for which the behavior is already undefined in C++ today (see Section 3.6.1).

2Future proposals might allow for more local control over the semantics with which a given contract assertion is
evaluated, but such constraints on the possible semantic would always be a choice opted into via explicit annotations,
not the default behavior of normal uses of the Contracts facility.

3See [P2053R1].
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Principle 14: Choose Ill-Formed to Enable Flexible Evolution

When no clear consensus has become apparent regarding the proper solution to a problem
that Contracts could address, the relevant constructs are left ill-formed.

This choice, rather than giving the relevant constructs unspecified or undefined behavior, enables
conforming extensions to explore possible options, precluding none as an eventual solution that
could be incorporated into the C++ Standard.

3.1.5 Compatibility

Finally, two more design principles ensure that adding Contracts to existing programs does not
cause breakage in ways that could significantly hamper the adoption of Contracts in the field.

Principle 15: No Client-Side Language Break

For any existing function f, if function contract specifiers are added to f and the definition of
f still compiles after this addition, then any existing, correct usage of f should continue to
compile and work correctly.

Correct usages of a function include all uses that do not involve invoking the function such that
the function’s contract is violated, which is now partially checked due to the newly added contract
assertions. These usages include any expressions that invoke the function, take its address, or assign
that address to a pointer to function or pointer to member function as well as other functions that
override the function.

Principle 16: No ABI Break

A conforming implementation should be able to guarantee that adding function contract
specifiers to an existing function preserves ABI backward-compatibility.

3.2 Syntax

We propose three new syntactic constructs: precondition specifiers, postcondition specifiers, and
assertion statements, spelled with pre, post, and contract_assert, respectively, and followed by the
predicate in parentheses:

int f(const int x)
pre (x != 1) // precondition specifier
post (r : r != x) // postcondition specifier; r names the result object of f

{
contract_assert (x != 3); // assertion statement
return x;

}

The predicate is an expression contextually convertible to bool. The grammar requires the expression
inside the parentheses to be a conditional-expression. This requirement guards against the common
typo a = b (instead of a == b) by making the former ill-formed without an extra pair of parentheses
around the expression.
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3.2.1 Function Contract Specifiers

Precondition and postcondition specifiers are collectively called function contract specifiers. They
may be applied to the declarator of a function (see Section 3.3.1 for which declarations) or of
a lambda expression to introduce a function contract assertion4 of the respective kind to the
corresponding function. (For lambda expressions, the corresponding function is the call operator or
operator template of the compiler-generated closure type.)

A precondition specifier is spelled with pre and introduces a precondition assertion to the corre-
sponding function:

int f(int i)
pre (i >= 0);

A postcondition specifier is introduced with post and introduces a postcondition assertion to the
corresponding function:

void clear()
post (empty());

A postcondition specifier may introduce a name to the result object of the function, called the result
name, via a user-defined identifier preceding the predicate and separated from it by a colon:

int f(int i)
post (r: r >= i); // r refers to the result object of f.

The exact semantics of the result name are discussed in Section 3.4.3.

pre and post are contextual keywords. They are parsed as part of a function contract specifier only
when they appear in the appropriate syntactic position. In all other contexts, they are parsed as
identifiers. This property ensures that the introduction of pre and post does not break existing C++
code.

Function contract specifiers appear at the end of a function declarator, i.e., after trailing return
types, after requires clauses, and immediately before the semicolon:

template <typename T>
auto g(T x) -> bool

requires std::integral<T>
pre (x > 0);

The only exception to this placement is the pure-specifier = 0, which can be interpreted as providing
a definition for the function and thus appears after the function contract specifiers:

struct X {
virtual void f(int i) pre (i > 0) = 0;

}

4The distinction between precondition and postcondition specifiers and precondition and postcondition assertions
is analogous to the distinction between noexcept specifiers and exception specifications: The former refers to the
syntactic construct, and the latter refers to the conceptual entity that is a property of a function. The distinction is
important because a function that has function contract assertions might have multiple declarations, some of which
might not have function contract specifiers (see Section 3.3.1 for details). Note that no such distinction is necessary
for assertion statements.
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Function contract specifiers on a definition appear in the corresponding location in the declaration
part of the definition, immediately prior to the function body. Note that constructs such as = default
and = delete are also function bodies.

For lambda expressions, function contract specifiers appear immediately prior to the lambda body:
int f() {

auto f = [] (int i)
pre (i > 0)
{ return ++i; };

return f(42);
}

Any number of function contract specifiers, in any order, may be specified on a function declaration.
Precondition specifiers do not have to precede postcondition specifiers but may be freely intermingled
with them:

void f()
pre (a)
post (b)
pre (c); // OK

Evaluation of preconditions and postcondition assertions will still be done in their respective lexical
order; see Section 3.5.2.

3.2.2 Assertion Statement

An assertion statement is a kind of contract assertion that may appear as a statement in the body of
a function or lambda expression. An assertion statement is spelled with contract_assert, followed
by the predicate in parentheses, followed by a semicolon:

void f() {
int i = get_i();
contract_assert(i != 0);
// ...

}

Unlike pre and post, contract_assert is a full keyword, which is necessary for an assertion statement
to be disambiguated from a function call. The keyword contract_assert is chosen instead of assert
to avoid a clash with the existing assert macro from header <cassert>.

3.2.3 Attributes for Contract Assertions

All three kinds of contract assertions (pre, post, and contract_assert) permit attributes that
appertain to the introduced contract assertion. We do not propose to add any such attributes to
the C++ Standard itself, yet this permission can be useful for vendor-specific extensions to the
functionality provided by this proposal. The syntactic location for such attributes specific to contract
assertions is between the pre, post, or contract_assert and the predicate:
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bool binary_search(Range r, const T& value)
pre [[vendor::message("A nonsorted range has been provided")]] (is_sorted(r));

void f() {
int i = get_i();
contract_assert [[analyzer::prove_this]] (i > 0);
// ...

}

In addition, attributes such as [[likely]] and [[unlikely]] that can appertain to other statements
that involve some runtime evaluation can also appertain to contract_assert. The syntactic location
for such attributes that appertain to the statement (rather than to the contract assertion it
introduces) is before the statement:

void g(int x) {
if (x >= 0) {

[[likely]] contract_assert(x <= 100); // OK, this branch is more likely.
// ...

}
else {

[[unlikely]] contract_assert(x >= -100); // OK, this branch is less likely.
// ...

}
}

Finally, an attribute can also appertain to the result name optionally declared in a postcondition
specifier:

int g()
post (r [[maybe_unused]]: r > 0);

The attribute [[maybe_unused]] is explicitly allowed to appertain to the result name.

3.3 Syntactic Restrictions

3.3.1 Multiple Declarations

Any function declaration is a first declaration if no other declarations of the same function are
reachable from that declaration; otherwise, it is a redeclaration. The sequence of function contract
specifiers on a first declaration of a function introduces the corresponding function contract assertions
that apply to that function.

It is ill-formed, no diagnostic required (IFNDR) if multiple first declarations for the same function
are in different translation units that do not have the same sequence of function contract specifiers.

A redeclaration of a function shall have either no function contract specifiers or the same sequence
of function contract specifiers as any first declaration reachable from it; otherwise, the program is
ill-formed.

In effect, all places in which a function might be used or defined have a consistent and unambiguous
view of that function’s sequence of function contract specifiers.

19



Equivalence of function contract specifiers is determined as follows. Two sequences of function
contract specifiers are considered to be the same if they consist of the same function contract
specifiers in the same order. A function contract specifier c1 on a function declaration d1 is the same
as a function contract specifier c2 on a function declaration d2 if their predicates p1 and p2 would
satisfy the one-definition rule (odr) if placed in an imaginary function body on the declarations d1
and d2, respectively, except the names of function parameters, names of template parameters, and
the result name may be different.5 (The entities found by name lookup will be the same.)

Notably, the rule above does not go to greater extents to make lambda expressions that might
appear inside p1 and p2 be considered to have the same closure type. Therefore, attempting to
redeclare preconditions containing lambda expressions in the same translation unit will always fail
to produce equivalent function contract assertions:

void f() pre([]{ return true; }());
void f() pre([]{ return true; }()); // error: lambda in redeclaration has different type

3.3.2 Defaulted and Deleted Functions

For a declaration of a function defaulted on its first declaration to have precondition or postcondition
specifiers is ill-formed:

struct X {
X() pre (true) = default; // error: pre on function defaulted on first declaration

};

struct Y {
Y() pre (true);

};

Y::Y() pre (true) = default; // OK (not the first declaration; pre (true) can be omitted)

Further, for a declaration of an explicitly deleted function to have precondition or postcondition
specifiers is ill-formed:

struct X {
X() pre (true) = delete; // error

};

3.3.3 Constructors and Destructors

If the predicate of a precondition assertion on a constructor or a postcondition assertion on a
destructor names a nonstatic data member of that class directly, i.e., without using an explicit
this->, the program is ill-formed:

struct X {
int i = 0;
bool f();

5Note that the odr for function definitions does not allow for such exceptions: Multiple definitions of the same
inline function in different translation units must be token-identical; different names for function parameters and
template parameters are not allowed.
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X()
pre (i == 0) // error
pre (f()) // error
pre (check(&this->i)) // OK
pre (this->f()) // OK

{}

~X()
pre (i == 0) // OK
post (i == 0) // error
post (f()) // error
post (check(&this->i)) // OK
post (this->f()); // OK

};

This syntactic restriction serves to minimize the risk of undefined behavior that arises when accessing
a nonstatic member before its lifetime has begun or after its lifetime is complete (see Section 3.6.2
for details).

3.3.4 Await and Yield Expressions

If, in a coroutine, the predicate of a contract assertion contains an await-expression or
yield-expression as a subexpression that is in the suspension context of that coroutine, the program
is ill-formed:

std::generator<int> f() {
contract_assert(((co_yield 1), true)); // error

}

stdex::task<void> g() {
contract_assert((co_await query_database()) > 0); // error
// ...

}

An await-expression or yield-expression is allowed in the predicate of a contract assertion if it is not
in the suspension context of that coroutine, e.g., because it appears inside an immediately invoked
lambda that is not suspending the evaluation of the function or coroutine evaluating the predicate
itself:

contract_assert(([]() -> std::generator<int> {
co_yield 1; // OK

}(), true));

3.3.5 Pointers to Functions and Pointers To Member Functions

Function contract specifiers may not be attached to a pointer to function or pointer to member
function:
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typedef int (*fpt)(int) post (r: r != 0); // error

int f(int x) post (r: r != 0);
int (*fp)(int) post (r: r != 0) = f; // error

int (X::*fptr)(int) post (r: r != 0) = &X::f; // error

The contract assertions on a function have no impact on its type and thus no impact on the type of
its address nor on what types of pointers to which the address of that function may be assigned:

int f(int x) post (r: r != 0);
int (*fp)(int) = f; // OK

When a function is invoked through a pointer to function (e.g., when calling f through fp in
the example above) or through a pointer to member function, the caller-facing function contract
assertions of that invocation (see Section 3.5.1) are an empty set, but the callee-facing function
contract assertions are still those of the invoked function and must be evaluated as normal. The
same behavior applies to other kinds of indirect calls, such as through a pointer to member function
or Standard Library function wrapper, such as std::function.

The consequence of this behavior is that, for such indirect calls, an implementation cannot, in
general, check the precondition and postcondition assertions of the function at the call site since
which function will end up being called is unknown. Such checks have to be performed either inside
the function or in a thunk.

3.3.6 Function Type Aliases

Function contract specifiers may not be attached to a function type alias:
using ft = int(int) post (r: r != 0); // error

However, function contract specifiers may be attached to a function declaration that uses a function
type alias:

using ft = int(int);
ft f post (r: r != 0); // OK

Note that such a function declaration does not introduce names for the parameters of the function
and, therefore, does not provide a way to spell a contract predicate referring to these parameters.

3.3.7 Use of C Variadic-Function Parameters

If a contract predicate contains a use of the va_start macro as a subexpression, the program is
ill-formed, no diagnostic required.

If we were to allow such use, we would have to require that any use of va_start within a contract-
assertion predicate is matched by a use of va_end in the same predicate, and this cannot be checked
statically. No diagnostic is required because, with current toolchain behaviors, this situation might
not be diagnosable: On some implementations, va_start expands to a C++ expression along the
lines of “address of previous argument plus one,” losing the information that the va_start macro
was used by the time the C++ front end receives the preprocessed stream of tokens.
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The other macros involved in the processing of C variadic parameters — va_arg and va_end — do
not need to be explicitly prohibited since they are useless without the use of va_start.

3.4 Semantics

3.4.1 Name Lookup and Access Control

Name lookup and access control rules for the predicate of a function contract assertion apply as
they do to any other part of the declaration of that function. Note that this behavior has some
implicit repercussions that are not always immediately obvious.

• Being part of a function declaration, if it is a nonstatic member function declaration, the
expression this is usable, and it will refer to the implicit object parameter of the function:

struct W {
int i;

void f() pre( this->i == 0 ) // OK
pre( i == 0 ); // OK, implicit this

};

• When part of a function declaration, access control rules apply as if the predicate were also
part of that function. For member functions, the expression may access private members.
Similarly, the expression may reference private members of types that befriend either the
function or its enclosing class:

class Y {
int i;

public:
void f() pre( i == 0 ); // OK
friend void g(Y* y) pre(y->i == 0); // OK

};
void g(Y* y) pre( y->i == 0 ); // OK, still

• Being a potentially evaluated expression, the use of function parameters in the expression is
likely to force a requirement that they be complete types, even when the declaration itself
would be valid with those types incomplete and no function contract assertions:

struct Y; // incomplete type
int g(Y* p); // OK
int f(Y* p) pre(p->x > 0); // error: member access requires completeness

• In addition, postcondition assertions potentially introduce a new declaration into their scopes,
the result name. This name shadows other names that might be in enclosing scopes:

int r = 10;
int h() post(r : r != ::r); // OK, succeeds

For assertion statements, name lookup and access control behaves as any other expression within
the corresponding function body.
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3.4.2 Implicit const-ness

A contract check is supposed to observe, not change, the state of the program, exceptions such as
logging notwithstanding. To prevent accidental bugs due to unintentional modifications of entities
inside a contract predicate, any id-expression used within a contract predicate that denotes a variable
declared outside the contract assertion predicate is a const lvalue.

This behavior is very similar to how identifiers referring to members are implicitly const lvalues
inside a const member function. This const-ness, however, applies to all id-expressions denoting
variables from outside the predicate, including the function parameters: the result object (see
Section 3.4.3); variables with automatic, static, and thread-local storage duration; those at block
scope, class scope, and namespace scope; nontype template parameters; structured bindings; and the
expressions this and *this, whether explicitly or implicitly used. This const-ness does not apply to
variables declared within a lambda that is contained within the contract assertion predicate.

The added implicit const is shallow (on the level of the lvalue only) and does not propagate through
pointer dereference. Attempting to invent so-called deep-const rules would likely make raw pointers
and smart pointers behave differently, which is not desirable:

int global = 0;

void f(int x, int y, char *p, int& ref)
pre((x = 0) == 0) // error: assignment to const lvalue
pre((*p = 5)) // OK
pre((ref = 5)) // error: assignment to const lvalue
pre((global = 2)) // error: assignment to const lvalue

{
int* gp = &global;
contract_assert((gp = nullptr)); // error: assignment to const lvalue
contract_assert((*gp = 6)); // OK

}

Class members declared mutable can be modified as before. Expressions that are not lexically part of
the contract condition are not changed. The result of decltype(x) is not changed and still produces
the declared type of the entity denoted by x (which might not be const). However, decltype((x))
yields const T& where T is the type of the expression x.

Modifications of variables and parameters declared outside a contract predicate from within that
predicate are possible — although discouraged — via applying a const_cast, but modifications of
const objects continue to be undefined behavior as elsewhere in C++. This includes parameters
required to be declared const because they are used in a postcondition (see Section 3.4.4):

int g(int i, const int j)
pre(++const_cast<int&>(i)) // OK (but discouraged)
pre(++const_cast<int&>(j)) // undefined behavior
post(++const_cast<int&>(i)) // OK (but discouraged)
post(++const_cast<int&>(j)) // undefined behavior

{
int k = 0;
const int l = 1;
contract_assert(++const_cast<int&>(k)); // OK (but discouraged)
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contract_assert(++const_cast<int&>(l)); // undefined behavior
}

Overload resolution results (and thus semantics) may change if a predicate is hoisted into or out of
a contract predicate:

struct X {};
bool p(X&) { return true; }
bool p(const X&) { return false; }

void my_assert(bool b) { if (!b) std::terminate(); }

void f(X x1)
pre(p(x1)) // fails

{
my_assert(p(x1)); // passes

X x2;
contract_assert(p(x2)); // fails
my_assert(p(x2)); // passes

}

However, such an overload set that yields different results depending on the const-ness of the
parameter is, arguably, in itself a bug.

When a lambda inside a contract predicate captures a nonfunction entity by copy, the type of the
implicitly declared data member is T, but (as usual) naming such a data member inside the body of
the lambda yields a const lvalue unless the lambda is declared mutable. When the lambda captures
such an entity by reference, the type of an expression naming the reference is const T. When the
lambda captures this of type pointer to T, the type of the implicitly declared data member is pointer
to const T:

void f(int x)
pre([x] { return x = 2; }()) // error: x is const
pre([x] mutable { return x = 2; }()) // OK, modifies the copy of the parameter
pre([&x] { return x = 2; }()) // error: ill−formed assignment to const lvalue
pre([&x] mutable { return x = 2; }()); // error: ill−formed assignment to const lvalue

struct S {
int dm;
void mf() // not const

pre([this]{ dm = 1; }()) // error: ill−formed assignment to const lvalue
pre([this] () mutable { dm = 1; }()) // error: ill−formed assignment to const lvalue
pre([*this]{ dm = 1; }()) // error: ill−formed assignment to const lvalue
pre([*this] () mutable { dm = 1; }()) // OK, modifies a copy of *this

{}
};

When a lambda inside a contract predicate refers to an externally declared entity that is not
captured, such as a global or static variable, that entity is implicitly const, including in nested
lambdas; entities declared inside such a lambda are unaffected:
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void f() {
static int i = 0;
contract_assert([]{

++i; // error: modifying const lvalue
int j;
[&j]{

int k;
++i; // error: modifying const lvalue
++j; // OK
++k; // OK

}();
return true;

}());
}

3.4.3 Postconditions: Referring to the Result Object

A postcondition specifier may optionally specify a result name, introducing a name that refers to
the result object of the function. This functionality is conceptually similar to how the identifiers in
a structured binding are not references but merely names referring to the elements of the unnamed
structured-binding object. As with a variable declared within the body of a function or lambda
expression, the introduced name cannot shadow function-parameter names. Note that this introduced
name is visible only in the predicate to which it applies and does not introduce a new name into the
scope of the function.

For a function f with the return type T, the result name is an lvalue of type const T, decltype(r)
is T, and decltype((r)) is const T&. This behavior is a consequence of the implicit const-ness of
identifiers in contract predicates (see Section 3.4.2).

Although strongly discouraged, modifications of the return value in the postcondition-assertion
predicate are possible via applying a const_cast. Note that even if the object is declared const at
the call site or the function’s return type is const-qualified, such modifications are not undefined
behavior because, at the point where the postcondition is checked, initialization of the result object
has not yet completed, and therefore, const semantics do not apply to it:

struct S {
S();
S(const S&) = delete; // noncopyable, nonmovable
int i = 0;
bool foo() const;

};

const S f()
post(r: const_cast<S&>(r).i = 1) // OK (but discouraged)

{
return S{};

}

const S y = f(); // well−defined behavior
bool b = f().foo(); // well−defined behavior
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Clarifying the relevant existing wording to make this intent clearer might be useful; such a clarification
is being proposed in [CWG2841].

If a postcondition names the return value on a nontemplated function with a deduced return type,
that postcondition must be attached to the declaration that is also the definition (and thus there
can be no earlier declaration):

auto f1() post (r : r > 0); // error: type of r is not readily available.

auto f2() post (r : r > 0) // OK, type of r is deduced below.
{ return 5; }

template <typename T>
auto f3() post (r : r > 0); // OK, postcondition instantiated with template

auto f4() post (true); // OK, return value not named

A type or name dependent upon the deduced return type may appear in the postcondition predicate
expression. If the function is a nontemplated function, such a type or name is not treated as
dependent, which means that template and typename disambiguators are not required:

struct A {
template <int N> bool f() const;

};

auto g()
post (v: v.f<6>()) // OK, v.template f<6> not required

{
return A{};

}

template <typename> struct X { enum { Nested }; };
template <> struct X<int> { struct Nested {}; };

auto h()
post (r: sizeof(X<decltype(ret)>::Nested) // OK, typename X<... not required

{
return 42;

}

Delaying the parsing of the postcondition until the return type is known is a possible implementation
strategy for the above semantics.

3.4.4 Postconditions: Referring to Parameters

If a function parameter is odr-used by a postcondition-assertion predicate, that function parameter
must have reference type or be const on all declarations of the function, which includes its definition
(even though top-level const-qualification of function parameters is discarded in other cases):

void f(int i) post ( i != 0 ); // error: i must be const.

void g(const int i) post ( i != 0 );
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void g(int i) {} // error: missing const for i in definition

void h(const int i) post (i != 0);
void h(const int i) {}
void h(int i); // error: missing const for i in redeclaration

The const qualifier on the parameter type of a nonreference parameter may be added explicitly or
may be part of a typedef or of a deduced type:

using const_int_t = const int;
void f(const_int_t i) post (i > 0); // OK

template <typename T>
void g(std::add_const_t<T> t) post(t > 0); // OK

template <typename T>
void h(T t) post (t > 0);

int main() {
f(1); // error: deduced parameter type (int) is not const
f<int>(1); // error: parameter type (int) is not const
f<const int>(1); // OK

}

Without the rule that the type of a nonreference parameter odr-used in the postcondition predicate
must be const, reasoning about such predicates on a function declaration would be impossible
without also inspecting the definition because the parameter value might have been modified
there:

double clamp(double min, double max, double value)
post( r : (value < min && r == min)

|| (value > max && r == max)
|| (r == value) );

The postcondition is clearly intended to validate that value is clamped to be within the range
[min,max]. The following, however, would be an implementation of clamp that would both fail to
violate the postcondition and fail to be remotely useful:

double clamp(double min, double max, double value) {
min = max = value = 0.0;
return 0.0;

}

Such modifications of parameters can also happen implicitly rather than explicitly. For example,
returning a parameter object by value could break a postcondition check because it would observe a
moved-from value:

std::string g(std::string p)
post (r: starts_with(p))

{
return p;

}
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Requiring that parameters be const if a postcondition predicate refers to them avoids such extreme
failures and subtle variations on this theme by making modification of the parameters in the
definition impossible.

If the function in question is a virtual function, then the parameter object could also be modified
in the body of an overriding function. To prevent this case, the corresponding parameter in every
declaration of every overriding function needs to be declared const as well, even if such an overriding
function does not itself have a postcondition assertion:

struct Base {
virtual std::string g(const std::string p) // OK, p declared const

post (r: starts_with(p));
};

struct Derived : Base {
std::string g(std::string p) override; // error: p must be declared const here

};

Further, when a function is defined to be a coroutine, its parameters may be modified even if they
are declared const by the user on all declarations of the function. The reason is that the coroutine
initializes copies of the parameters in the coroutine frame with modifiable xvalues referring to the
original parameters, ignoring any const qualification on those original parameters,6 which means
that such parameters may be moved from. Therefore, if a function parameter is odr-used by a
postcondition-assertion predicate and that function is defined to be a coroutine, the program is
ill-formed, even if that parameter is declared const on all declarations written by the user.7

Effectively, a coroutine behaves as if its function parameters had their const qualification removed
from the defining declaration, except that

• they retain their original const qualification when passed to the allocating function

• they retain their original const qualification when the types of the parameter copies are
determined

Finally, odr-using an array parameter by a postcondition-assertion predicate is ill-formed because
such an array parameter will decay to a pointer, and making this resulting pointer const to prevent
such cases is not possible:

void f(const int a[]) post (a[0] == 5) // error
{

static int x[1];
a = x;
x[0] = 5; // ...otherwise, we could do this to satisfy the postcondition above

}

6See [dcl.fct.def.coroutine]/13.
7Note that, in this case, the error would be on the definition of the function that makes it a coroutine, not on the

declaration of that function, in the same way that dropping const on a nonreference parameter in the definition of a
function would result in an error on that definition; the proposed rule thus does not compromise the property that the
coroutineness of a function is an implementation detail.
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Note that this restriction applies only to array parameters, not references to arrays:
void f(const int (&a)[N]) post (a[0] == 5); // OK

3.4.5 Objects Passed and Returned in Registers

For efficiency, the major ABIs used for implementations of C++ allow objects to be passed to a
function and returned from a function via registers when the type of the object satisfies certain
requirements: The type of the object must have at least one eligible copy or move constructor, each
such constructor must be trivial, and its destructor must be either trivial or deleted. The C++
Standard enables passing via registers for types that meet these requirements in a very specific
manner: Implementations are permitted to create a temporary object and then use that temporary
to initialize (through a trivial copy operation) the final parameter or result object.8

To make preconditions and postconditions checkable on both the caller side and callee side (see
Section 3.5.1), they are allowed to observe either the temporary copy or the final object.

For a nonreference parameter in a precondition and the return object in a postcondition, access to
this temporary happens before the final object is initialized, and access to the final object happens
after it is initialized from the temporary. Though the objects observed in the predicate might have
different addresses, the state of the object will still be easily reasoned about as a single object:

class X { /∗ ... ∗/ };

X f(const X* ptr) post(r: &r == ptr) {
return X{};

}

int main() {
X x = f(&x);

}

If X is not a type eligible to be passed via registers, the postcondition check in f will pass because r
must denote the return object x in main(). If, however, X is a type eligible to be passed via registers,
the postcondition check might fail9 because r may instead denote a temporary object. Importantly,
in both cases, the object will have the same value.

Similarly, we can do the same thing with function parameters:
X* ptr;

void f(const X x) post (ptr == &x) {
ptr = &x;

}

If and only if X is a type eligible to be passed via registers, the postcondition check in f might fail,
but again, in both cases, the object will have the same value.

8See [class.temporary]/3.
9In practice, whether this check fails will depend on both optimization levels and whether f is inlined into main().
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However, for a nonreference parameter in a postcondition, the situation is more complex because
the temporary copy is made when the function is called, the postcondition assertion is checked when
the function returns, and arbitrary code might be executed in between. The parameter needs to be
declared const, but it might have mutable members that can be modified. Therefore, the state of
the parameter object that the function body observes can diverge from the state of the parameter
object that the postcondition assertion observes since the latter is an older copy of the object:

class RandomInteger {
mutable bool _computed = false;
mutable int _value;

public:
int value() const {

if (!_computed) {
_value = rand();
_computed = true;

}
return _value;

}
};

int f(const RandomInteger i) post(r: r & i.value() == 0) {
return ~i.value();

}

Because RandomInteger is trivially copyable and trivially destructible, it may be passed in registers.
Therefore, the postcondition check might see a different value being returned from i.value() than
the function body does, and the postcondition check might fail.

While such failures might seem very surprising if the user is unfamiliar with the rules for objects
passed and returned via registers, we consider them to be rare, diagnosable with a compiler warning,
and easily avoided by using well-designed parameter types. More importantly, the intent of requiring
that such parameters be const is to guarantee that the value of the parameter is one that the caller
can reason about, and a temporary that was never directly seen by the function body is certainly
such a value.

3.4.6 Not Part of the Immediate Context

The predicate of a function contract assertion, while lexically part of a function declaration, is not
considered part of the immediate context:

template <std::regular T>
void f(T v, T u)

pre ( v < u ); // not part of std::regular

template <typename T>
constexpr bool has_f =

std::regular<T> &&
requires(T v, T u) { f(v, u); };

static_assert( has_f<std::string>); // OK, has_f returns true.
static_assert(!has_f<std::complex<float>>); // error: has_f causes hard instantiation error.
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As a consequence, contract assertions are able to expand the requirements of a function template in
the same way other parts of the function declaration can, causing a program to be irrecoverably
ill-formed (i.e., not subject to SFINAE) if those requirements are not met for a given set of
function-template arguments.

3.4.7 Function-Template Specializations

The function contract assertions of an explicit specialization of a function template are independent
of the function contract assertions of the primary template:

bool a = true;
bool b = false;

template <typename T>
void f() pre(a) {}

template<>
void f<int>() pre(b) {} // OK, precondition assertion different from that of primary template

template<>
void f<bool>() {} // OK, no precondition assertion

3.4.8 No Implicit Lambda Captures

For lambdas with default captures, contract assertions that are part of the lambda need to be
prevented from triggering implicit lambda captures that would otherwise not be triggered. If we
allowed such captures, adding a contract assertion to an existing program could change the observable
properties of the closure type or cause additional copies or destructions to be performed, violating
Design Principle 4 (Zero Overhead). Therefore, if all potential references to a local entity implicitly
captured by a lambda occur only within contract assertions attached to that lambda (precondition
or postcondition specifiers on its declarator or assertion statements inside its body), the program is
ill-formed:

static int i = 0;

void test() {
auto f1 = [=] pre(i > 0) { // OK, no local entities are captured.
};

int i = 1;

auto f2 = [=] pre(i > 0) { // error: cannot implicitly capture i here
};

auto f3 = [i] pre(i > 0) { // OK, i is captured explicitly.
};

auto f4 = [=] {
contract_assert(i > 0); // error: cannot implicitly capture i here

};
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auto f5 = [=] {
contract_assert(i > 0); // OK, i is referenced elsewhere.
(void)i;

};

auto f6 = [=] pre([]{
bool x = true;
return [=]{ return x; }(); // OK, x is captured implicitly.

}()) {};
}

3.5 Evaluation

3.5.1 Caller-Facing and Callee-Facing Function Contract Assertions

On any function invocation, two sets of function contract assertions are going to be evaluated:
those facing the caller and those facing the callee. Before the function is invoked, caller-facing
preconditions are checked, followed by callee-facing preconditions. When a function returns normally,
the contract assertions are evaluated in reverse order, i.e., callee-facing postconditions followed by
caller-facing postconditions. This evaluation sequence is illustrated in Figure 1.

Figure 1: Evaluation sequence of caller-facing and callee-facing function contract assertions

The callee-facing function contract assertions of a function call are always the function contract
assertions attached to the function whose body is being evaluated.

The caller-facing function contract assertions of a function call, on the other hand, are determined
based on how the function is invoked.
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• For a direct invocation of a function by name, the caller-facing contract assertions are those of
the function being invoked. Note that for any such direct invocation, the caller-facing contract
assertions will be the same as the callee-facing function contract assertions.

• When invoking a function through a pointer to function or a pointer to member function,
the caller-facing function contract assertions are those of the pointer — i.e., an empty set
of contract assertions since this proposal does not allow placing function contract assertions
directly on pointers (which might be changed by a future proposal).

• When doing virtual dispatch through a virtual function by name (i.e., when the function name
is a class member access expression implicitly or explicitly), the caller-facing function contract
assertions are those of the statically invoked function, i.e., the virtual function on the static
type of the left operand of the class member access expression.

The possible sets of caller-facing and callee-facing contract assertions are summarized in Table 1.

Invocation Caller-facing pre/post
assertions

Callee-facing pre/post
assertions

Direct function call (including
qualified call of a virtual
function)

Those of the function Those of the function

Call through a pointer to
function or pointer to member
function

Those of the pointer, i.e.,
none

Those of the function
pointed to

Virtual function call Those of the statically called
function

Those of the final overrider

Virtual function call through a
pointer to member function

Those of the pointer, i.e.,
none

Those of the final overrider

Table 1: Caller-facing and callee-facing function contract assertions for different ways of invoking a
function

Future proposals to allow contract assertions on pointers to functions and pointers to member
functions — or alternate types that behave like such pointers but allow for the addition of function
contract assertions — might introduce more possibilities for distinct nonempty caller-facing sets of
function contract assertions.

3.5.2 Point of Evaluation

All precondition assertions of a function invocation — first caller-facing and then callee-facing — are
evaluated after the initialization of function parameters and before the evaluation of the function
body begins.

All postcondition assertions of a function invocation — first callee-facing and then caller-facing — are
evaluated after the return value has been initialized and after the destruction of any local variables
in scopes exited by the return statement10 but prior to the destruction of function parameters.

10Note that in the current C++ Standard, the term “return statement” does not necessarily mean a literal return
statement that the user wrote but includes other situations in which a function returns control to the caller, in
particular when flowing off the end of a void function, a constructor, or a destructor.
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Note the potential subtleties of what this specification means for constructors and destructors (see
Section 3.6.2) and for coroutines (see Section 3.5.4).

Multiple precondition or postcondition assertions within the caller-facing and callee-facing sequences
of function contract assertions are evaluated in the order in which they are declared. If the return type
of a function is eligible to be passed in registers, the compiler is allowed to make extra trivial copies
of the return object, and the postcondition assertions may then refer to those copies; however, those
copies need to be done in sequence with the evaluation of the postcondition assertions. Therefore, if
the program is built such that every contract assertion will be evaluated with a checked semantic
exactly once, then in the following example,11 both postcondition assertions must evaluate to true,
regardless of whether r refers to the same object:

int f()
post(r : ++const_cast<int&>(r) == 1)
post(r : ++const_cast<int&>(r) == 2)

{
return 0;

}

An assertion statement will be executed at the point where control flow reaches the statement.

When the predicate expression of a contract assertion is evaluated, it is contextually converted to
bool. The predicate expression is a full expression; therefore, any temporaries created during the
predicate’s evaluation are destroyed when that evaluation is complete.

3.5.3 Virtual Function Calls

The declaration of a virtual function can have precondition and postcondition specifiers. Following
Design Principle 10 (Contract Assertions Check a Plain-Language Contract), these specifiers
introduce the function contract assertions of that function. Function contract assertions are not
inherited; i.e., the function contract assertions of an overriding function are independent of those of
any overridden function. Note that contracts on virtual functions are handled differently in this
proposal than in some other programming languages, such as D and Eiffel.

When a virtual function call happens, which function contract assertions are evaluated and in
what order is determined by the rules for caller-facing and callee-facing function contract assertions
described in Section 3.5.1.

The caller-facing function contract assertions are those of the statically called function, and the
callee-facing function contract assertions are those of the final overrider.

When a virtual function call happens through a pointer to member function, the caller-facing
function contract assertions are those of that pointer to member function, i.e., none in this proposal.
The callee-facing function contract assertions in that case, however, are still those of the final
overrider.

11In general, no guarantee is made that both postconditions are evaluated with a checked semantic nor if they are,
that both will be evaluated exactly once (see Section 3.5.9). Writing postcondition assertions such as those in this
example and expecting them to succeed is, therefore, not a correct use of the proposed Contracts facility; the example
is used only to illustrate the point about materialized temporaries.
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Let us illustrate the above specification with some code examples. Consider a base class,
FancyOperation, with a pure virtual function, apply, whose contract consists of a precondition
that the value passed in is non-negative and a postcondition that the return value is between 0 and
the value passed in:

struct FancyOperation {
virtual int apply(const int x)

pre ( x >= 0 )
post ( r: r >= 0 )
post ( r: r <= x ) = 0;

};

Now we add a derived class, Identity, with an override of apply that implements the identity
function. This override has a different contract; it has no preconditions, and its postcondition is
that the output is identical to the input:

struct Identity : FancyOperation {
int apply(const int x) override

post (r: r == x);
};

Now, if we perform a virtual function call where the statically called function is FancyOperation::apply
but the dynamic type of the object is Identity, both sets of function contract assertions will be
evaluated:

void test() {
Identity identity;
FancyOperation& fancyOp = identity;
int i1 = fancyop.apply(-1); // error: FancyOperation precondition violated
int i2 = fancyop.apply(1); // OK

}

However, if we perform the call directly on an object of type Identity (or a pointer or reference to
Identity), only the function contract assertions of Identity::apply will be evaluated:

void test() {
Identity identity;
int i = identity(-1); // OK; i == -1

}

In the above code, each function contract assertion of Identity::apply are evaluated twice (since it
is a virtual function call and Identity::apply is both the statically called function and the overrider),
but the compiler may elide the duplicate evaluations (see Section 3.5.10).

If we call Identity::apply through a pointer to member function, only the function contract
assertions of that function will be called, even if the pointer to member function points to a member
function of the base class FancyOperation:

void test() {
int (FancyOperation::*applyPtr)(int) = &FancyOperation::apply;
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Identity identity;
FancyOperation& fancyOp = identity;

int i = (fancyOp.*applyPtr)(-1); // OK; i == -1

Function contract assertions of overrides in intermediate classes are not considered; for example, if we
inherit MoreFancyOperation from FancyOperation, then inherit Identity from MoreFancyOperation,
then create an object of dynamic type Identity and call apply through a reference to FancyOperation,
the function contract assertions of FancyOperation::apply and Identity::apply will be evaluated,
but the function contract assertions of MoreFancyOperation will not.

When using multiple inheritance, function contract assertions in sibling classes are also not
considered:

struct FancyOperation {
virtual int apply(const int x)

pre ( x >= 0 )
post ( r: r >= 0 )
post ( r: r <= x ) = 0;

};

struct AntiFancyOperation {
virtual int apply(const int x)

pre ( x <= 0 )
post ( r : r <= 0 )
post ( r : r >= x ) = 0;

}

struct Identity : FancyOperation, AntiFancyOperation {
int apply(const int x) override

post ( r: r == x );
}

void test() {
Identity identity;

FancyOperation& op = identity;
int i1 = op.apply(1); // OK
int i2 = op.apply(-1); // error: precondition violation in FancyOperation::apply

AntiFancyOperation& antiOp = identity;
int i3 = op.apply(1); // error: precondition violation in AntiFancyOperation::apply
int i4 = op.apply(-1); // OK

}

3.5.4 Coroutines

Coroutines are allowed to have precondition assertions, postcondition assertions, and assertion
statements. We already discussed some syntactic rules (see Section 3.3.4) and rules for odr-using
function parameters in postcondition assertions (see Section 3.4.4) that are relevant for coroutines.
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In this section, we cover how the point of evaluation of precondition and postcondition assertions
(see Section 3.5.2) applies to coroutines.

At first glance, we see no obvious explanation for how precondition and postcondition assertions
should work for a coroutine that can be suspended and resumed and thus has more than one entry
and exit point; however, upon closer inspection, only one method can possibly work.

The key observation is that the fundamental design principle of coroutines in C++ states that the
coroutineness of a function is an implementation detail; we cannot tell from a function declaration
or from a function call whether the callee is a coroutine or a noncoroutine function.

When we call a coroutine, the function that is effectively called is not the coroutine body that the
user wrote, but a function synthesized by the compiler, sometimes called the ramp function.12 The
object returned by this ramp function is not the ultimate result of the operation (such as the values
co_yield-ed or co-return-ed by the coroutine), but a result object that can be used to advance
the state of the coroutine, such as a generator, a task, or an awaitable. Since the precondition and
postcondition assertions apply to the declaration of a function and do not see its coroutineness,
these assertions must apply to the ramp function, not to the user-provided coroutine body.

To illustrate the design intent, consider the following function declaration:
// returns a generator for the integer sequence n, n + 1, n + 2...
generator<int> iota(int n);

One option to implement this function is as a coroutine:
generator<int> iota(int n) {
while (true)

co_yield n++;
}

Another option is to implement this function as a noncoroutine function. We could manually initialize
an object of type generator<int> and return it, using none of the C++ coroutine machinery. Such an
initialization can be done with no observable change in behavior between the two implementations.

A third possible implementation is to implement iota as a noncoroutine function by wrapping a
coroutine iota_coro_impl:

generator<int> iota(int n) {
return iota_coro_impl(n);

}

where iota_coro_impl is implemented like the first version of iota above.
12First, the compiler transforms the user-provided body of the coroutine into a different function body, as specified

in [dcl.fct.def.coroutine]/5. Note that this replacement body — again, as specified in [dcl.fct.def.coroutine]/5 — is itself
also a coroutine which suspends the user-provided coroutine at its initial suspension point. The compiler effectively
surrounds this replacement coroutine with yet another synthesized wrapper, the ramp function, which calls the
replacement coroutine and returns the return object. The wording describing all this machinery is currently somewhat
unclear. We should consider clarifying and simplifying that wording. Some first steps toward that goal are already
realized in the wording proposed in this paper because the proposed wording helps us specify the behavior of pre
and post on coroutines. However, further clarification of coroutines should probably be undertaken independent of
Contracts.
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The design intent is that function contract assertions should behave the same in each of the three
cases above. The only necessary exception to this rule is that, because of how coroutines are specified
today, if the predicate of a postcondition assertion odr-uses a nonreference parameter, such a function
cannot be defined as a coroutine because that would mean the parameter would be moved-from
before the postcondition assertion is evaluated, which would break the postcondition check (see
Section 3.4.4).

Despite this restriction, postcondition assertions on coroutines are still useful to assert properties of
the returned object:

awaitable<int> cancelable_session(int id)
post (r: is_cancelable(r));

Precondition assertions are entirely unaffected by the coroutineness of a function, and their benefits
are thus the same as for noncoroutine functions:

generator<int> sequence(int from, int to)
pre (from <= to);

Precondition assertions are evaluated after the initialization of function parameters and before the
evaluation of the function body begins (see Section 3.5.2). For a coroutine, this sequencing means
that precondition assertions are evaluated before any of the coroutine-specific operations inside the
ramp function, such as allocating storage for the coroutine state and creating copies of the function
parameters. Creating these copies might perform a move; however, we can extrapolate that if a
function parameter is odr-used in the precondition-assertion predicate, the expression refers to the
original parameter objects, not the copies created.

Further, postcondition assertions are evaluated when the function returns control to the caller.
For a coroutine, this point of evaluation means the (compiler-generated) return of the coroutine
return object by the ramp function, not any of the suspension points inside the coroutine body.13

Postcondition assertions are evaluated after the return value has been initialized and after the
destruction of any local variables in scopes exited by the return statement. However, when a
coroutine suspends, control flow returns without exiting any scopes.14 Therefore, evaluation of the
postcondition assertions of a coroutine is unsequenced with respect to the destruction of anything
in the coroutine state — the promise object, copies of the parameter objects, or local variables in
the coroutine body.

In other words, the postcondition assertions of a coroutine may be evaluated before the coroutine
body completes or even after the entire coroutine state has been deallocated.15 This behavior is
a direct consequence of the design and specification of coroutines in C++; it is not a special rule
introduced by Contracts.

13Note that the return to the caller can correspond to the first suspension of a coroutine, but all other suspension
points return to an alternate resumer (i.e., not to the caller of the ramp function). Note further that the return need
not correspond to a suspension in general; the coroutine could run synchronously to completion or be destroyed in
response to some interaction before reaching any active suspension.

14See [expr.await]/5.1.3.
15The coroutine state might have already been deallocated by the time the postcondition assertion is evaluated

because this deallocation can happen after the initial suspend and before control is returned to the caller.
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3.5.5 Observable Checkpoints

[P1494R3] introduces the notion of observable checkpoints to the C++ language. This proposal
builds on top of [P1494R3] and introduces the following events in the execution of a program as
such observable checkpoints:

• The beginning of evaluation of a contract predicate when evaluating a contract assertion

• The contract-violation handler returning normally when it is invoked from a contract assertion
using the observe semantic

This specification mitigates certain cases of unwanted interaction between contract assertions and
undefined behavior. One such case is undefined behavior that occurs when evaluating the predicate
of a contract assertion:

int i = 0;
void f(int *p) {

if (p != nullptr) // #1
++i;

contract_assert( *p >= 0 ); // undefined behavior if p == nullptr
}

Making the beginning of the evaluation of the contract_assert an observable checkpoint prevents
time-travel optimizations that could alter the behavior of earlier evaluations, such as eliding the
check at #1, which could otherwise result in observing the increment of i even when f(nullptr) is
invoked and the contract assertion is evaluated with the enforce semantic.

Another case is undefined behavior that occurs after the evaluation of a contract assertion:
void g(int *p)
{

contract_assert (p != nullptr); // #2
++(*p); // undefined behavior if p == nullptr

}

If the contract semantic at #2 is observe, execution will continue into the line of code where the
undefined behavior occurs, even if the check at #2 fails. Making the return of the contract-violation
handler an observable checkpoint prevents time-travel optimizations that could otherwise elide the
contract check at #2 itself.

Note that this specification does not eliminate all possible cases where a contract check could be
elided due to undefined behavior (see Section 3.6.1).

3.5.6 Evaluation Semantics: ignore, observe, enforce, quick-enforce

Contract assertions are evaluated during constant evaluation as well as at run time. Each evaluation
of a contract assertion is performed with a specific evaluation semantic, which might or might not
evaluate the predicate.
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We propose four evaluation semantics: ignore, observe, enforce, and quick-enforce. An implementation
may provide additional evaluation semantics, with implementation-defined behavior, as a vendor
extension. The four proposed evaluation semantics have the following characteristics:

• The observe, enforce, and quick-enforce semantics are collectively called checking semantics;
evaluating a contract assertion with a checking semantic is also called performing a contract
check. A contract check determines the value of the predicate to identify contract violations.

• The ignore semantic is not a checking semantic; evaluating a contract assertion with the ignore
semantic has no effect. Note that a predicate is still parsed and is a potentially evaluated
expression; i.e., a predicate odr-uses entities that it references. Therefore, a predicate must
always be a well-formed, evaluable expression. See Section 3.6.7 for how this behavior differs
from that of an assert macro that is disabled by defining NDEBUG.

A contract check might result in a contract violation being identified; see Section 3.5.8 for a
description of how a contract check is performed.

If no contract violation is identified, program execution will continue from the point of evaluation of
the contract assertion.

If a contract violation is identified at run time, the behavior is as follows.

• The observe semantic will invoke the contract-violation handler; if the contract-violation
handler returns normally, program execution will continue from the point of evaluation of the
contract assertion.

• The enforce semantic will invoke the contract-violation handler; if the contract-violation
handler returns normally, the program is terminated.

• The quick-enforce semantic will not invoke the contract-violation handler but will instead
immediately terminate the program.

The enforce and quick-enforce semantics are collectively called terminating semantics because when
a contract violation occurs, they will prevent program execution from continuing into the code
following the violated contract assertion by terminating the program.

In all the above cases, when the program is terminated as a result of contract checking, we say that
it is contract terminated. Contract termination is an implementation-defined form of termination
that performs one of the following actions.

• Invoke std::terminate.

• Invoke std::abort.

• Terminate execution immediately.

Note that the fashion of termination can be different for different contract-assertion evaluations in
the same program. For example, a conforming implementation may implement the enforce semantic
to call std::abort when the contract-violation handler returns normally and the quick-enforce
semantic to call __builtin_trap() (which simply terminates execution as far as the abstract machine
is concerned) when the predicate evaluates to false and to call std::terminate when evaluation of
the predicate exits via an exception.
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An implementation may also choose to perform the actions that a call to std::terminate or
std::abort would perform (i.e., call the termination handler or raise a SIGABRT signal) without
actually making a library call, which allows the implementation to provide these fashions of
termination without having to introduce a link-time dependency on a runtime library that provides
those functions.

If a contract violation is identified at compile time (during constant evaluation), the behavior is as
follows.

• The observe semantic will issue a diagnostic (a warning).

• The enforce and quick-enforce semantics will render the program ill-formed.

See Section 3.5.14 for more details on constant evaluation of contract assertions.

3.5.7 Selection of Semantics

The semantic a contract assertion will have when evaluated is implementation-defined. The selection
of semantic (ignore, observe, enforce, or quick-enforce) may happen at compile time, link time, load
time, or run time. In practice, the choice of semantic will most likely be controlled by a command-line
option to the compiler, although platforms might provide other avenues for selecting a semantic,
and this proposal does not mandate the exact forms and flexibility of this selection.

Different contract assertions can have different semantics, even in the same function. The same
contract assertion may even have different semantics for different evaluations. Chains of consecutive
evaluations of contract assertions may have individual contract assertions repeated any number of
times (with certain restrictions and limitations; see Section 3.5.9) and may involve evaluating the
same contract assertion with different evaluation semantics.

The semantic a contract assertion will have when evaluated should, in general, not be identifiable
through any reflective functionality of the C++ language. Branching at compile time based on
whether a contract assertion will be checked or unchecked or on which concrete semantic it will
have when evaluated is, therefore, not recommended, and the design proposed here does not include
any features that facilitate such branching (although it remains possible to construct programs that
achieve this effect). This is another important difference between contract assertions and the assert
macro (see Section 3.6.7; our proposal does not contain any equivalent for NDEBUG).

We expect that implementations will provide appropriate compiler flags to choose the evaluation
semantics assigned to contract assertions and that these flags can vary across translation units.
Whether the contract assertion semantic choice for runtime evaluation can be delayed until link or
run time is also, similarly, likely to be controlled through additional compiler flags.

We recommend that an implementation provide modes to set all contract assertions to have, at
translation time, the enforce or the ignore semantic for runtime evaluation.

We recommend that a contract assertion will have the enforce semantic at run time when nothing
else has been specified by a user. Compiler flags like -DNDEBUG, -O3, or similar are understood to
perhaps be considered to be “doing something” to indicate a desire to prefer speed over correctness,
and these flags are certainly conforming decisions. The ideal practice, however, is to make sure that
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the beginner student, when first compiling software in C++, does not need to understand Contracts
to benefit from the aid that Contracts will provide by notifying that student of their own mistakes.

A compiler may offer separate compiler flags for selecting an evaluation semantic for constant
evaluation, e.g., if the user wishes to ignore contracts at compile time to minimize compile times
but still perform contract checks at run time. A reasonable default configuration for an optimized
Release build might be to enforce contract assertions at compile time but to ignore them at run time
(to maximize runtime performance with C++’s usual disregard for moderate increases in compile
time).

3.5.8 Checking the Contract Predicate

When a contract assertion is being evaluated with a checking semantic, a contract check is performed
to determine the result of evaluating the contract predicate.

If the result of the predicate can be determined, two possible results appear.

1. The predicate evaluates to true.

2. The predicate evaluates to false.

If the predicate evaluates to true, no contract violation has been identified. Execution will continue
normally after the point of evaluation of the contract assertion.

If the predicate evaluates to false, a contract violation has been identified. The contract-violation
handling process will be invoked; if the contract violation occurs at run time, the contract-violation
handler will be called with the value predicate_false for detection_mode (see Section 3.5.12).

If evaluation of the predicate does not produce a value, two more possible outcomes of the contract
check appear.

3. Control remains in the purview of the contract-checking process. This occurs when

• evaluation of the predicate exits via an exception

• evaluation of the predicate happens as part of constant evaluation, i.e., at compile time,
and the predicate is not a core constant expression, i.e., cannot be evaluated at compile
time (see Section 3.5.14).

4. Control never returns to the purview of the contract-checking process. This occurs when

• evaluation of the predicate enters an infinite loop or suspends the thread indefinitely

• evaluation of the predicate results in a call to longjmp

• evaluation of the predicate results in program termination

Even though case 3 does not necessarily indicate a violation of the plain-language contract but
only a failure to verify that no such violation has occurred, we treat such a failure as a form of
contract violation. When a predicate evaluate exits via exceptoin at run time, the contract-violation
handler will be called with the value evaluation_exception for detection_mode; the exception
itself is provided to the handler via the member function evaluation_exception() of the passed-in
contract_violation object (see Section 3.5.12).
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In case 4, any effects of the incomplete evaluation of the predicate, such as a call to longjmp or
program termination, happen according to the normal rules of the C++ language.

Since evaluating the predicate follows the usual rules for evaluating C++ expressions, one more
outcome is possible.

5. Evaluation of the predicate has undefined behavior.

This situation is covered in Section 3.6.1.

3.5.9 Elision, Duplication, and Evaluating in Sequence

In three situations, a set of consecutive contract assertions is formed which are then evaluated in
sequence:

• The caller-facing precondition assertions followed by the callee-facing precondition assertions
that apply to a function call

• The callee-facing postcondition assertions followed by the caller-facing postcondition assertions
that apply to a function call

• Assertion statements that are consecutive statements

At any point during the evaluation in sequence of these sets, an earlier contract assertion can be
evaluated again, with the same or a different evaluation semantic,16 up to an implementation-defined
number of times. If the same contract assertion is evaluated multiple times as part of the same
function invocation, the evaluation of the contract assertion is not implicitly skippable, but an
implementation is free to document that such repeated evaluations17 will be evaluated using the
ignore semantic. Remember the distinction between evaluating a contract assertion and evaluating
its predicate: Evaluating a contract assertion with the ignore semantic also counts as an evaluation
of the contract assertion, even though the contract assertion’s predicate is never evaluated in this
case.

As a recommended practice, an implementation should provide an option to perform a specified
number of repeated evaluations for contract assertions. By default, no additional repetitions should
be performed; i.e., each contract assertion should be evaluated exactly once.

In practice, the above rules mean that the preconditions and postconditions of a function may be
evaluated, as a group, any number of times. Evaluations still, however, occur in sequence, and thus
later contract assertions will never be evaluated until after earlier ones are evaluated:

void f(int *p)
pre( p != nullptr ) // precondition 1
pre( *p > 0 ); // precondition 2

16Note that an equivalent formulation is that the complete evaluation in sequence of the set of contract assertions
may be repeated (an implementation-defined number of times) with an arbitrary subset of those contract assertions
evaluated with the ignore semantic.

17Such a repeated evaluation might happen when invoking a virtual function on an object whose dynamic type is
statically known and that does not have a separate override of that function. In such cases, the function contract
assertions of that function will be evaluated twice.
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An invocation of f will always evaluate precondition 1 first. After that, precondition 1 may be
repeated any time later before control proceeds into the body of f. Precondition 2 will always
be evaluated after precondition 1 has been evaluated at least once, and after that, 2 may be
evaluated again as well. On many platforms, the simplest sequence 1 – 2 will be evaluated, with
each precondition being evaluated exactly once and in order. In other situations, such as when
function-contract-assertion evaluations are emitted at both the call site and within the function
body, the sequence 1 – 2 – 1 – 2 will be evaluated. Beyond those most common cases, the following
sequences of evaluation are conforming:

1 – 1 – 2
1 – 2 – 2
1 – 2 – 2 – 1, ...

The following sequences of evaluation are not conforming.

2 – 1,
2 – 2,
1,
1 – 1, ...

Again, repeated evaluations may also be performed with different semantics, including the ignore
semantic, allowing a compiler to emit checks of related contracts (such as a precondition and a
postcondition that relate to the same data) adjacent to one another, possibly resulting in the ability
to elide one or both when they can be statically proven to hold.

3.5.10 Predicate Side Effects

The predicate of a contract assertion is an expression that, when evaluated, follows the normal
C++ rules for expression evaluation. The contract-assertion predicate is, therefore, allowed to have
observable side effects, such as logging.

If the compiler can prove that evaluation of the predicate would result in the values true or false
(i.e., it cannot throw an exception, cause a call to longjmp, or trigger program termination), the
compiler is allowed to elide all the side effects of evaluating the predicate. In other words, the
compiler may generate a side-effect-free expression that provably produces the same result as the
predicate and may evaluate that expression instead of the predicate. By evaluating this replacement
expression, the compiler effectively elides the evaluation of the entire predicate, resulting in no side
effects of the predicate occurring. This ability to replace an expression that has side effects with one
that has none applies only to the entire predicate; i.e., either all or none of the side effects of the
predicate expression will be observed. The compiler also may not introduce new side effects.

As with many other allowed program transformations, this replacement of the predicate with a
side-effect-free expression must be equivalent for only evaluations with well-defined behavior. In
other words, the replacement predicate might have undefined behavior when the actual predicate
would.

If the compiler cannot prove that evaluation of the predicate will not exit via an exception, then
the compiler is not allowed to elide the evaluation of the predicate because the thrown exception
must be available in the contract-violation handler (see Section 3.5.12).
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Likewise, if the compiler cannot prove that evaluation of the predicate will not call longjmp or
cause program termination, then the compiler is not allowed to elide the evaluation of the predicate
because, during predicate evaluation, such calls are guaranteed to happen as normal.

Further, as described in Section 3.5.9, contract predicates may be evaluated repeatedly within a
chain, even a chain of a single contract assertion. Therefore, in general, observable side effects of the
predicate evaluation may happen zero, one, or many times:

int i = 0;
void f() pre ((++i, true));
void g() {

f(); // i may be 0, 1, 17, etc.
}

If the chosen semantic for these preconditions is observe and the contract-violation handler returns
normally on each violation, multiple violations might result:

int i = 0;
void f() pre ((++i, false));
void g() {

f(); // i may be any value; the contract−violation handler
// will be invoked at most that number of times.

}

In other cases, if the compiler cannot prove that true and false are the only results possible,
it cannot check the contract assertion without evaluating the contract predicate. In such cases,
observable side effects of the predicate evaluation must happen at least once but may happen many
times:

int i = 0;
void f() pre ((++i, throw true));
void g() {

f(); // i may be 1, 2, 17, etc. The same number of contract violations
// will be reported to the contract−violation handler.

}

Since we cannot rely on the side effects of predicate evaluation happening any particular number of
times or at all, the use of contract predicates with side effects is generally discouraged. Note that if
the predicate is a side-effect-free expression, neither elision nor repetition of evaluating the predicate
is observable, and a contract check that does not result in a violation is, therefore, equivalent under
the as-if rule to evaluating the predicate exactly once.

3.5.11 The Contract-Violation Handler

The contract-violation handler is a function named ::handle_contract_violation that is attached
to the global module and has C++ language linkage. This function will be invoked when a contract
violation is identified at run time.

This function

• shall take a single argument of type const std::contracts::contract_violation&
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• shall return void

• may be noexcept

The implementation shall provide a definition of this function, which is called the default contract-
violation handler and has implementation-defined effects. The recommended practice is that the
default contract-violation handler will output diagnostic information describing the pertinent prop-
erties of the provided std::contracts::contract_violation object. Whether the default contract-
violation handler itself is noexcept is implementation-defined, though the recommended implemen-
tation certainly could be.

The Standard Library provides no user-accessible declaration of the default contract-violation
handler, and users have no way to call it directly. No implicit declaration of this function occurs
in any translation unit, even though the function might be directly or indirectly invoked from the
evaluation of any contract assertion. If a declaration were available, it would not be easily called from
outside a contract-violation handler because users have no way to create contract_violation objects.
Such a declaration would also prevent users from choosing properties of their own replacement
function, such as whether it is noexcept or [[noreturn]] or whether it has its own preconditions
and postconditions.

Whether ::handle_contract_violation is replaceable is implementation-defined. When it is replace-
able, that replacement is done in the same way it would be done for the global operator new and
operator delete, i.e., by defining a function that has the correct signature (function name and
argument types), has the correct return type, and satisfies the requirements listed above. Such a
function is called a user-defined contract-violation handler.

A user-provided contract-violation handler may have any exception specification; i.e., it is free to
be noexcept(true) or noexcept(false). Enabling this flexibility is a primary motivation for not
providing any declaration of ::handle_contract_violation in the Standard Library; whether that
declaration was noexcept would force that decision on user-provided contract-violation handlers, like
it does for the global operator new and operator delete, which have declarations that are noexcept
provided in the Standard Library.

On platforms where there is no support for a user-defined contract-violation handler, providing
a function with the signature and return type needed to attempt to replace the default contract-
violation handler is ill-formed, no diagnostic required. Platforms can, therefore, issue a diagnostic
informing a user that their attempt to replace the contract-violation handler will fail on their
chosen platform. At the same time, not requiring such a diagnostic allows use cases like compiling a
translation unit on a platform that supports user-defined contract-violation handlers but linking
it on a platform that does not, without forcing changes to the linker to detect the presence of a
user-defined contract-violation handler that will not be used.

3.5.12 The Contract-Violation Handling Process

When a contract violation (see Section 3.5.8) is identified at run time, the contract-violation
handling process will be invoked. An object of type std::contracts::contract_violation will
be produced and passed to the violation handler. This object provides information about the
contract violation that has occurred via a set of property functions, such as location (returning a
source_location associated with the contract violation), comment (returning a string with a textual

47



representation of the contract predicate), assertion_kind (the kind of contract assertion — pre,
post, or contract_assert), and semantic (the evaluation semantic of the contract assertion that
caused the contract violation). This API is described in more detail in Section 3.7.

The manner in which this contract_violation object is produced is unspecified other than that
the memory for it is not allocated via operator new (similar to the memory for exception objects).
This object might already exist in read-only memory, or it might be populated at run time on the
stack. The lifetime of this object will continue at least through the point at which the violation
handler completes execution. The same lifetime guarantee applies to any objects accessible through
the contract_violation object’s interface, such as the string returned by the comment property.

Further, if the contract violation was caused by the evaluation of the predicate exiting via an
exception, the contract-violation handler is invoked as if from within a handler for that exception
generated by the implementation. Inside the contract-violation handler, that exception is available
via the member function evaluation_exception() of the passed-in contract_violation object.18

Since the exception is considered to be handled by the contract-violation handler, it will not be
rethrown automatically when the contract-violation handler returns, but the user can do so manually
using std::rethrow_exception.

For expository purposes, assume that we can represent the process with some magic compiler
intrinsics.

• std::contracts::evaluation_semantic __current_semantic() — Return the semantic with
which to evaluate the current contract assertion. This intrinsic is constexpr; i.e., it may be
called either during constant evaluation (see Section 3.5.14) or at run time. The result may
be a compile-time value (e.g., controlled by a compiler flag or a platform-specific annotation
on the contract assertion) or, for a contract evaluation at run time, may even be a value
determined at run time based on what the platform provides.

• __check_predicate(X) — Determine the result of the predicate X at run time either by
returning true or false if the result does not need evaluation of X or by evaluating X (and
thus potentially also invoking longjmp, terminating execution, or letting an exception escape
the invocation of this intrinsic).

• __handle_contract_violation(evaluation_semantic, detection_mode) — Handle a runtime
contract violation of the current contract. This intrinsic will produce a contract_violation ob-
ject populated with the appropriate location and comment for the current contract, along with
the specified semantic and detection mode. The lifetime of the produced contract_violation
object and all its properties must last through the invocation of the contract-violation handler.

Building from these intrinsics, the evaluation of a contract assertion is notionally equivalent to the
following exposition-only pseudocode:

18Since the exception thrown during predicate evaluation is the currently handled exception when the
contract-violation handler is called, it may also be accessed within the contract-violation handler by calling
std::current_exception(). However, using std::current_exception() for this purpose can be error prone be-
cause unlike evaluation_exception(), which will only return a nonempty std::exception_ptr if the exception was
thrown during predicate evaluation, std::current_exception() simply returns a pointer to the currently handled
exception and will thus return a nonempty value even if the predicate did not throw if the enclosing code is handling
an unrelated exception (i.e., the contract violation occurred inside a catch clause).
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evaluation_semantic _semantic = __current_semantic();
if (evaluation_semantic::ignore == _semantic) {

// Do nothing.
}
else if (evaluation_semantic::observe == _semantic

|| evaluation_semantic::enforce == _semantic
|| evaluation_semantic::quick_enforce == _semantic)

{
// checking semantic

if consteval {
// See Section 3.5.14.

}
else {

// exposition−only variables for control flow
bool _violation; // Violation handler should be invoked.
bool _handled = false; // Violation handler has been invoked.

// Check the predicate and invoke the violation handler if needed.
try {

_violation = __check_predicate(X);
}
catch (...) {

if (evaluation_semantic::quick_enforce == _semantic) {
std::terminate(); // implementation−defined program termination

} else {
// Handle the violation within the exception handler.
_violation = true;
__handle_contract_violation(_semantic,

detection_mode::evaluation_exception);
_handled = true;

}
}
if (_violation && evaluation_semantic::quick_enforce == _semantic) {

__builtin_trap(); // implementation−defined program termination
}
if (_violation && !_handled) {

__handle_contract_violation(_semantic,
detection_mode::predicate_false);

}

if (_violation && evaluation_semantic::enforce == _semantic) {
abort(); // implementation−defined program termination

}
}

}
else {

// implementation−defined _semantic
}
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If the semantic is known at compile time to be ignore, the above is functionally equivalent to
sizeof( (X) ? true : false ); — i.e., the expression X is still parsed and odr-used, but it is used
only on discarded branches.

The invocation of the contract-violation handler when an exception is thrown by the evaluation of
the contract assertion’s predicate must be done within the compiler-generated catch block for that
exception. The invocation when no exception is thrown must be done outside the compiler-generated
try block that would catch that exception. This behavior could be accomplished in many ways; the
exposition-only boolean variables above are just one possible solution.

3.5.13 Mixed Mode

One important takeaway from having the semantic of evaluation being effectively unspecified until
run time is that, unlike a macro-based solution, a contract assertion’s definition — and thus the
definition of the function to which it applies — is the same even though individual evaluations
of that contract assertion might have different evaluation semantics. This feature means that an
implementation that supports mixing translation units where contract assertions are configured to
have different evaluation semantics is not, in and of itself, an odr violation.19

The possibility to have a well-formed program in which the same function was compiled with
different evaluation semantics in different translation units (colloquially called “mixed mode”) raises
the question of which evaluation semantic will apply when that function is inline but is not actually
inlined by the compiler and is then invoked. The answer is simply that we will get one of the
evaluation semantics with which we compiled.

For use cases where users require strong guarantees about the evaluation semantics that will apply
to inline functions, compiler vendors can add the appropriate information about the evaluation
semantic as an ABI extension so that link-time scripts can select a preferred inline definition of the
function based on the configuration of those definitions. We expect vendors to provide a default that
selects the most conservative of available definitions as well as options that allows users to define
the required evaluation semantic ordering themselves. As an alternative approach, the compiler can
add a hook for every contract check and then give users the option to select the desired evaluation
semantic at load time or at run time.

If such deterministic selection of the evaluation semantic in “mixed mode” is not required or is desired
but not possible (for example, because a user cannot afford to upgrade their linker and recompile
their program), the remaining option is that the linker can simply choose either semantic. Such an
implementation would be compatible with both Principle 4 (Zero Overhead) and Principle 16 (No
ABI Break). In practice, this solution will often be good enough. The only failure mode of such an
implementation is that a contract check that was expected does not happen. For most use cases,
this failure mode will be much better than undefined behavior, IFNDR (ill-formed, no diagnostic
required), or requiring linker upgrades before we can use Contracts at all.

19Different behaviors might be observed for the same function compiled in different translation units; such behavioral
differences, however, are a product of the same sequence of tokens even when they result in different generated
instructions. This situation is similar to multiple versions of the same inline function being optimized differently in
different TUs, which is also not an odr violation.
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3.5.14 Constant Evaluation

Contract assertions may be evaluated during constant evaluation (at compile time). During constant
evaluation, the four possible evaluation semantics have the following meanings.

• ignore — Nothing happens during constant evaluation; the contract expression must still be a
valid expression that might odr-use other entities.

• observe — Constant-evaluate the predicate; if a contract violation occurs, a diagnostic (warning)
is emitted.

• enforce and quick-enforce — Constant-evaluate the predicate; if a contract violation occurs,
the program is ill-formed.

Constant evaluation of the predicate can have one of three possible outcomes.

1. The result is true. — No contract violation.

2. The result is false. — Contract violation.

3. The predicate is not a core constant expression. — Contract violation.

To help satisfy Design Principle 3 (Concepts Do Not See Contracts), the mere presence of a contract
assertion should not alter whether containing expressions are or are not eligible to be constant
expressions, particularly because it is possible to SFINAE on whether an expression is a core constant
expression. Therefore, evaluating a contract assertion in and of itself never makes an expression
ineligible to be a core constant expression, although its predicate being ineligible to be evaluated
will result in a contract violation.20

A special rule is applied to potentially constant variables that are not constexpr, such as variables
with static or thread storage duration and non-volatile const-qualified variables of integral or
enumeration type. Such variables may be constant-initialized (at compile time) or dynamically
initialized (at run time) depending on whether the initializer is a core constant expression:

int compute_at_runtime(int n); // not constexpr

constexpr int compute(int n) {
return n == 0 ? 42: compute_at_runtime(n);

}

void f() {
const int i = compute(0); // constant initialization
const int j = compute(1); // dynamic initialization

}

In such cases, the compiler first determines whether the initializer is a core constant expression by
performing trial evaluation21 with all contract assertions ignored. (Therefore, contract assertions

20This situation is conceptually somewhat similar to evaluation of the predicate exiting with an exception and
possibly occurs when the actual plain-language contract has not been violated, but we cannot tell because we cannot
evaluate the contract predicate. We still treat this case as a compile-time contract violation.

21Trial evaluation is performed notionally (as specified in [expr.const]). In practice, an implementation is allowed to
perform the constant evaluation of the initializer in one step as long as the result is the same.
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cannot trigger a contract violation during trial evaluation or otherwise influence the determination
performed by the trial evaluation.) If and only if this trial evaluation determines that the expression
is a core constant expression, then the variable is constant-initialized and its initializer is now a
manifestly constant-evaluated context.

For any manifestly constant-evaluated context (including the initialization of constexpr variables,
template parameters, array bounds, and variables where trial evaluation has determined that the
variable is constant-initialized), the expression is then evaluated with the contract assertions using
the semantics ignore, observe, enforce, or quick-enforce chosen in an implementation-defined manner.
This evaluation behaves normally with regard to possible contract violations.

This rule is again derived from Design Principle 4 (Zero Overhead). In the example above, adding a
contract assertion to compute (i.e., when called with 0) must not silently flip the initialization of i
from constant to dynamic, thereby changing the semantics of the program. By the same token, if
compute is already not a core constant expression and is evaluated at run time (i.e., when called
with a value other than 0), a contract assertion must not lead to it instead being evaluated at
compile time and causing a compile-time contract violation. This rule avoids aggressive enforcement
of contract checks at compile time for functions that would otherwise be evaluated at run time (at
which point the contract check might succeed). Consider adding the following precondition assertion:

constexpr int compute(int n)
pre (n == 0 || !std::is_constant_evaluated()) // passes for both i and j

{
return n == 0 ? 42: compute_at_runtime(n);

}

void f() {
const int i = compute(0); // constant initialization
const int j = compute(1); // dynamic initialization

}

The above precondition check would fail for j if it were evaluated at compile time. However,
compute is not evaluated at compile time for j because trial evaluation (which does not consider
contract annotations) determines that compute(1) is not a core constant expression (due to the
call to compute_at_runtime), and j will, therefore, be initialized at run time, at which point the
precondition passes. The above program, therefore, contains no contract violations.

The program is ill-formed if trial evaluation (with all contract assertions ignored) determines that
the initializer is a core constant expression, the variable is constant-initialized with all contract
assertions checked in a manifestly constant-evaluated context, and any such constant-evaluated
predicate then causes the initializer to no longer be a core constant expression:

constexpr int foo(int i) {
return i == 0 ? 0 : throw 0; // error: not a core constant expression

}

constexpr int bar(int * p)
pre((*p = 1)) {
return foo(*p);

}
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constexpr int baz(int i) {
return bar(&i);

}

static int x = baz(0); // constant initialization

The rules regarding elision and duplication of side effects described in Section 3.5.10 apply equally
during constant evaluation:

constexpr int f(int i)
pre ((++const_cast<int&>(i), true)) {
return i;

}

inline std::size_t g() {
int a[f(0)];
return a.size(); // may be 0, 1, 17, etc.

}

In the above example, different translation units might have different declarations for the array a,
resulting in multiple distinct definitions — an odr violation — for the function g. Considering that
such odr violations happen only when function contract assertions are already unwisely jumping
through const_cast hoops to modify function parameters, this is a recognized but insignificant
concern. Note further that even without the possibility to elide or duplicate side effects, the odr
violation would still occur because the type of a would still depend on whether the contract assertion
would be evaluated with a checking or non-checking evaluation semantic when determining the size
of the array a.

Finally, note that none of these rules apply when constant evaluation is not semantically possible,
even if a compiler might fold such evaluations into constants under the as-if rule:

constexpr int f(int x) pre( x > 0 );
void g()
{

int bad = f(0); // always initialized at run time, violates the precondition
}

3.6 Noteworthy Design Consequences

3.6.1 Undefined Behavior During Contract Checking

Following Design Principle 13 (Explicitly Define All New Behavior), the design of this proposal has
deliberately not introduced any new explicitly undefined behavior into the C++ language and, we
hope, does not introduce any other undefined behavior through new holes in the specification. At
the same time, contract assertions are not immune to undefined behavior that arises due to existing
C++ rules.

Though making contract assertions observable checkpoints (see Section 3.5.5) mitigates certain
unwanted time-travel optimizations and elisions of observed contract assertions due to undefined
behavior outside of contract assertions, no special protection is offered against undefined behavior
inside a contract-assertion check since contract predicates are normal C++ expressions and, therefore,
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follow the normal rules for C++ expressions when evaluated. In other words, if a contract assertion
is evaluated with a checking semantic and the resulting predicate evaluation has undefined behavior,
then the evaluation of the contract assertion itself has undefined behavior:

int f(int a) { return a + 100; }
int g(int a) pre (f(a) > a);

In this program, the compiler is allowed to assume that the signed integer addition inside f will
never overflow (because this would be undefined behavior) and replace the precondition assertion of
g with pre(true), or in other words, elide the precondition assertion entirely, even if the evaluation
semantic is enforce or quick-enforce.

3.6.2 Invalid Data Member Access in Constructors and Destructors

Constructors and destructors both follow the same rules as those for regular function invocations
such that precondition and postcondition assertions are evaluated as control transfers in and out of
the constructor or destructor. Clarity about what this means is important.

Two cases are worth calling out because they provide a place where user-provided code will be
evaluated where none was explicitly possible before.

1. The precondition assertions of a constructor are evaluated before the complete function body,
which includes the function-try block and member initializer list.

2. The postcondition assertions of a destructor are evaluated before returning to the caller and
thus occur after the destruction of all members and base classes.

During the above situations, members, bases, and the object itself are not within their lifetimes;
accessing any of these objects or doing anything that depends on the dynamic type of these objects
(such as dynamic_cast, typeid, invoking a virtual member function, or accessing a member of a
virtual base class) will, therefore, have undefined behavior.

Preserving this possibility is important because the value of this and the address of its nonstatic
data members are all quite useful in contract assertions, with no need to access the values of the
objects at those locations (which will be outside their lifetimes). For example, these addresses could
be used to verify that the under-construction object is being placed in a specific, allowed memory
range. However, to avoid undefined behavior, care must be taken to use only the addresses of these
objects in the predicate and never to access their values:

struct X {
int i = 0;

X()
pre (i == 0) // error
pre (this->i == 0) // undefined behavior
pre (check(&this->i)) // OK, if check only uses the address value
post (i == 0) // OK

{}

void f()
pre (i == 0) // OK
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post (i == 0) // OK

~X()
pre (i == 0) // OK
post (i == 0) // error
post (this->i == 0) // undefined behavior
post (check(&this->i)) // OK, if check only uses the address value

};

For the remaining function contract assertions of constructors and destructors (postconditions of
constructors and preconditions of destructors), the danger of accessing objects outside their lifetime
does not arise, and, therefore, no syntactic restrictions apply, but the dynamic type of this is not
known. When evaluating these function contract assertions, the same rules for the dynamic type
apparent during the constructor or destructor body apply to the function contract assertion, namely
that the type will be that of the constructor’s or destructor’s class, not the class of the complete
object:

struct B { virtual ~B(); } // polymorphic base

template <typename Base>
struct D : public Base {}; // generic derived class

struct C : public B {
C()

post( typeid(*this) == typeid(C) ) // Type is always C here.
post( dynamic_cast<C* >(this) == this ) // This dynamic_cast works.
post( dynamic_cast<D<C>*>(this) == nullptr ); // never derived class here

~C()
pre( typeid(*this) == typeid(C) ) // same as above
pre( dynamic_cast<C* >(this) == this )
pre( dynamic_cast<D<C>*>(this) == nullptr );

};

3.6.3 Friend Declarations Inside Templates

As described in Section 3.3.1, if a function has function contract assertions, then the function
contract specifiers introducing these assertions need to be placed on every first declaration (i.e.,
every declaration from which no other declaration is reachable) but can be omitted on redeclarations.
However, in certain situations, reasoning about which declarations are first declarations and which
are redeclarations can be difficult because the notion of first declaration is defined via reachability
and has nothing to do with which declaration appears lexically first in a given translation unit. One
particularly interesting case are friend declarations inside templates.

According to the existing language rules for templates, a friend declaration of a function inside a
template becomes reachable only from the point at which the template is instantiated. Consider
a program that has multiple templates declaring the same function as a friend and a separate
declaration of that function, all located in different headers:
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// x.h
template <typename T>
struct X {

friend void f() pre (x); // 1
};

// y.h
template <typename T>
struct Y {

friend void f() pre (x); // 2
};

// f.h
void f() pre (x); // 3

Now consider an implementation file that makes use of these headers:
#include <x.h>
#include <y.h>
int g() {

Y<int> y1; // 4
Y<long> y2; // 5
X<int> x; // 6

}
#include <f.h>

A number of things worth noting happen here.

• At 4, the definition of Y<int> is instantiated, and the friend declaration located at 2 is
instantiated as part of that friend declaration. Since no other definition of f is reachable at
this point, 2 is a first declaration for f.

• At 5, the definition of Y<long> is instantiated, and the friend declaration located at 2 is
instantiated again, this time as a redeclaration of f. Since f has a precondition specifier, that
specifier is compared to the previous declaration of f, and we determine that the specifiers
match. These are, after all, from the same line of code.

• At 6, the definition of X<int> is instantiated, and the friend declaration located at 1 is
instantiated. This is a redeclaration since the two declarations instantiated from 2 are both
reachable.

• At 3, included after the definition of g, we finally have a namespace-scope declaration of f
with three reachable declarations of f appearing prior to it in our translation unit, and thus
they must match.

Another translation unit might instantiate X and Y in different orders, resulting in 1 potentially
being a first declaration. Including <f.h> prior to <x.h> and <y.h> will result in the declaration at 3
always being the first declaration. Thus, the small change of adding #include <f.h> to the start of
x.h and y.h will result in 3 always being the first declaration across all translation units.

If the precondition specifier is omitted from any declaration of f that might be a first declaration
in some translation unit, then the program will be ill-formed (unless the precondition specifier is
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removed from all declarations of f). If that same translation unit includes a declaration with the
precondition specifier later, a diagnostic is required; otherwise, it is not.

To avoid cases that make compiling correctly in all contexts challenging for a template, always doing
one of the following is recommended when using a friend declaration of a function with function
contract assertions inside a template.

• Befriend functions that have reachable declarations, such that the friend declaration will
always be a redeclaration.

• Duplicate the function contract specifiers on each friend declaration.

• Make the function a hidden friend; i.e., the friend declaration is the only declaration of the
function and is also a definition.

3.6.4 Recursive Contract Violations

No dispensation is provided to disable contract checking during the evaluation of a contract assertion’s
predicate or the evaluation of the contract-violation handler; in both cases, contract checks behave as
usual. Therefore, if a contract-violation handler calls a function containing a contract assertion that
is violated and this contract assertion is evaluated with a checking semantic, the contract-violation
handler will be called recursively.

A user-defined contract-violation handler is responsible for handling recursive violations explicitly if
the user wishes to avoid overflowing the call stack. Identifying and preventing such recursion would
require the overhead of a thread-local variable, so we do not impose such additional complexity on
all users of the Contracts facility. A user-defined contract-violation handler could, however, prevent
such recursion:

void handle_contract_violation(const contract_violation& violation)
{

thread_local bool handling = false;
if (handling) {

// violation encountered recursively.
std::abort();

}
handling = true;

// ... Do what needs to be done on a violation.

handling = false;
}

3.6.5 Concurrent Contract Violations

The violation-handling process does nothing to prevent the contract-violation handler from being
invoked multiple times concurrently. The default contract-violation handler must be safe in such
scenarios, and any user-provided contract-violation handler is responsible for being similarly safe
when invoked concurrently.
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Note that even when contract assertions are enforced, one thread can possibly encounter a prior
contract violation while another thread is actively executing the contract-violation handler and has
not yet reached termination.

Just as with preventing recursion, preventing concurrent invocation would require potentially
significant overhead in the contract-violation handling process and should not be imposed on all
programs.

3.6.6 Throwing Violation Handlers

No restrictions are placed on what a user-defined contract-violation handler is allowed to do. In
particular, a user-defined contract-violation handler is allowed to exit other than by returning, e.g.,
terminating, calling longjmp, and so on. In all cases, evaluation happens as described above. The
same applies to the case in which a user-defined contract-violation handler that is not noexcept
throws an exception:

void handle_contract_violation(const std::contracts::contract_violation& v) {
throw my_contract_violation_exception(v);

}

Such an exception will escape the contract-violation handler and unwind the stack as usual until it
is caught or control flow reaches a noexcept boundary. Such a contract-violation handler, therefore,
bypasses the termination of the program that would occur when the contract-violation handler
returns from a contract-assertion evaluation with the enforce semantic.

For contract violations inside function contract assertions, the contract-violation handler is treated
as if the exception had been thrown inside the function body. Therefore, if the function in question
is noexcept, a user-defined contract-violation handler that throws an exception from a precondition
or postcondition check results in std::terminate being called, regardless of whether the semantic is
enforce or observe.

3.6.7 Differences Between Contract Assertions and the assert Macro

Contract assertions are not designed as a drop-in replacement for the assert macro or similar
assertion macros. Apart from the obvious difference that pre and post are part of a function
declaration, which is not possible with a macro, even contract_assert behaves differently from
assert in numerous ways.

First, macro assert can be used as an expression:
const int j = (assert(i > 0), i);

On the other hand, contract_assert is a statement. A possible workaround is to wrap contract_assert
into an immediately invoked lambda, which makes it usable in places that require an expression
(see Section 3.2.2):

const int j = ([i]{ contract_assert(i > 0); }(), i);

or, perhaps more idiomatically,
const int j = [i]{ contract_assert(i > 0); return i; }();
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In other cases, such usages of assertions are better expressed with a precondition assertion. For
example, an assertion subexpression in the member initializer list of a constructor can be better
expressed with a precondition assertion on that constructor.

Second, entities declared outside a contract assertion are implicitly const (see Section 3.4.2) when
referenced by name to discourage contract predicates that have observable side effects. One conse-
quence is that predicates that attempt to modify a variable will compile in an assert macro but
not in a contract assertion. Further, due to the implicit const, the predicate in a contract assertion
can yield different overload resolution results (and thus semantics) from the predicate in a assert
macro. A possible workaround for both issues is to use const_cast.

Third, in a disabled assert macro (when NDEBUG is defined), all tokens are simply removed by
the processor. On the other hand, contract assertions using the ignore semantic do not evaluate
any code, yet the predicate expression is still parsed and the entities inside are odr-used (see
Section 3.5.6). Therefore, in a contract assertion, the predicate always needs to be a well-formed,
evaluable expression, even if checks are disabled. The primary benefit of this behavior is that the
code within the contract assertion cannot become uncompilable at any time — a common problem
with macro-based assertion facilities that can lead to libraries in which too much technical debt
prevents any attempt to re-enable assertions after a period of unuse. In addition, treating the
predicate consistently, independent of the semantic with which it is evaluated, helps to ensure that
we do not need to treat distinct choices of semantics as an odr violation.

Fourth, with macro assert, entities can be declared, using an #ifndef NDEBUG block, such that they
will exist only when checks are enabled:

#ifndef NDEBUG
DebugThingy myDebugThingy;

#endif
// ...
assert(myDebugThingy.ok());

On the other hand, the Contracts facility (currently) provides no mechanism to introduce declarations
of variables or other code that is conditional on whether contract checks are enabled or on whether
a particular contract assertion will be checked. Following Design Principle 5, programmatically
detecting the evaluation semantic of any contract assertion is discouraged; therefore, no explicit
facility for such detection is provided (although constructing programs that achieve this effect
remains possible). We thus minimize the likelihood that a contract assertion will end up modifying
the compile-time semantics of the program it is supposed to observe. That said, we do expect a
future extension proposal to offer an alternative mechanism for providing code that supports the
evaluation of contract assertions in a similar fashion to blocks guarded by the preprocessor in current
usages of assert while being compatible with the above design principle.

Fifth, the predicate in an assert macro is evaluated either zero times (when NDEBUG is defined)
or exactly once (when it is not). On the other hand, contract assertions do not provide such a
guarantee: Checked predicates might be evaluated any number of times (see Sections 3.5.9 and
3.5.10). Therefore, depending on the side effects within a contract assertion happening exactly once
when the contract assertion is checked is not a correct use of the proposed Contracts facility.
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Consider how we might use an assert macro to both increment a counter and check that it is within
some range, like in the following example (a paraphrased code snippet from Clang):

#ifndef NDEBUG
unsigned nIter = 0;

#endif
while (keepIterating()) {

assert(++nIter < 6); // A bug occurs if we end up iterating more than 6 times.
// ...

}

The above example would not compile, for several reasons, with the facility proposed here: As
mentioned above, we provide no mechanism to conditionally control the declaration of variables
such as nIter based on whether a particular contract assertion will be evaluated, and in addition,
an attempt to modify the counter in a contract_assert would require a const_cast to perform the
modification. But more importantly, attempting to perform a side effect in a contract-assertion
evaluation that is depended on in subsequent evaluations is ill-advised since whether or how many
times such a side effect might occur is not guaranteed. Instead, the appropriate transformation is to
move the maintenance of values upon which the assertion depends to outside the assertion itself
such that the predicate of the assertion becomes free of side effects:

unsigned nIter = 0;
while (keepIterating()) {

++nIter;
assert(nIter < 6); // A bug occurs if we end up iterating more than 6 times.
// ...

}

If needed, backward-compatibility with the behavior of the assert macro can be achieved for such
cases via an alternate macro that evaluates the expression outside the contract assertion and has
the same relationship to NDEBUG as the existing assert macro, while still consistently tying into the
Contracts facility proposed here:

#ifndef NDEBUG
#define MY_ASSERT(X) [](const bool b){ contract_assert(b); }(X)

#else
#define MY_ASSERT(X) static_cast<void>(0)

#endif

The trade-off of the above macro is that information about the predicate expression X will not
be propagated to the contract-violation handler, although an implementation providing extra
platform-specific mechanisms to achieve the same behavior with better diagnostics does seem
feasible.

3.7 Standard Library API

3.7.1 The <contracts> Header

A new header, <contracts>, is added to the C++ Standard Library. The facilities provided in this
header are all freestanding. They have a specific intended usage audience: those writing user-defined
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contract-violation handlers and, in future extensions, other functionality for customizing the behavior
of the Contracts facility in C++. Because these uses are intended to be infrequent, everything
in this header is declared in namespace std::contracts rather than namespace std. In particular,
including the <contracts> header is unnecessary for writing contract assertions.

The <contracts> header provides the following types and functions:
// all freestanding
namespace std::contracts {

enum class assertion_kind : unspecified {
pre = 1,
post = 2,
assert = 3
/∗ to be extended with implementation−defined values and by future extensions ∗/
/∗ Implementation−defined values should have a minimum value of 1000. ∗/

};

enum class evaluation_semantic : unspecified {
ignore = 1,
observe = 2,
enforce = 3,
quick_enforce = 4,
// assume = 5 // expected as a future extension
/∗ to be extended with implementation−defined values and by future extensions ∗/
/∗ Implementation−defined values should have a minimum value of 1000. ∗/

};

enum class detection_mode : unspecified {
predicate_false = 1,
evaluation_exception = 2,
/∗ to be extended with implementation−defined values and by future extensions ∗/
/∗ Implementation−defined values should have a minimum value of 1000. ∗/

};

class contract_violation {
// no user−accessible constructor; cannot be copied, moved, or assigned to

public:
const char* comment() const noexcept;
std::contracts::detection_mode detection_mode() const noexcept;
std::exception_ptr evaluation_exception() const noexcept;
bool is_terminating() const noexcept;
assertion_kind kind() const noexcept;
source_location location() const noexcept;
evaluation_semantic semantic() const noexcept;

};

void invoke_default_contract_violation_handler(const contract_violation&);

}
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3.7.2 Enumerations

Each enumeration used for values of the contract_violation object’s properties is defined in the
<contracts> header. All use enum class. The underlying type is unspecified but must be large enough
to hold all possible values, including any implementation-defined extension values.

Fixed values for each enumerator are standardized to allow for portability, particularly for those
logging these values without the step of converting them to human-readable enumerator names.

The following enumerations are provided.

• enum class assertion_kind : unspecified — Identifies one of the three potential kinds of
contract assertion, with implementation-defined alternatives a possibility when the contract-
violation handler is invoked outside the purview of a contract assertion with one of those
kinds:

– pre — A precondition assertion

– post — A postcondition assertion

– assert — An assertion statement

Implementation-defined values indicate other kinds of contract assertions that may be available
as a vendor extension.

Note that the enumerators pre and post match the contextual keyword that introduces the
respective contract-assertion kind; however, assertions use assert for the enumerator but
contract_assert for the keyword as the latter needs to be a full keyword and, therefore, cannot
be used as an enumerator name. Though the assert enumerator might appear to be in conflict
with the function-like macro of the same name defined in <cassert>, no issues will arise in
practice since the enumerator will not be used immediately prior to an opening parenthesis
and, therefore, will not be expanded as the function-like macro. Using precondition and
postcondition has been explicitly avoided because those terms refer to conditions based on
responsibility (inside and outside of the function; see Section 2.1) and not those based on
points in time of checking.

• enum class evaluation_semantic : unspecified — A reification of the evaluation semantic
that can be chosen for the evaluation of a contract assertion:

– ignore — the ignore semantic

– observe — the observe semantic

– enforce — the enforce semantic

– quick_enforce — the quick-enforce semantic

Implementation-defined values indicate other evaluation semantics that may be available as a
vendor extension.

Note that the enumeration evaluation_semantic provides enumerators for all four proposed
evaluation semantics, even though only observe and enforce can result in the invocation of
the contract-violation handler and, therefore, only the observe and enforce enumerators can
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occur inside that handler. The reason is that evaluation_semantic is provided for logging and
as a vocabulary type to denote evaluation semantics in other contexts, such as vendor-specific
attributes on contract assertions.

• enum class detection_mode : unspecified — An enumeration to identify the various mech-
anisms via which a contract violation might be identified and the contract-violation handling
process might be invoked at run time:

– predicate_false — To indicate that the predicate either was evaluated and produced a
value of false or the predicate would have produced a value of false if it were evaluated

– evaluation_exception — To indicate that the predicate was evaluated and that evaluation
exited via an exception

Implementation-defined values indicate an alternate method provided by the implementation
in which a contract violation was identified.

For all the above enumerations, any implementation-defined enumerators should have a minimum
value of 1000 and a name that is an identifier reserved for the implementation (starting with
double underscore or underscore followed by a capital letter) to avoid possible name clashes with
enumerators newly introduced in a future Standard.

3.7.3 The Class std::contracts::contract_violation

The contract_violation object is provided to the handle_contract_violation function when a con-
tract violation has occurred at run time. This object cannot be constructed, copied, moved, or mutated
by the user. Whether the object is polymorphic is implementation-defined; if it is polymorphic, the
primary purpose in being so is to allow for the use of dynamic_cast to identify whether the provided
object is an instance of an implementation-defined subclass of std::contracts::contract_violation.

The various properties of a contract_violation object are all accessed by const, non-virtual member
functions (not as named member variables) to maximize implementation freedom.

Each contract-violation object has the following properties.

• const char* comment() const noexcept — The value returned should be a null-terminated
multi-byte string (NTMBS) in the ordinary literal encoding; it is otherwise unspecified. We
recommend that this value contain a textual representation of the predicate of the contract
assertion that has been violated. Providing the empty string, a pretty-printed, truncated
or otherwise modified version of the predicate, or some other message intended to identify
the contract assertion for the purpose of aiding in diagnosing the bug are all conforming
implementations. A conforming implementation may also allow users to select a mode where
an empty string is returned, in which case we could assume that this information is not present
in generated object files and executables.

• std::contracts::detection_mode detection_mode() const noexcept — The method by which
a violation of the contract assertion was identified.

• std::exception_ptr evaluation_exception() const noexcept — If the contract violation oc-
curred because predicate evaluation exited via an exception, the value returned is a pointer to
that exception; otherwise, the value returned is an empty std::exception_ptr.
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• bool is_terminating() const noexcept — true if the current evaluation semantic is a termi-
nating semantic, i.e., if the contract-violation handling mechanism will attempt to terminate
the program after the contract-violation handler has returned; false, otherwise. Note that
evaluation_semantic() cannot be portably used to determine whether the current evaluation
semantic is a terminating semantic as it returns an open-ended enum.

• assertion_kind kind() const noexcept — The kind of the contract assertion that has been
violated.

• std::source_location location() const noexcept — The value returned is unspecified. That
the value be the source location of the caller of a function when a precondition is violated is
recommended. For other contract assertion kinds or when the location of the caller is not used,
we recommend that the source location of the contract assertion itself is used. Returning a
default-constructed source_location or some other value are all conforming implementations.
A conforming implementation may also allow users to select a mode based on whether a
meaningful value or a default-constructed value is returned.

• evaluation_semantic semantic() const noexcept — The semantic with which the violated
contract assertion was being evaluated.

3.7.4 The Function invoke_default_contract_violation_handler

The Standard Library provides a function, invoke_default_contract_violation_handler, which has
behavior matching that of the default contract-violation handler. This function is useful if the user
wishes to fall back to the default contract-violation handler after having performed some custom
action (such as additional logging).

invoke_default_contract_violation_handler takes a single argument of type lvalue reference to
const contract_violation. Since such an object cannot be constructed or copied by the user and is
provided only by the implementation during contract-violation handling, this function can be called
only during the execution of a user-defined contract-violation handler.

invoke_default_contract_violation_handler is not specified to be noexcept. However, just like
with all other functions in the Standard Library that are known to never throw an exception, a
conforming implementation is free to add noexcept to this function if it is known that, on this
implementation, the default contract-violation handler will never throw an exception.

3.7.5 Standard Library Contracts

We do not propose any changes to the specification of existing Standard Library facilities to mandate
the use of the Contracts facility (e.g., to check the preconditions and postconditions specified
for Standard Library functions), but such use should be permitted. Given that a violation of a
precondition when using a Standard Library function is undefined behavior, Standard Library
implementations are already free to choose to use the Contracts facility themselves as soon as it is
available.

Note that Standard Library implementers and compiler implementers must work together to make
use of contract assertions on Standard Library functions. Currently, compilers, as part of the
platform defined by the C++ Standard, take advantage of knowledge that certain Standard Library
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invocations are undefined behavior. Such optimizations must be skipped to meaningfully evaluate
a contract assertion when that same contract has been violated. This agreement between library
implementers and compiler vendors is needed because, as far as the Standard is concerned, they are
the same entity and provide a single interface to users.
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4 Proposed Wording
The wording below serves to formally specify the design described in Section 3. In the case of
divergence or contradiction between the design description in Section 3 and the wording, the design
intent is determined by the design description in Section 3.

The proposed changes are relative to the C++26 working draft [N4993] and [P1494R3].

All letters (a, b, c, etc.) in section and paragraph numbers can be assumed to be numbers less than
1 that are in increasing order. Paragraph number offsets increase throughout a section, and section
numbers increase throughout this entire document.
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4.1 Core Language Wording

Modified Section Contents

4 General principles [intro] 70
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7.5.6.1 General [expr.prim.lambda.general] 86
7.5.6.2 Closure types [expr.prim.lambda.closure] 86
7.5.6.3 Captures [expr.prim.lambda.capture] 87
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7.6 Compound expressions [expr.compound] 87
7.6.1 Postfix expressions [expr.post] 87

7.6.1.3 Function call [expr.call] 87
7.6.2 Unary expressions [expr.unary] 89
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Modifications

4 General principles [intro]

4.1 Implementation compliance [intro.compliance]

4.1.1 General [intro.compliance.general]

Modify [intro.compliance.general], paragraph 2:
2 Although this document states only requirements on C++ implementations, those require-

ments are often easier to understand if they are phrased as requirements on programs,
parts of programs, or execution of programs. Such requirements have the following
meaning:

— [...]

— Otherwise, if a program contains

— a violation of any diagnosable rule,

— a preprocessing translation unit with a #warning preprocessing directive
([cpp.error]), or

— an occurrence of a construct described in this document as “conditionally-
supported” when the implementation does not support that construct, or

— a contract assertion ([basic.contract.eval]) evaluated with a checking semantic
in a manifestly constant-evaluated context resulting in a contract violation,

a conforming implementation shall issue at least one diagnostic message.

[ Note: During template argument deduction and substitution, certain constructs that
in other contexts require a diagnostic are treated differently; see [temp.deduct]. — end
note ]

Furthermore, a conforming implementation shall not accept

— a preprocessing translation unit containing a #error preprocessing directive
([cpp.error]), or

— a translation unit with a static_assert-declaration that fails ([dcl.pre]), or

— a contract assertion ([basic.contract.eval]) evaluated with the enforce or
quick-enforce semantic in a manifestly constant-evaluated context resulting in a
contract violation.

4.1.2 Abstract machine [intro.abstract]

Modify the [intro.abstract] paragraph introduced by [P1494R3] before paragraph 5:
4+a Certain events in the execution of a program are termed observable checkpoints. Program

termination is one such. [ Note: A call to std::observable ([support.start.term]) is also
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an observable checkpoint as are certain parts of the evaluation of contract assertions
([basic.contract]). — end note ]

5 Lexical Conventions [lex]

5.10 Identifiers [lex.name]

Modify [tab:lex.name.name.special], Table 4: Identifiers with special meaning:

[...]
override
post
pre

5.12 Keywords [lex.key]

Modify [tab:lex.key], Table 5: Keywords:

[...]
continue
contract_assert
co_await
[...]

6 Basics [basic]

6.1 Preamble [basic.pre]

Modify [basic.pre], paragraph 3:
3 An entity is a value, object, reference, structured binding, result binding, function,

enumerator, type, class member, bit-field, template, template specialization, namespace,
or pack.

Modify [basic.pre], paragraph 5:
5 Every name is introduced by a declaration, which is a

— name-declaration, block-declaration, or member-declaration ([dcl.pre,class.mem]),

— init-declarator ([dcl.decl]),

— identifier in a structured binding declaration ([dcl.struct.bind]),

— identifier in a result-name-introducer in a postcondition assertion ([dcl.contract.res])

— init-capture ([expr.prim.lambda.capture]),

— condition with a declarator ([stmt.pre]),

— member-declarator ([class.mem]),

— using-declarator ([namespace.udecl]),
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— parameter-declaration ([dcl.fct]),

— type-parameter ([temp.param]),

— elaborated-type-specifier that introduces a name ([dcl.type.elab]),

— class-specifier ([class.pre]),

— enum-specifier or enumerator-definition ([dcl.enum]),

— exception-declaration ([except.pre]), or

— implicit declaration of an injected-class-name ([class.pre]).

[ Note: The interpretation of a for-range-declaration produces one or more of the above
([stmt.ranged]). — end note ] An entity E is denoted by the name (if any) that is
introduced by a declaration of E or by a typedef-name introduced by a declaration
specifying E.

Modify [basic.pre], paragraph 7:

A local entity is a variable with automatic storage duration ([basic.stc.auto]), a structured
binding ([dcl.struct.bind]) whose corresponding variable is such an entity, a result binding,
or the *this object ([expr.prim.this]).

6.2 Declarations and definitions [basic.def]

Modify [basic.def], paragraph 1:
1 A declaration ([dcl.dcl]) may (re)introduce one or more names and/or entities into a

translation unit. If so, the declaration specifies the interpretation and semantic properties
of these names. A declaration of an entity or typedef-name X is a redeclaration of
X if another declaration of X is reachable from it ([module.reach]); otherwise, it is a
first declaration. A declaration may also have effects including:

— a static assertion ([dcl.pre]),

— controlling template instantiation ([temp.explicit]),

— guiding template argument deduction for constructors ([temp.deduct.guide]),

— use of attributes ([dcl.attr]), and

— nothing (in the case of an empty-declaration).

6.3 One-definition rule [basic.def.odr]

Modify [basic.def.odr], paragraph 10:
10 A local entity ([basic.pre]) is odr-usable in a scope ([basic.scope.scope]) if

— either the local entity is not *this or an enclosing class or non-lambda function
parameter scope exists and, if the innermost such scope is a function parameter
scope, it corresponds to a non-static member function, and
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— for each intervening scope ([basic.scope.scope]) between the point at which the entity
is introduced and the scope (where *this is considered to be introduced within the
innermost enclosing class or non-lambda function definition scope), either:

— the intervening scope is a block scope, or

— the intervening scope is a contract-assertion scope ([basic.scope.contract]), or

— the intervening scope is the function parameter scope of a lambda-expression, or

— the intervening scope is the lambda scope of a lambda-expression that has a
simple-capture naming the entity or has a capture-default, and the block scope
of the lambda-expression is also an intervening scope.

6.4 Scope [basic.scope]

6.4.1 General [basic.scope.scope]

Modify [basic.scope.scope], paragraph 1:
1 The declarations in a program appear in a number of scopes that are in general discontigu-

ous. The global scope contains the entire program; every other scope S is introduced by a
declaration, parameter-declaration-clause, statement, or handler, or contract assertion (as
described in the following subclauses of [basic.scope]) appearing in another scope which
thereby contains S. An enclosing scope at a program point is any scope that contains it;
the smallest such scope is said to be the immediate scope at that point. A scope intervenes
between a program point P and a scope S (that does not contain P ) if it is or contains S
but does not contain P .

Modify [basic.scope.scope], paragraph 5:
5 A declaration is name-independent if its name is _ (u+005f low line) and it declares

— a variable with automatic storage duration,

— a structured binding with no storage-class-specifier and not inhabiting a namespace
scope,

— a result binding ([dcl.contract.res]),

— the variable introduced by an init-capture, or

— a non-static data member of other than an anonymous union.
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6.4.2 Point of declaration [basic.scope.pdecl]

Add a new paragraph after [basic.scope.pdecl], paragraph 12:
12 The locus of a template-parameter is immediately after it. [ Example:

typedef unsigned char T;
template<class T

= T // lookup finds the typedef-name
, T // lookup finds the template parameter

N = 0> struct A { };

— end example ]
12+a The locus of the result-name-introducer in a postcondition assertion ([dcl.contract.res]) is

immediately after it.
13 The locus of a concept-definition is immediately after its concept-name ([temp.concept]).

[ Note: The constraint-expression cannot use the concept-name. — end note ]

6.4.(9+a) Contract-assertion scope [basic.scope.contract]

Add a new section after [basic.scope.temp]:

Contract-assertion scope [basic.scope.contract]
1 Each contract assertion ([basic.contract]) C introduces a contract-assertion scope that

includes C.
2 If a result-name-introducer ([dcl.contract.res]) that is not name-independent ([ba-

sic.scope.scope]) potentially conflicts with a declaration whose target scope is the param-
eter scope or, if associated with a lambda-declarator , the nearest enclosing lambda scope
of the contract assertion, the program is ill-formed.

6.7 Memory and objects [basic.memobj]

6.7.6 Storage duration [basic.stc]

6.7.6.1 General [basic.stc.general]

Modify [basic.stc.dynamic.general], paragraph 2:
2 The library provides default definitions for the global allocation and deallocation

functions. Some global allocation and deallocation functions ([new.delete]) are re-
placeable ([new.delete])([dcl.fct.def.replace]); these are attached to the global module
([module.unit]). A C++ program shall provide at most one definition of a replaceable
allocation or deallocation function. Any such function definition replaces the default
version provided in the library ([replacement.functions]). The following allocation and
deallocation functions ([support.dynamic]) are implicitly declared in global scope in each
translation unit of a program.
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6.7.6.5 Dynamic storage duration [basic.stc.dynamic]

6.7.6.5.2 Allocation functions [basic.stc.dynamic.allocation]

Modify [basic.stc.dynamic.allocation], paragraph 5:
5 A global allocation function is only called as the result of a new expression ([expr.new]),

or called directly using the function call syntax ([expr.call]), or called indirectly to allocate
storage for a coroutine state ([dcl.fct.def.coroutine]), or called indirectly through calls to
the functions in the C++ standard library.

[ Note: In particular, a global allocation function is not called to allocate storage for
objects with static storage duration ([basic.stc.static]), for objects or references with thread
storage duration ([basic.stc.thread]), for objects of type std::type_info ([expr.typeid]), for
an object of type std::contracts::contract_violation when a contract violation occurs
([basic.contract.eval]), or for an exception object ([except.throw]). — end note ]

6.7.7 Temporary objects [class.temporary]

Modify [class.temporary], paragraph 1:
1 Temporary objects are created

— when a prvalue is converted to an xvalue ([conv.rval]) and

— when needed by the implementation to pass or return an object of trivially copyable
suitable type (see below).

Even when the creation of the temporary object is unevaluated ([expr.context]), all the
semantic restrictions shall be respected as if the temporary object had been created and
later destroyed. [ Note: This includes accessibility ([class.access]) and whether it is deleted,
for the constructor selected and for the destructor. However, in the special case of the
operand of a decltype-specifier ([dcl.type.decltype]), no temporary is introduced, so the
foregoing does not apply to such a prvalue. — end note ]

Modify [class.temporary], paragraph 3:

When an object of class type X is passed to or returned from a potentially-evaluated
function call, if X is

— a scalar type, or

— a class type that has at least one eligible copy or move constructor ([special]), where
each such constructor is trivial, and the destructor of X is either trivial or deleted,

implementations are permitted to create a temporary object to hold the function parameter
or result object. The temporary object is constructed from the function argument or
return value, respectively, and the function’s parameter or return object is initialized
as if by direct initialization if X is a scalar type, otherwise by using the eligible trivial
constructor to copy the temporary (even if that constructor is inaccessible or would
not be selected by overload resolution to perform a copy or move of the object). [ Note:
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This latitude is granted to allow objects of class type to be passed to or returned from
functions in registers. — end note ]

6.9 Program execution [basic.exec]

6.9.1 Sequential execution [intro.execution]

Modify [intro.execution], paragraph 3:
3 The immediate subexpressions of an expression E are

— the constituent expressions of E’s operands ([expr.prop]),

— any function call that E implicitly invokes,

— if E is a lambda-expression ([expr.prim.lambda]), the initialization of the entities
captured by copy and the constituent expressions of the initializer of the init-captures,

— if E is a function call ([expr.call]) or implicitly invokes a function, the constituent
expressions of each default argument ([dcl.fct.default]) used in the call and the
predicates of any contract assertions in the function contract assertions of that
function call ([basic.contract]), or

— if E creates an aggregate object ([dcl.init.aggr]), the constituent expressions of each
default member initializer ([class.mem]) used in the initialization.

Modify [intro.execution], paragraph 5:
5 A full-expression is

— an unevaluated operand ([expr.context]),

— a constant-expression ([expr.const]),

— an immediate invocation ([expr.const]),

— an init-declarator ([dcl.decl]) or a mem-initializer ([class.base.init]), including the
constituent expressions of the initializer,

— an invocation of a destructor generated at the end of the lifetime of an object other
than a temporary object ([class.temporary]) whose lifetime has not been extended,
or

— the predicate of a contract assertion ([basic.contract]), or

— an expression that is not a subexpression of another expression and that is not
otherwise part of a full-expression.

...

Modify [intro.execution], paragraph 11, and split into multiple paragraphs as follows:
11 When invoking a function f (whether or not the function is inline), every argument

expression and the postfix expression designating f the called function are sequenced
before every precondition assertion of the function call ([expr.call]), which in turn are
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sequenced before every expression or statement in the body of f, which in turn are
sequenced before every postcondition assertion of the function call.the called function.
For each function invocation or evaluation of an await-expression F , each evaluation that
does not occur within F but is evaluated on the same thread and as part of the same
signal handler (if any) is either sequenced before all evaluations that occur within F or
sequenced after all evaluations that occur within F ; if F invokes or resumes a coroutine
([expr.await]), only evaluations subsequent to the previous suspension (if any) and prior
to the next suspension (if any) are considered to occur within F .

11+a Several contexts in C++ cause evaluation of a function call, even though no corresponding
function call syntax appears in the translation unit.

[ Example: Evaluation of a new-expression invokes one or more allocation and constructor
functions; see [expr.new]. For another example, invocation of a conversion function
([class.conv.fct]) can arise in contexts in which no function call syntax appears. — end
example ]

11+b The sequencing constraints on the execution of the called function (as described above)
are features of the function calls as evaluated, regardless of the syntax of the expression
that calls the function.

11+c For each function invocation or evaluation of an await-expression F , each evaluation that
does not occur within F but is evaluated on the same thread and as part of the same
signal handler (if any) is either sequenced before all evaluations that occur within F or
sequenced after all evaluations that occur within F ; if F invokes or resumes a coroutine
([expr.await]), only evaluations subsequent to the previous suspension (if any) and prior
to the next suspension (if any) are considered to occur within F .

6.(9+b) Contract assertions [basic.contract]

Add a new subclause after [basic.exec]:

Contract assertions [basic.contract]

6.(9+b).1 General [basic.contract.general]

General [basic.contract.general]
1 Contract assertions allow the programmer to specify properties of the state of the program

that are expected to hold at certain points during execution. Contract assertions are
introduced by precondition-specifiers, postcondition-specifiers ([dcl.contract.func]), and
assertion-statements ([stmt.contract.assert]).

2 Each contract assertion has a predicate, which is an expression of type bool. [ Note: The
value of the predicate is used to identify program states that are expected. — end note ]

3 An invocation of the macro va_start ([cstdarg.syn]) shall not be a subexpression of the
predicate of a contract assertion, no diagnostic required.

[ Note: Within the predicate of a contract assertion, id-expressions referring to variables
declared outside the contract assertion are const ([expr.prim.id.unqual]), this is a pointer
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to const ([expr.prim.this]), and the result object can be named if a result-name-introducer
([dcl.contract.res]) has been specified. — end note ]

6.(9+b).2 Evaluation [basic.contract.eval]

Evaluation [basic.contract.eval]
1 An evaluation of a contract assertion uses one of the following four evaluation semantics:

ignore, observe, enforce, or quick-enforce. Observe, enforce, and quick-enforce are checking
semantics; enforce and quick-enforce are terminating semantics.

2 Which evaluation semantic is used for any given evaluation of a contract assertion is
implementation-defined. [ Note: The evaluation semantics can differ for different evalua-
tions of the same contract assertion, including evaluations during constant evaluation.

— end note ]
3 Recommended practice: An implementation should provide the option to translate a

program such that all evaluations of contract assertions use the ignore semantic as well as
the option to translate a program such that all evaluations of contract assertions use the
enforce semantic. By default, evaluations of contract assertions should use the enforce
semantic.

4 The evaluation of a contract assertion using the ignore semantic has no effect. [ Note: The
predicate is potentially evaluated ([basic.def.odr]) but not evaluated. — end note ]

5 The evaluation A of a contract assertion using a checking semantic determines the value
of the predicate. It is unspecified whether the predicate is evaluated. Let B be the value
that would result from evaluating the predicate. [ Note: To determine whether a predicate
would evaluate to true or false, an alternative evaluation that produces the same value
as the predicate but has no side effects might be evaluated instead of the predicate,
resulting in the side effects of the predicate not occurring. [ Example:

struct S {
mutable int g = 5;

} s;
void f()

pre(( s.g++, false )); // #1
void g()
{

f(); // Increment of s.g may or may not occur, even if #1 uses a checking semantic
}

— end example ] — end note ]
6 There is an observable checkpoint ([intro.abstract]) C that happens before A such that

any other operation O that happens before A also happens before C.
7 A contract violation occurs when:

— B is false,

— the evaluation of the predicate exits via an exception, or

78



— the evaluation of the predicate is performed in a context that is manifestly constant-
evaluated ([expr.const]) and the predicate is not a core constant expression.

[ Note: If B is true, no contract violation occurs and control flow continues normally after
the point of evaluation of the contract assertion. The evaluation of the predicate can fail
to produce a value without causing a contract violation, for example, by calling longjmp
([csetjmp.syn]) or terminating the program. — end note ]

8 [ Note: If a contract violation occurs in a context that is manifestly constant-evaluated
([expr.const]), a diagnostic is produced; if the evaluation semantic is enforce or quick-
enforce, the program is ill-formed ([intro.compliance]). — end note ]

[ Note: Different evaluation semantics chosen for the same contract assertion in different
translation units may result in violations of the one-definition rule ([basic.def.odr]) when a
contract assertion has side effects that alter the value produced by a constant expression.
[ Example:

constexpr int f(int i)
{

contract_assert((++const_cast<int&>(i), true));
return i;

}
inline void g()
{

int a[f(1)]; // size dependent on the evaluation semantic of contract_assert above
}

— end example ] — end note ]
9 When the program is contract-terminated, it is implementation-defined (depending on

context) whether

— std::terminate is called,

— std::abort is called, or

— execution is terminated.

[ Note: Performing the actions of std::terminate or std::abort without actually making
a library call is a conforming implementation of contract-terminating ([intro.abstract]).

— end note ]
10 If a contract violation occurs in a context that is not manifestly constant-evaluated and

the evaluation semantic is quick-enforce, the program is contract-terminated.
11 If a contract violation occurs in a context that is not manifestly constant-

evaluated and the evaluation semantic is enforce or observe, an object v of type
const std::contracts::contract_violation ([support.contracts.violation]) containing in-
formation about the contract violation is created in an unspecified manner, and the
contract-violation handler ([basic.contract.handler]) is invoked with an lvalue referring
to v as its only argument. Storage for v is allocated in an unspecified manner except
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as noted in [basic.stc.dynamic.allocation]. The destruction of v is sequenced after the
corresponding contract-violation handler exits.

12 If the contract violation occurred because the evaluation of the predicate exited via an
exception, the contract-violation handler is invoked from within an active implicit handler
for that exception ([except.handle]). If the contract-violation handler returns normally
and the evaluation semantic is observe, that implicit handler is no longer considered
active.

[ Note: The exception can be inspected or rethrown within the contract-violation handler.
— end note ]

13 If the contract-violation handler returns normally and the evaluation semantic is enforce,
the program is contract-terminated.

[ Note: If the contract-violation handler returns normally and the evaluation semantic
is observe, control flow continues normally after the point of evaluation of the contract
assertion. — end note ]

14 There is an observable checkpoint ([intro.abstract]) C that happens after the contract-
violation handler returns normally such that any other operation O that happens after
the contract-violation handler returns also happens after C.

[ Note: The terminating semantics terminate the program if execution would otherwise
continue normally past a contract violation: the enforce semantic provides the opportunity
to log information about the contract violation before terminating the program, and the
quick-enforce semantic is intended to terminate the program as soon as possible as well
as to minimize the impact of contract checks on the generated code size. Conversely, the
observe semantic provides the opportunity to log information about the contract violation
without having to terminate the program. — end note ]

15 If a contract-violation handler invoked from the evaluation of a function contract assertion
([dcl.contract.func]) exits via an exception, the behavior is as if the function body exits
via that same exception. [ Note: A function-try-block ([except.pre]) is the function body
when present and thus does not have an opportunity to catch the exception. If the
function has a non-throwing exception specification, the function std::terminate is
invoked ([except.terminate]). — end note ]

[ Note: If a contract-violation handler invoked from an assertion-statement
([stmt.contract.assert]) exits via an exception, the search for a handler continues from the
execution of that statement. — end note ]

16 To evaluate in sequence an ordered set R of contract assertions:

— Construct an ordered set of contract assertions S such that all elements of R are in
S, each element of R may be repeated an implementation-defined number of times
within S, and the first occurrence of a contract assertion A within S precedes the
first occurrence of any contract assertion B in S where A precedes B in R.
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— Evaluate each element of S in order, such that the evaluation of any contract
assertion A is sequenced before the evaluation of any contract assertion in B if A
precedes B in S.

[ Example:
void f(int i)
{

contract_assert(i > 0); // #1
contract assert(i < 10); // #2
// valid sequence of evaluations: #1 #2
// valid sequence of evaluations: #1 #1 #2 #2
// valid sequence of evaluations: #1 #2 #1 #2

}

— end example ]
17 Recommended practice: An implementation should provide an option to perform a specified

number of repeated evaluations for contract assertions. By default, no repeated evaluations
should be performed.

6.(9+b).3 Contract-violation handler [basic.contract.handler]

Contract-violation handler [basic.contract.handler]
1 The contract-violation handler of a program is a function named

::handle_contract_violation. The contract-violation handler shall take a single
argument of type “lvalue reference to const std::contracts::contract_violation” and
shall return void. The contract-violation handler may have a non-throwing exception
specification. The implementation shall provide a definition of the contract-violation
handler, called the default contract-violation handler. [ Note: No declaration for the
default contract-violation handler is provided by any standard library header. — end
note ]

2 Recommended practice: The default contract-violation handler should produce
diagnostic output that suitably formats the most relevant contents of the
std::contracts::contract_violation object, rate-limited for potentially repeated viola-
tions of observed contract assertions, and then return normally.

3 Whether the contract-violation handler is replaceable ([dcl.fct.def.replace]) is
implementation-defined. If the contract-violation handler is not replaceable, a decla-
ration of a replacement function for the contract-violation handler is ill-formed, no
diagnostic required.
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7 Expressions [expr]

7.2 Properties of expressions [expr.prop]

7.2.1 Value category [basic.lval]

Modify [basic.lval], paragraph 5:
5 The result of a glvalue is the entity denoted by the expression. The result of a prvalue is

the value that the expression stores into its context; a prvalue that has type cv void has no
result. A prvalue whose result is the value V is sometimes said to have or name the value
V . The result object of a prvalue is the object initialized by the prvalue; a non-discarded
prvalue that is used to compute the value of an operand of a built-in operator or a prvalue
that has type cv void has no result object.

[ Note: Except when the prvalue is the operand of a decltype-specifier , a prvalue of object
of class or array type always has a result object. For a discarded prvalue that has type
other than cv void, a temporary object is materialized; see [expr.context]. — end note ]

Modify [basic.lval] paragraph 6:
6 Whenever a prvalue that is not the result of the lvalue-to-rvalue conversion ([conv.lval])

appears as an operand of an operator that expects a glvalue for that operand, the
temporary materialization conversion ([conv.rval]) is applied to convert the expression to
an xvalue.

7.5 Primary expressions [expr.prim]

7.5.3 This [expr.prim.this]

Add a new paragraph after [expr.prim.this], paragraph 2:
2 The current class at a program point is the class associated with the innermost class

scope containing that point. [ Note: A lambda-expression does not introduce a class scope.
— end note ]

2+a If the expression this appears within the predicate of a contract assertion
([basic.contract.general]) (including as the result of an implicit transformation
([expr.prim.id.general]) and including in the bodies of nested lambda-expressions), const
is combined with the cv-qualifier-seq used to generate the resulting type (see below).

3 If a declaration declares a member function or member function template of a class X,
the expression this is a prvalue of type “pointer to cv-qualifier-seq X” wherever X is the
current class between the optional cv-qualifier-seq and the end of the function-definition,
member-declarator , or declarator . It shall not appear within the declaration of a static or
explicit object member function of the current class (although its type and value category
are defined within such member functions as they are within an implicit object member
function). [ Note: This is because declaration matching does not occur until the complete
declarator is known. — end note ] [ Note: In a trailing-return-type, the class being defined
is not required to be complete for purposes of class member access ([expr.ref]). Class
members declared later are not visible. [ Example:
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struct A {
char g();
template<class T> auto f(T t) -> decltype(t + g())

{ return t + g(); }
};
template auto A::f(int t) -> decltype(t + g());

— end example ] — end note ]

7.5.5 Names [expr.prim.id]

7.5.5.1 General [expr.prim.id.general]

Modify [expr.prim.id.general], paragraph 2:

If an id-expression E denotes a non-static non-type member of some class C at a point
where the current class ([expr.prim.this]) is X and

— E is potentially evaluated or C is X or a base class of X, and

— E is not the id-expression of a class member access expression ([expr.ref]), and

— if E is a qualified-id , E is not the un-parenthesized operand of the unary & operator
([expr.unary.op]),

the id-expression is transformed into a class member access expression using (*this) as
the object expression. If this transformation occurs in the predicate of a precondition
assertion of a constructor of X or a postcondition assertion of a destructor of X, the
expression is ill-formed. [ Note: If C is not X or a base class of X, the class member access
expression is ill-formed. Also, if the id-expression occurs within a static or explicit object
member function, the class member access is ill-formed. — end note ] This transformation
does not apply in the template definition context ([temp.dep.type]). [ Example:

struct C {
bool b;
C() pre(b) // error

pre(this->b) // OK
pre(size(b) > 0); // OK, not potentially evaluated

};

— end example ]

7.5.5.2 Unqualified names [expr.prim.id.unqual]

Modify [expr.prim.id.unqual], paragraph 3, and split into multiple paragraphs as follows:
3 The result is the entity denoted by the unqualified-id ([basic.lookup.unqual]).

3+a If the unqualified-id appears in a lambda-expression at program point P and the
entity is a local entity ([basic.pre]) or a variable declared by an init-capture
([expr.prim.lambda.capture]), then let S be the compound-statement of the innermost
enclosing lambda-expression of P . If naming the entity from outside of an unevaluated
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operand within S would refer to an entity captured by copy in some intervening lambda-
expression, then let E be the innermost such lambda-expression.

— If there is such a lambda-expression and if P is in E’s function parameter scope but
not its parameter-declaration-clause, then the type of the expression is the type of
a class member access expression ([expr.ref]) naming the non-static data member
that would be declared for such a capture in the object parameter ([dcl.fct]) of the
function call operator of E. [ Note: If E is not declared mutable, the type of such an
identifier will typically be const qualified. — end note ]

— Otherwise (if there is no such lambda-expression or if P either precedes E’s function
parameter scope or is in E’s parameter-declaration-clause), the type of the expression
is the type of the result.

3+b Otherwise, if the unqualified-id names a result binding ([dcl.contract.res]) attached to a
function f with return type U,

— if U is of type “reference to T”, then the type of the expression is const T;

— otherwise, the type of the expression is const U.
3+c Otherwise, if the unqualified-id appears in the predicate of a contract assertion C ([ba-

sic.contract]) and the entity is

— a variable declared outside of C of object type T, or

— a variable or template parameter declared outside of C of type “reference to T”, or

— a structured binding of type T whose corresponding variable is declared outside of C,

then the type of the expression is const T.

[ Example:
int g = 0;
struct X { bool m(); };

struct Y {
int z = 0;

void f(int i, int* p, int& r, X x, X* px)
pre (++g) // error: attempting to modify const lvalue
pre (++i) // error: attempting to modify const lvalue
pre (++(*p)) // OK
pre (++r) // error: attempting to modify const lvalue
pre (x.m()) // error: calling non−const member function
pre (px->m()) // OK
pre ([=,&i,*this] mutable {

++g; // error: attempting to modify const lvalue
++i; // error: attempting to modify const lvalue
++p; // OK, refers to member of closure type
++this->z; // OK, captured *this
++z; // OK, captured *this
int j = 17;
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[&]{
int k = 34;
++i; // error: attempting to modify const lvalue
++j; // OK
++k; // OK

}();
return true;

}());

template <int N, int& R, int* P>
void g()

pre(++N) // error: attempting to modify prvalue
pre(++R) // error: attempting to modify const lvalue
pre(++(*P)); // OK

};

— end example ]
3+d If the entity is a template parameter object for a template parameter of type T

([temp.param]), the type of the expression is const T.
3+e In all other cases, the type of the expression is the type of the entity.
3+f [ Note: The type will be adjusted as described in [expr.type] if it is cv-qualified or is a

reference type. — end note ]
3+g The expression is an xvalue if it is move-eligible (see below); an lvalue if the entity is a

function, variable, structured binding ([dcl.struct.bind]), result binding ([dcl.contract.res]),
data member, or template parameter object; and a prvalue otherwise ([basic.lval]); it is a
bit-field if the identifier designates a bit-field.

3+h If an id-expression E appears in the predicate of a function contract assertion attached to
a function f and denotes a function parameter of f, and the implementation introduces a
temporary object to hold the value of that parameter as specified in [class.temporary],

— if the contract assertion is a precondition assertion and the evaluation of the
precondition assertion is sequenced before the initialization of the parameter object,
E refers to the temporary object, and

— if the contract assertion is a postcondition assertion, it is unspecified whether E
refers to the temporary object or the parameter object.

3+i If an id-expression names a result binding in a postcondition assertion, and the im-
plementation introduces a temporary object to hold the result object as specified in
[class.temporary], and the postcondition assertion is sequenced before the initialization of
the result object ([expr.call]), the id-expression refers to that temporary object.
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7.5.6 Lambda expressions [expr.prim.lambda]

7.5.6.1 General [expr.prim.lambda.general]

Modify the grammar in [expr.prim.lambda.general]:
lambda-declarator :

lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt
trailing-return-typeopt function-contract-specifier-seqopt

noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt
function-contract-specifier-seqopt

trailing-return-typeopt function-contract-specifier-seqopt
( parameter-declaration-clause ) lambda-specifier-seqopt

noexcept-specifieropt attribute-specifier-seqopt trailing-return-typeopt
requires-clauseopt function-contract-specifier-seqopt

lambda-specifier :
consteval
constexpr
mutable
static

lambda-specifier-seq :
lambda-specifier lambda-specifier-seqopt

7.5.6.2 Closure types [expr.prim.lambda.closure]

Modify [expr.prim.lambda.closure], paragraph 6:
6 [...] Any noexcept-specifier or function-contract-specifier ([dcl.contract.func]) specified on a

lambda-expression applies to the corresponding function call operator or operator template.
[...]

Add a new paragraph after [expr.prim.lambda.closure], paragraph 7:
7+a If all potential references to a local entity implicitly captured by a lambda-expression L

occur within the function contract assertions ([dcl.contract.func]) of the call operator or
operator template of L or within assertion-statements ([stmt.contract.assert]) within the
body of L, the program is ill-formed. [ Note: This rule is intended to prevent situations
in which adding a contract assertion to an existing C++ program could cause additional
copies or destructions to be performed even if the contract assertion is never checked.

— end note ] [ Example:
static int i = 0;

void test() {
auto f1 = [=] pre(i > 0) { // OK, no local entities are captured.
};

int i = 1;

auto f2 = [=] pre(i > 0) { // error: cannot implicitly capture i here
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};

auto f3 = [i] pre(i > 0) { // OK, i is captured explicitly.
};

auto f4 = [=] {
contract_assert(i > 0); // error: cannot implicitly capture i here

};

auto f5 = [=] {
contract_assert(i > 0); // OK, i is referenced elsewhere.
(void)i;

};

auto f6 = [=] pre([]{
bool x = true;
return [=]{ return x; }(); // OK, x is captured implicitly.

}()) {};

bool y = true;
auto f7 = [=] pre([=]{return y;}()); // error: outer capture of y is invalid.

}

— end example ]

7.5.6.3 Captures [expr.prim.lambda.capture]

Modify [expr.prim.lambda.capture], paragraph 1:1 The body of a lambda-expression may refer to
local entities of enclosing block scopes by capturing those entities, as described below.

Modify [expr.prim.lambda.capture], paragraph 3:
3 A lambda-expression shall not have a capture-default or simple-capture in its lambda-

introducer unless its innermost enclosing scope is a block scope ([basic.scope.block])
or, it appears within a default member initializer and its innermost enclosing scope
is the corresponding class scope ([basic.scope.class]). , or it appears within a contract
assertion and its innermost enclosing scope is the corresponding contract-assertion scope
([basic.scope.contract]).

7.6 Compound expressions [expr.compound]

7.6.1 Postfix expressions [expr.post]

7.6.1.3 Function call [expr.call]

Add new paragraphs to [expr.call] after paragraph 5:
5+a The precondition assertions of a function call are, in order,

— if the postfix expression is a (possibly implicit) class member access expression and
the call is a virtual function call, the precondition assertions of the statically chosen
function, then

87



— the precondition assertions of the function that is being called.
5+b The postcondition assertions of a function call are, in order,

— the postcondition assertions of the function that is being called, then

— if the postfix expression is a (possibly implicit) class member access expression and
the call is a virtual function call, the postcondition assertions of the statically chosen
function.

Modify [expr.call], paragraph 6:
6 When a function is called, each parameter ([dcl.fct]) is initialized ([dcl.init],

[class.copy.ctor]) with its corresponding argument, and each precondition assertion of the
function call is evaluated. If the function is an explicit object member function and there
is an implied object argument ([over.call.func]), the list of provided arguments is preceded
by the implied object argument for the purposes of this correspondence. If there is no
corresponding argument, the default argument for the parameter is used. [ Example:

template<typename ...T> int f(int n = 0, T ...t);
int x = f<int>(); // error: no argument for second function parameter

— end example ] If the function is an implicit object member function, the object expression
of the class member access shall be a glvalue and the implicit object parameter of the
function ([over.match.funcs]) is initialized with that glvalue, converted as if by an explicit
type conversion ([expr.cast]). [ Note: There is no access or ambiguity checking on this
conversion; the access checking and disambiguation are done as part of the (possibly
implicit) class member access operator. See [class.member.lookup], [class.access.base],
and [expr.ref]. — end note ] When a function is called, the type of any parameter shall
not be a class type that is either incomplete or abstract. [ Note: This still allows a
parameter to be a pointer or reference to such a type. However, it prevents a passed-
by-value parameter to have an incomplete or abstract class type. — end note ] It is
implementation-defined whether a parameter is destroyed when the function in which it
is defined exits ([stmt.return], [except.ctor], [expr.await]) or at the end of the enclosing
full-expression; parameters are always destroyed in the reverse order of their construction.
The initialization and destruction of each parameter occurs within the context of the
full-expression ([intro.execution]) where the function call appears. [ Example: The access
([class.access.general]) of the constructor, conversion functions, or destructor is checked
at the point of call. If a constructor or destructor for a function parameter throws an
exception, any function-try-block ([except.pre]) of the called function with a handler that
can handle the exception is not considered. — end example ]

Modify [expr.call], paragraph 7:
7 The postfix-expression is sequenced before each expression in the expression-list and

any default argument. The initialization of a parameter, including every associated
value computation and side effect, is indeterminately sequenced with respect to
that of any other parameter. These evaluations are sequenced before the evaluation
of the precondition assertions of the function call, which are evaluated in sequence
([dcl.contract.func]). If the implementation introduces any temporary objects to hold the
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values of function parameters ([class.temporary]), evaluation of precondition assertions
is indeterminately sequenced with respect to the initialization of the parameter objects
from those temporaries. [ Note: All side effects of argument evaluations are sequenced
before the function is entered ([intro.execution]). — end note ] [ Example:

void f() {
std::string s = "but I have heard it works even if you don’t believe in it";
s.replace(0, 4, "").replace(s.find("even"), 4, "only")

.replace(s.find(" don’t"), 6, "");
assert(s == "I have heard it works only if you believe in it"); // OK

}

— end example ] [ Note: If an operator function is invoked using operator notation, argument
evaluation is sequenced as specified for the built-in operator; see [over.match.oper]. — end
note ] [ Example:

struct S {
S(int);

};
int operator<<(S, int);
int i, j;
int x = S(i=1) << (i=2);
int y = operator<<(S(j=1), j=2);

After performing the initializations, the value of i is 2 ([expr.shift]), but it is unspecified
whether the value of j is 1 or 2. — end example ]

8 The result of a function call is the result of the possibly-converted operand of the return statement
([stmt.return]) that transferred control out of the called function (if any), except in a virtual function
call if the return type of the final overrider is different from the return type of the statically chosen
function, the value returned from the final overrider is converted to the return type of the statically
chosen function.

Add a new paragraph after [expr.call], paragraph 8 and move the note down:
8+c When the called function exits normally ([stmt.return], [expr.await]), all postcondition

assertions of the function call are evaluated in sequence ([dcl.contract.func]). If the
implementation introduces a temporary object to hold the result value as specified
in [class.temporary], the evaluation of each postcondition assertion is indeterminately
sequenced with respect to the initialization of the result object from that temporary. These
evaluations, in turn, are sequenced before the destruction of any function parameters.

[ Note: A function can change the values of its non-const parameters, but these changes cannot
affect the values of the arguments except where a parameter is of a reference type ([dcl.ref]); if the
reference is to a const-qualified type, const_cast needs to be used to cast away the constness in
order to modify the argument’s value. Where a parameter is of const reference type a temporary
object is introduced if needed ([dcl.type], [lex.literal], [lex.string], [dcl.array], [class.temporary]). In
addition, it is possible to modify the values of non-constant objects through pointer parameters.

— end note ]
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7.6.2 Unary expressions [expr.unary]

7.6.2.4 Await [expr.await]

Modify [expr.await], paragraph 2:
2 An await-expression shall appear only in a potentially-evaluated expression within the

compound-statement of a function-body or lambda-expression, in either case outside of a
handler ([except.pre]). In a declaration-statement or in the simple-declaration (if any) of an
init-statement, an await-expression shall appear only in an initializer of that declaration-
statement or simple-declaration. An await-expression shall not appear in a default ar-
gument ([dcl.fct.default]). An await-expression shall not appear in the initializer of a
block variable with static or thread storage duration. In the predicate of a contract
assertion ([basic.contract]), an await-expression shall not appear outside the body of a
lambda-expression that is a subexpression of that predicate. A context within a function
where an await-expression can appear is called a suspension context of the function.

7.7 Constant expressions [expr.const]

If [P2686R5] has not been applied, modify [expr.const], paragraph 2:
2 A variable or temporary object o is constant-initialized if

— either it has an initializer or its default-initialization results in some initialization
being performed, and

— the full-expression of its initialization is a constant expression when interpreted as a
constant-expression with all contract assertions using the ignore evaluation semantic
([basic.contract.eval]), except that if o is an object, that full-expression may also
invoke constexpr constructors for o and its subobjects even if those objects are of
non-literal class types. [ Note: The initialization, when evaluated, might still evaluate
contract assertions with other evaluation semantics, resulting in a diagnostic or ill-
formed program if a contract violation occurs. — end note ] [ Note: Such a class can
have a non-trivial destructor. Within this evaluation, std::is_constant_evaluated()
([meta.const.eval]) returns true. — end note ]

If [P2686R5] has been applied, modify [expr.const], paragraph 2:

A variable v is constant-initializable if

— the full-expression of its initialization is a constant expression when interpreted as
a constant-expression with all contract assertions using the ignore evaluation semantic
([basic.contract.eval]), and [ Note: The initialization, when evaluated, might still evaluate
contract assertions with other evaluation semantics, resulting in a diagnostic or ill-formed
program if a contract violation occurs. — end note ] [ Note: Within this evaluation
std::is_constant_evaluated() ([meta.const.eval]) returns true. — end note ]

— immediately after the initializing declaration of v, the object or reference x declared by v is
constexpr-representable, and
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— if x has static or thread storage duration, x is constexpr-representable at the nearest point
whose immediate scope is a namespace scope that follows the initializing declaration of v.

Modify [expr.const], paragraph 19:
19 [ Example:

[...]

template<class T>
constexpr int k(int) { // k<int> is not an immediate function because A(42) is a

return A(42).y; // constant expression and thus not immediate−escalating
}

constexpr int l(int c) pre(c >= 2) {
return (c % 2 == 0) ? c / 0 : c;

}

const int i0 = l(0); // dynamic initialization causes a contract violation or is undefined behavior
const int i1 = l(1); // static initialization to 1 or contract violation at compile time
const int i2 = l(2); // dynamic initialization has undefined behavior
const int i3 = l(3); // static initialization to 3

— end example ]

Modify [expr.const], footnote 69:

69) Testing this condition can involve a trial evaluation of its initializer, with evaluations
of contract assertions using the ignore evaluation semantic ([basic.contract.eval]), as de-
scribed above.

8 Statements [stmt]

8.1 Preamble [stmt.pre]

Modify [stmt.pre], paragraph 1:
1 Except as indicated, statements are executed in sequence ([intro.execution]).

statement :
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
attribute-specifier-seqopt assertion-statement
declaration-statement
attribute-specifier-seqopt try-block
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8.7 Jump statements [stmt.jump]

8.7.4 The return statement [stmt.return]

Modify [stmt.return], paragraph 5:
5 The copy-initialization of the result of the call is sequenced before the destruction of

temporaries at the end of the full-expression established by the operand of the return state-
ment, which, in turn, is sequenced before the destruction of local variables ([stmt.jump]) of
the block enclosing the return statement. [ Note: These operations, in turn, are sequenced
before the destruction of local variables in each remaining enclosing block of the function,
then the evaluation of postcondition assertions of the function call ([expr.call]), then the
destruction of function parameters. — end note ]

8.(7+c) Assertion statement [stmt.contract.assert]

Add a new subclause after [stmt.jump]:

Assertion statement [stmt.contract.assert]
assertion-statement :

contract_assert attribute-specifier-seqopt ( conditional-expression ) ;

1 An assertion-statement introduces a contract assertion ([basic.contract]). The optional
attribute-specifier-seq appertains to the introduced contract assertion.

2 The predicate ([basic.contract.general]) of an assertion-statement is its conditional-
expression contextually converted to bool.

3 The evaluation of multiple consecutive contract assertions is an evaluation in sequence ([ba-
sic.contract.eval]) of those contract assertions. [ Note: A sequence of assertion statements
may thus be repeatedly evaluated as a group. [ Example:

void f(int i)
{

contract_assert(i == 0); // #1
contract_assert(i >= 0); // #2

}
int i = (f(1), 1); // may evaluate #1, #2, #1, #2

— end example ] — end note ]
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9 Declarations [dcl]

9.2 Specifiers [dcl.spec]

9.2.9 Type specifiers [dcl.type]

9.2.9.7 Placeholder type specifiers [dcl.spec.auto]

9.2.9.7.1 General [dcl.spec.auto.general]

Modify [dcl.spec.auto.general], paragraph 13:

If a variable or function with an undeduced placeholder type is named by an expression
([basic.def.odr]), the program is ill-formed. Once a non-discarded return statement has
been seen in a function, however, the return type deduced from that statement can be
used in the rest of the function, including in other return statements. [ Example:

auto n = n; // error: n’s initializer refers to n
auto f();
void g() { &f; } // error: f’s return type is unknown
auto sum(int i) {

if (i == 1)
return i; // sum’s return type is int

else
return sum(i-1)+i; // OK, sum’s return type has been deduced

}

— end example ] [ Note: This does not apply to a result binding in a postcondition-specifier,
which uses the deduced return type even though its use appears prior to that type being
deduced. [ Example:

auto f()
post(r : r == 7) // OK

{
return 7;

}

— end example ] — end note ]

9.3 Declarators [dcl.decl]

9.3.1 General [dcl.decl.general]

Modify [dcl.decl.general], paragraph 1:
1 A declarator declares a single variable, function, or type, within a declaration. The

init-declarator-list appearing in a simple-declaration is a comma-separated sequence of
declarators, each of which can have an initializer.

init-declarator-list :
init-declarator
init-declarator-list , init-declarator
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init-declarator :
declarator initializeropt
declarator requires-clauseopt function-contract-specifier-seqopt

Add a new paragraph after [dcl.decl.general], paragraph 4:
4+a The optional function-contract-specifier-seq ([dcl.contract.func]) in an init-declarator shall

be present only if the declarator declares a function.

9.3.4 Meaning of declarators [dcl.meaning]

9.3.4.6 Functions [dcl.fct]

Modify [dcl.fct], paragraph 1:
1 In a declaration T D where T may be empty and D has the form

D1 ( parameter-declaration-clause ) cv-qualifier-seqopt
ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt
trailing-return-typeopt function-contract-specifier-seqopt

a derived-declarator-type-list is determined as follows:

— If the unqualified-id of the declarator-id is a conversion-function-id , the derived-
declarator-type-list is empty.

— Otherwise, the derived-declarator-type-list is as appears in the type “derived-
declarator-type-list T” of the contained declarator-id in the declaration T D1.

The declared return type U of the function type is determined as follows:

— If the trailing-return-type is present, T shall be the single type-specifier auto, and U is
the type specified by the trailing-return-type.

— Otherwise, if the declaration declares a conversion function, see [class.conv.fct].

— Otherwise, U is T.

The type of the declarator-id in D is “derived-declarator-type-list noexceptopt function of
parameter-type-list cv-qualifier-seqopt ref-qualifieropt returning U”, where

— the parameter-type-list is derived from the parameter-declaration-clause as described
below and

— the optional noexcept is present if and only if the exception specification ([ex-
cept.spec]) is non-throwing.

The optional attribute-specifier-seq appertains to the function type.

9.(3+c) Function contract specifiers [dcl.contract]

Add a new subclause after [dcl.decl]:

Function contract specifiers [dcl.contract]
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9.(3+c).1 General [dcl.contract.func]

General [dcl.contract.func]
function-contract-specifier-seq :

function-contract-specifier function-contract-specifier-seqopt

function-contract-specifier :
precondition-specifier
postcondition-specifier

precondition-specifier :
pre attribute-specifier-seqopt ( conditional-expression )

postcondition-specifier :
post attribute-specifier-seqopt ( result-name-introduceropt conditional-expression )

1 A function contract assertion is a contract assertion ([basic.contract.general]) associated
with a function. A precondition-specifier introduces a precondition assertion, which is a
function contract assertion associated with entering a function. A postcondition-specifier
introduces a postcondition assertion, which is a function contract assertion associated
with exiting a function normally. [ Note: A postcondition assertion is not associated with
exiting a function in another fashion, such as via an exception or via a call to longjmp
([cset.jmp.syn]). — end note ]

2 The predicate ([basic.contract.general]) of a function contract assertion is its conditional-
expression contextually converted to bool.

3 Each function-contract-specifier of a function-contract-specifier-seq (if any) of an unspecified
first declaration of a function introduces a corresponding function contract assertion for
that function. The optional attribute-specifier-seq following pre or post appertains to
the introduced contract assertion. [ Note: The function-contract-specifier-seq of a lambda-
declarator applies to the function call operator or operator template of the corresponding
closure type ([expr.prim.lambda.closure]). — end note ]

4 A declaration D of a function or function template f that is not a first declaration shall
have either no function-contract-specifier-seq or the same function-contract-specifier-seq
(see below) as any first declaration F reachable from D. If D and F are in different
translation units, a diagnostic is required only if D is attached to a named module. If
a declaration F1 is a first declaration of f in one translation unit and a declaration F2
is a first declaration of f in another translation unit, F1 and F2 shall specify the same
function-contract-specifier-seq, no diagnostic required.

5 A function-contract-specifier-seq S1 is the same as a function-contract-specifier-seq S2 if
S1 and S2 consist of the same function-contract-specifiers in the same order. A function-
contract-specifier C1 on a function declaration D1 is the same as a function-contract-specifier
C2 on a function declaration D2 if

— their predicates P1 and P2 ([basic.contract.general]) would satisfy the one-definition
rule ([basic.def.odr]) if placed in function definitions on the declarations D1 and D2,
respectively, except for
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— renaming of the parameters of f,

— renaming of template parameters of a template enclosing f,

— renaming of the result binding ([dcl.contract.res]), if any,

and, if D1 and D2 are in different translation units, corresponding entities defined
within each predicate behave as if there is a single entity with a single definition,
and

— both C1 and C2 specify a result-name-introducer or neither do.

If this condition is not met due to the comparison of two lambda expressions that are
contained within P1 and P2, no diagnostic is required.

[ Note: As a result of the above, all uses and definitions of a function see equivalent
function-contract-specifier-seqs for that function across all translation units. — end note ]
[ Example:

bool b1, b2;

void f() pre (b1) pre ([]{ return b2; }());
void f(); // OK, function−contract−specifiers omitted
void f() pre (b1) pre ([]{ return b2; }()); // error: closures have different types
void f() pre (b1); // error: function−contract−specifiers only partially repeated

int g() post(r : b1);
int g() post(b1); // error: mismatched result−name−introducer presence

namespace N {
void h() pre (b1);
bool b1;
void h() pre (b1); // error: not same by odr

}

— end example ]
6 A deleted function ([dcl.fct.def.delete]) or a function defaulted on its first declaration

([dcl.fct.def.default]) shall not have a function-contract-specifier-seq.
7 [ Note: When an implementation introduces a temporary to hold the value of a function

parameter as specified in [class.temporary], a postcondition assertion might not see any
modifications of mutable subobjects ([dcl.stc]) of the parameter object performed by the
function or a function overriding it ([expr.prim.id.unqual]). — end note ]

8 If the predicate of a postcondition assertion of a function f odr-uses ([basic.def.odr]) a
non-reference parameter of f, that parameter and the corresponding parameter on all
declarations of f or any function that overrides f shall have const type. [ Note: This
requirement applies even to declarations that do not specify the postcondition-specifier .
Parameters with array or function type will decay to non-const types even if a const
qualifier is present. — end note ]
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9 [ Note: The precondition assertions of a function are evaluated in sequence ([ba-
sic.contract.eval]) when the function is invoked ([intro.execution]); in a virtual function
call ([expr.call]), the precondition assertions of the statically chosen function are evaluated
first, followed by those of the final overrider. The postcondition assertions of a function
are evaluated in sequence when a function returns normally ([stmt.return]); in a virtual
function call, the postcondition assertions of the final overrider are evaluated first, followed
by those of the statically chosen function. — end note ]

10 [ Note: The function contract assertions of a function are evaluated even when invoked
indirectly, such as through virtual dispatch, a pointer to function, or a pointer to member
function. A pointer to function, pointer to member function, or function type alias cannot
have a function-contract-specifier-seq associated directly with it. — end note ]

11 The function contract assertions of a function are considered to be needed ([temp.inst])
when

— the function is odr-used ([basic.def.odr]), or

— the function is defined.

[ Note: Errors resulting from instantiating a function-contract-specifier are thus not in
the immediate context of the function declaration and can result in ambiguous overload
resolution ([temp.deduct], [temp.inst]). [ Example:

int f(const int i[10])
post( r : r == i[0] ); // error: i has type const int * (not int* const)

template <typename T> void g(T t) post( t == {} );
template <typename T> void g(T&& t);
void h()
{

g(5); // error: ambiguous
}

— end example ] — end note ]

9.(3+c).2 Referring to the result object [dcl.contract.res]

Referring to the result object [dcl.contract.res]
attributed-identifier :

identifier attribute-specifier-seqopt

result-name-introducer :
attributed-identifier :

1 The result-name-introducer of a postcondition-specifier is a declaration. The result-name-
introducer introduces the identifier as the name of a result binding of the associated
function. A result binding denotes the object or referenced returned by invocation of
that function. The type of a result binding is the return type of its associated function
([stmt.return]). The optional attribute-specifier-seq of the attributed-identifier in the
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result-name-introducer appertains to the result binding so introduced. If a postcondition
assertion has a result-name-introducer and the return type of the function is cv void,
the program is ill-formed. [ Note: An id-expression that names a result binding is a const
lvalue ([expr.prim.id.unqual]). — end note ]

[ Example:
int f()

post(r : (const_cast<int&>(r) = 1))
post(r : r == 1) // The postcondition checks succeed if

{ // both predicates are evaluated.
return 0;

}
void g()
{

int i = f();
contract_assert( i == 1 ); // succeeds if first postcondition evaluated

}

— end example ]

[ Example:
struct A {};
struct B {

B() {}
B(const B&) {}

};

template <typename T>
T f(T* const ptr)

post(r: &r == ptr)
{

return {};
}

int main() {
A a = f(&a); // The postcondition check can fail if the implementation introduces

// a temporary for the return value ( [class.temporary]).
B b = f(&b); // The postcondition check succeeds.

}

— end example ]
2 When the declared return type of a non-templated function contains a placeholder type,

a postcondition-specifier with a result-name-introducer shall be present only on a definition.
[ Example:

auto g(auto&)
post (r: r >= 0); // OK, g is a template

auto h()
post (r: r >= 0); // error: cannot name the return value
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auto k()
post (r: r >= 0) // OK

{
return 0;

}

— end example ]

9.5 Function definitions [dcl.fct.def]

9.5.1 General [dcl.fct.def.general]

Modify [dcl.fct.def.general], paragraph 1:
1 Function definitions have the form

function-definition :
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt

function-contract-specifier-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause

function-contract-specifier-seqopt function-body

9.5.4 Coroutine definitions [dcl.fct.def.coroutine]

Modify [dcl.fct.def.coroutine], paragraph 5:
5 A coroutine behaves as if the top-level cv-qualifiers in all parameter-declarations in the

declarator of its function-definition were removed and its function-body were replaced by
the following replacement body:

{
promise-type promise promise-constructor-arguments ;
[...]

5+a [ Note: If the predicate of a postcondition assertion on a coroutine odr-uses a non-reference
parameter ([dcl.contract.func]), the replacement declaration will never have a const type
and thus will be ill-formed. — end note ]

Modify [dcl.fct.def.coroutine], paragraph 9:
9 An implementation may need to allocate additional storage for a coroutine. This storage

is known as the coroutine state and is obtained by calling a non-array allocation function
([basic.stc.dynamic.allocation]) as part of the replacement body. The allocation function’s
name is looked up by searching for it in the scope of the promise type.

— If the search finds any declarations, overload resolution is performed on a function
call created by assembling an argument list. The first argument is the amount of
space requested, and is a prvalue of type std::size_t. The lvalues p1 . . . pn with
their original cv-qualifiers are the successive arguments. If no viable function is
found ([over.match.viable]), overload resolution is performed again on a function
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call created by passing just the amount of space required as a prvalue of type
std::size_t.

Modify [dcl.fct.def.coroutine], paragraph 13:
13 When a coroutine is invoked, after initializing its parameters (expr.call) at the beginning

of the replacement body, a copy is created for each coroutine parameter. For a parameter
whose original declaration specified the of type cv T,

— if T is a reference type, the copy is a reference of type cv T bound to the same object
as the parameter;

— otherwise, the copy is a variable of type cv T with automatic storage duration that
is direct-initialized from an xvalue of type T referring to the parameter. [ Note: An
identifier in the function-body that names one of these parameters refers to the
created copy, not the original parameter ([expr.prim.id.unqual]). — end note ]

[ Note: An original parameter object is never a const or volatile object ([ba-
sic.type.qualifier]). — end note ]

The initialization and destruction of each parameter copy occurs in the context of the
called coroutine. Initializations of parameter copies are sequenced before the call to the
coroutine promise constructor and indeterminately sequenced with respect to each other.
The lifetime of parameter copies ends immediately after the lifetime of the coroutine
promise object ends.

[ Note: If a coroutine has a parameter passed by reference, resuming the coroutine after
the lifetime of the entity referred to by that parameter has ended is likely to result in
undefined behavior. — end note ]

9.5.(4+d) Replaceable function definitions [dcl.fct.def.replace]

Add new section after [dcl.fct.def.coroutine]:

Replaceable function definitions [dcl.fct.def.replace]
1 Certain functions for which a definition is supplied by the implementation are replaceable.

A C++ program may provide a definition with the signature of a replaceable function,
called a replacement function. The replacement function is used instead of the default
version supplied by the implementation. Such replacement occurs prior to program startup
([basic.def.odr], [basic.start]). The program’s declarations

— shall not be inline,

— shall be attached to the global module,

— shall have C++ language linkage, and

— shall have the same return type as the replaceable function;

no diagnostic is required. [ Note: The one-definition rule ([basic.def.odr]) applies to the
definitions of a replaceable function provided by the program. The implementation-
supplied function definition is an otherwise-unnamed function with no linkage. — end
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note ] [ Note: Some replaceable functions, such as those in header <new>, are also declared
in a standard library header, and the function definition would be ill-formed in the
presence of that header without a compatible declaration; other replaceable functions,
such as the contract-violation handler ([basic.contract.handler]) on implementations where
it is replaceable, need only match the specified signature and return type. The exception
specification ([except.spec]) is part of the declaration but not part of the signature. — end
note ]

9.12 Attributes [dcl.attr]

9.12.1 Attribute syntax and semantics [dcl.attr.grammar]

Modify [dcl.attr.grammar], paragraph 1:
1 Attributes specify additional information for various source constructs such as types,

variables, names, contract assertions, blocks, or translation units.

9.12.9 Maybe unused attribute [dcl.attr.unused]

Modify [dcl.attr.unused], paragraph 2:
2 The attribute may be applied to the declaration of a class, typedef-name, variable (including

a structured binding declaration), structured binding, result binding, non-static data
member, function, enumeration, or enumerator, or to an identifier label ([stmt.label]).

11 Classes [class]

11.4 Class members [class.mem]

11.4.1 General [class.mem.general]

Modify [class.mem.general], paragraph 1:

[...]

member-declarator :
declarator virt-specifieropt function-contract-specifier-seqopt pure-specifieropt
declarator requires-clause function-contract-specifier-seqopt
declarator brace-or-equals-initializeropt
identifieropt attribute-specifier-seqopt : brace-or-equals-initializeropt

[...]

Modify [class.mem.general], paragraph 8:
8 A complete-class context of a class (template) is a

— function body ([dcl.fct.def.general]),

— default argument ([dcl.fct.default]),

— default template argument ([temp.param]),

— noexcept-specifier ([except.spec]),

— function-contract-specifier ([dcl.contract.func]), or
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— default member initializer

within the member-specification of the class or class template.

11.8 Member access control [class.access]

11.8.1 General [class.access.general]

Modify [class.access.general] paragraph 7:
7 [ Example:

class A {
typedef int I; // private member
I f() pre(A::x > 0);
friend I g(I);
static I x;
template<int> struct Q;
template<int> friend struct R;

protected:
struct B { };

};

A::I A::f() pre(A::x > 0) { return 0; }
A::I g(A::I p = A::x) post(A::x <= 0);
A::I g(A::I p) { return 0; }
A::I A::x = 0;
template<A::I> struct A::Q { };
template<A::I> struct R { };

struct D: A::B, A { };

Here, all the uses of A::I are well-formed because A::f, A::x, and A::Q are members of
class A and g and R are friends of class A. This implies, for example, that access checking
on the first use of A::I must be deferred until it is determined that this use of A::I is as
the return type of a member of class A. Similarly, the use of A::B as a base-specifier is
well-formed because D is derived from A, so checking of base-specifiers must be deferred
until the entire base-specifier-list has been seen. — end example ]

11.9 Initialization [class.init]

11.9.3 Initializing bases and members [class.base.init]

Modify [class.base.init] paragraph 16:
16 Member functions (including virtual member functions, [class.virtual]) can be called for an

object under construction. Similarly, an object under construction can be the operand of
the typeid operator ([expr.typeid]) or of a dynamic_cast ([expr.dynamic.cast]). However,
if these operations are performed

— during evaluation of in a ctor-initializer (or in a function called directly or indirectly
from a ctor-initializer) before all the mem-initializers for base classes have completed,
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— during evaluation of a precondition assertion of a constructor or a postcondition
assertion of a destructor ([dcl.contract.func]),

the program has undefined behavior.

11.9.5 Construction and destruction [class.cdtor]

Modify [class.cdtor], paragraph 4:
4 Member functions, including virtual functions ([class.virtual]), can be called during con-

struction or destruction ([class.base.init]). When a virtual function is called directly
or indirectly from a constructor or from a destructor, including during the construc-
tion or destruction of the class’s non-static data members, or during the evaluation of
a postcondition assertion of a constructor or a precondition assertion of a destructor
([dcl.contract.func]) and the object to which the call applies is the object (call it x) under
construction or destruction, the function called is the final overrider in the constructor’s
or destructor’s class and not one overriding it in a more-derived class. If the virtual
function call uses an explicit class member access ([expr.ref]) and the object expression
refers to the complete object of x or one of that object’s base class subobjects but not x
or one of its base class subobjects, the behavior is undefined.

12 Overloading [over]

12.2 Overload resolution [over.match]

12.2.2 Candidate functions and argument lists [over.match.funcs]

12.2.2.2 Function call syntax [over.match.call]

12.2.2.2.2 Call to named function [over.call.func]

Modify [over.call.func], paragraph 3:
3 In unqualified function calls, the function is named by a primary-expression. The function

declarations found by name lookup ([basic.lookup]) constitute the set of candidate
functions. Because of the rules for name lookup, the set of candidate functions consists
either entirely of non-member functions or entirely of member functions of some class
T. In the former case or if the primary-expression is the address of an overload set, the
argument list is the same as the expression-list in the call. Otherwise, the argument list is
the expression-list in the call augmented by the addition of an implied object argument as
in a qualified function call. If the current class is, or is derived from, T, and the keyword
this ([expr.prim.this]) refers to it,

— then the implied object argument is (*this).;

— if the unqualified function call appears in a precondition assertion of a constructor or
a postcondition assertion of a destructor and overload resolution selects a non-static
member function, the call is ill-formed.

Otherwise,

— a contrived object of type T becomes the implied object argument;
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— if overload resolution selects a non-static member function, the call is ill-formed.

[ Example:
struct C {

voidbool a();
void b() {

a(); // OK, (*this).a()
}

void c(this const C&); // #1
void c() &; // #2
static void c(int = 0); // #3

void d() {
c(); // error: ambiguous between #2 and #3
(C::c)(); // error: as above
(&(C::c))(); // error: cannot resolve address of overloaded

// this->C::c ([over.over])
(&C::c)(C{}); // selects #1
(&C::c)(*this); // error: selects #2, and is ill−formed

// ([over.match.call.general])
(&C::c)(); // selects #3

}

void f(this const C&);
void g() const {

f(); // OK, (*this).f()
f(*this); // error: no viable candidate for (*this).f(*this)
this->f(); // OK

}

static void h() {
f(); // error: contrived object argument, but overload resolution

// picked a non−static member function
f(C{}); // error: no viable candidate
C{}.f(); // OK

}

void k(this int);
operator int() const;
void m(this const C& c) {

c.k(); // OK
}

C()
pre(a()) // error: implied this in constructor precondition
pre(this->a()) // OK
post(a()); // OK

~C()
pre(a()) // OK
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post(a()) // error: implied this in destructor postcondition
post(this->a()); // OK

};

— end example ]

13 Templates [temp]

13.8 Name resolution [temp.res]

13.8.3 Dependent names [temp.dep]

13.8.3.3 Type-dependent expressions [temp.dep.expr]

Modify [temp.dep.expr], paragraph 3:
3 An id-expression is type-dependent if it is a template-id that is not a concept-id and is

dependent; or if its terminal name is

— [...]

— the identifier __func__ ([dcl.fct.def.general]), where any enclosing function is a
template, a member of a class template, or a generic lambda,

— associated by name lookup with a result binding ([dcl.contract.res]) of a function
whose return type is dependent,

— a conversion-function-id that specifies a dependent type, or

— [...]

13.9 Template instantiation and specialization [temp.spec]

13.9.2 Implicit instantiation [temp.inst]

Modify [temp.inst], paragraph 14:
14 The noexcept-specifier and function-contract-specifiers of a function template specialization

are is not instantiated along with the function declaration; they are it is instantiated
when needed ([except.spec], [dcl.contract.func]). If such a specifier noexcept-specifier is
needed but has not yet been instantiated, the dependent names are looked up, the
semantics constraints are checked, and the instantiation of any template used in the
specifier noexcept-specifier is done as if it were being done as part of instantiating the
declaration of the specialization at that point. [ Note: Therefore, any errors that arise from
instantiating these specifiers are not in the immediate context of the function declaration
and can result in the program being ill-formed ([temp.deduct]). — end note ]
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13.9.4 Explicit specialization [temp.expl.spec]

Modify [temp.expl.spec], paragraph 12:
12 Whether an explicit specialization of a function or variable template is inline, constexpr,

constinit, or consteval is determined by the explicit specialization and is independent of
those properties of the template. Similarly, attributes appearing in the declaration of a
template have no effect on an explicit specialization of that template. [ Example:

[...]

— end example ] [ Note: For an explicit specialization of a function template, the function-
contract-specifier-seq ([dcl.contract.func]) of the explicit specialization is independent of
that of the primary template. — end note ]

13.10 Function template specializations [temp.fct.spec]

13.10.3 Template argument deduction [temp.deduct]

13.10.3.1 General [temp.deduct.general]

Modify [temp.deduct.general], paragraph 7:
7 The deduction substitution loci are

— the function type outside of the noexcept-specifier ,

— the explicit-specifier ,

— the template parameter declarations, and

— the template argument list of a partial specialization ([temp.spec.partial.general]).

The substitution occurs in all types and expressions that are used in the deduction
substitution loci. The expressions include not only constant expressions such as those that
appear in array bounds or as nontype template arguments but also general expressions
(i.e., non-constant expressions) inside sizeof, decltype, and other contexts that allow
non-constant expressions. The substitution proceeds in lexical order and stops when
a condition that causes deduction to fail is encountered. If substitution into different
declarations of the same function template would cause template instantiations to occur
in a different order or not at all, the program is ill-formed; no diagnostic required. [ Note:
The equivalent substitution in exception specifications and function contract assertions
([dcl.contract.func]) is done only when the noexcept-specifier or function-contract-specifier ,
respectively, is instantiated, at which point a program is ill-formed if the substitution
results in an invalid type or expression. — end note ]
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14 Exception handling [except]

14.4 Handling an exception [except.handle]

Modify [except.handle], paragraph 7:
7 If the search for a handler exits the function body encounters the outermost block of

a function with a non-throwing exception specification, the function std::terminate
([except.terminate]) is invoked.

14.5 Exception specifications [except.spec]

Modify [except.spec], paragraph 12:
12 An exception specification is considered to be needed when:

— in an expression, the function is selected by overload resolution ([over.match],
[over.over]);

— the function is odr-used ([basic.def.odr]) or, if it appears in an unevaluated operand,
would be odr-used if the expression were potentially evaluated;

— the exception specification is compared to that of another declaration (e.g., an
explicit specialization or an overriding virtual function);

— the function is defined; or

— the exception specification is needed for a defaulted function that calls the function.
[ Note: A defaulted declaration does not require the exception specification of a
base member function to be evaluated until the implicit exception specification of
the derived function is needed, but an explicit noexcept-specifier needs the implicit
exception specification to compare against. — end note ]

The exception specification of a defaulted function is evaluated as described above only
when needed; similarly, the noexcept-specifier of a templated function a specialization of
a function template or member function of a class template is instantiated only when
needed.

14.6 Special functions [except.special]

14.6.2 General [except.terminate]

Modify [except.terminate], paragraph 1:
1 Some errors in a program cannot be recovered from, such as when an exception is not

handled or a std::thread object is destroyed while its thread function is still executing.
In such cases, the function std::terminate ([exception.terminate]) is invoked. [ Note:
These situations are:

— when the exception handling mechanism, after completing the initialization of the
exception object but before activation of a handler for the exception ([except.throw]),
calls a function that exits via an exception, or
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— when the exception handling mechanism cannot find a handler for a thrown exception
([except.handle]), or

— when the search for a handler ([except.handle]) exits the function bodyencounters
the outermost block of a function with a non-throwing exception specification
([except.spec]), or

— when the destruction of an object during stack unwinding ([except.ctor]) terminates
by throwing an exception, or

— when initialization of a non-block variable with static or thread storage duration
([basic.start.dynamic]) exits via an exception, or

— when destruction of an object with static or thread storage duration exits via an
exception ([basic.start.term]), or

— when execution of a function registered with std::atexit or std::at_quick_exit
exits via an exception ([support.start.term]), or

— when a contract-violation handler ([basic.contract.handler]) invoked from evaluating a
function contract assertion on a function with a non-throwing exception specification
exits via an exception, or

— when a throw-expression ([expr.throw]) with no operand attempts to rethrow an
exception and no exception is being handled ([except.throw]), or

— when the function std::nested_exception::rethrow_nested is called for an ob-
ject that has captured no exception ([except.nested]), or

— when execution of the initial function of a thread exits via an exception
([thread.thread.constr]), or

— for a parallel algorithm whose ExecutionPolicy specifies such behavior ([ex-
ecpol.seq], [execpol.par], [execpol.parunseq]), when execution of an element access
function ([algorithms.parallel.defns]) of the parallel algorithm exits via an exception
([algorithms.parallel.exceptions]), or

— when the destructor or the move assignment operator is invoked on an ob-
ject of type std::thread that refers to a joinable thread ([thread.thread.destr,
thread.thread.assign]), or

— when a call to a wait(), wait_until(), or wait_for() function on a condition
variable ([thread.condition.condvar], [thread.condition.condvarany]) fails to meet a
postcondition, or

— when a callback invocation exits via an exception when requesting stop
on a std::stop_source or a std::inplace_stop_source ([stopsource.mem,
stopsource.inplace.mem]), or in the constructor of std::stop_callback
or std::inplace_stop_callback ([stopcallback.cons, stopcallback.inplace.cons])
when a callback invocation exits via an exception, or
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— when a run_loop object is destroyed that is still in the running state
([exec.run.loop]), or

— when unhandled_stopped is called on a with_awaitable_senders<T> object
([exec.with.awaitable.senders]) whose continuation is not a handle to a coroutine
whose promise type has an unhandled_stopped member function.

— end note ]

Modify [except.terminate], paragraph 2:
2 In the situation where no matching handler is found, it is whether or not the stack

is unwound before std::terminate is invoked. In the situation where the search for
a handler ([except.handle]) exits the function body encounters the outermost blockof a
function with a non-throwing exception specification ([except.spec]), it is implementation-
defined whether the stack is unwound, unwound partially, or not unwound at all before
the function std::terminate is invoked. In all other situations, the stack shall not be
unwound before the function std::terminate is invoked. An implementation is not
permitted to finish stack unwinding prematurely based on a determination that the
unwind process will eventually cause an invocation of the function std::terminate.

15 Preprocessing directives [cpp]

15.11 Predefined macro names [cpp.predefined]

Modify [tab:cpp.predefined], Table 22: Feature-test macros, with XXXX replaced by the appropriate
value:

Macro name Value
[...] [...]
__cpp_constinit 201907L
__cpp_contracts 20XXXXL
__cpp_decltype 200707L
[...] [...]
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4.2 Standard Library Wording

Modified Section Contents

16 Library introduction [library] 111
16.3 Method of description [description] 111

16.3.2 Structure of each clause [structure] 111
16.3.2.4 Detailed specifications [structure.specifications] 111

16.4 Library-wide requirements [requirements] 112
16.4.2 Library contents and organization [organization] 112

16.4.2.3 Headers [headers] 112
16.4.2.5 Freestanding implementations [compliance] 112

16.4.5 Constraints on programs [constraints] 112
16.4.5.6 Replacement functions [replacement.functions] 112

16.4.6 Conforming implementations [conforming] 113
16.4.6.(13+e) Contract assertions [res.contract.assertions] 113

17 Language support library [support] 113
17.1 General [support.general] 113
17.3 Implementation properties [support.limits] 114

17.3.2 Header <version> synopsis [version.syn] 114
17.6.3 Storage allocation and deallocation [new.delete] 114

17.6.3.2 Single-object forms [new.delete.single] 114
17.6.3.3 Array forms [new.delete.array] 114

17.(9+f) Exception handling [support.contracts] 114
17.(9+f).1 Header <contracts> synopsis [contracts.syn] 114
17.(9+f).2 Enumerations [support.contracts.enum] 116

17.(9+f).2.1 General [support.contracts.enum.general] 116
17.(9+f).2.2 Enum class assertion_kind [support.contracts.enum.kind] 116
17.(9+f).2.3 Enum class evaluation_semantic [sup-

port.contracts.enum.semantic] 116
17.(9+f).2.4 Enum class detection_mode [support.contracts.enum.detection] 116

17.(9+f).3 Class contract_violation [support.contracts.violation] 116
17.(9+f).4 Invoke default handler [support.contracts.invoke] 118

19 Diagnostics library [diagnostics] 118
19.7 Debugging [debugging] 118

19.7.3 Utility [debugging.utility] 118
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Modifications

16 Library introduction [library]

16.3 Method of description [description]

16.3.2 Structure of each clause [structure]

16.3.2.4 Detailed specifications [structure.specifications]

Modify [structure.specifications], paragraph 3:
3 Descriptions of function semantics contain the following elements (as appropriate):

— ...

— Mandates: the conditions that, if not met, render the program ill-formed. [ Example:
An implementation can express such a condition via the constant-expression in a
static_assert-declaration ([dcl.pre]). If the diagnostic is to be emitted only after the
function has been selected by overload resolution, an implementation can express
such a condition via a constraint-expression ([temp.constr.decl]) and also define the
function as deleted. — end example ]

— Preconditions: the conditions that the function assumes to hold whenever it is
called; violation of any preconditions results in undefined behavior. [ Example: An
implementation can express such conditions via the use of a contract assertion such
as a precondition assertion. — end example ]

— Effects: the actions performed by the function.

— Synchronization: the synchronization operations ([intro.multithread]) applicable to
the function.

— Postconditions: the conditions (sometimes termed observable results) established by
the function. [ Example: An implementation can express such conditions via the use
of a contract assertion such as a postcondition assertion. — end example ]

— Result: for a typename-specifier , a description of the named type; for an expression,
a description of the type and value category of the expression; the expression is
an lvalue if the type is an lvalue reference type, an xvalue if the type is an rvalue
reference type, and a prvalue otherwise.

— ...
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16.4 Library-wide requirements [requirements]

16.4.2 Library contents and organization [organization]

16.4.2.3 Headers [headers]

Modify [tab:headers.cpp], Table 24: C++ library headers:

[...]
<condition_variable>
<contracts>
<coroutine>
[...]

16.4.2.5 Freestanding implementations [compliance]

Modify [tab:headers.cpp.fs], Table 27: C++ headers for freestanding implementations:

[...]
<compare>
<contracts>
<coroutine>
[...]

16.4.5 Constraints on programs [constraints]

16.4.5.6 Replacement functions [replacement.functions]

Modify [replacement.functions]:
1 [support] through [thread] and [depr] describe the behavior of numerous functions defined

by the C++ standard library. Under some circumstances, however, certain of these
function descriptions also apply to replacement functions ([dcl.fct.def.replace]) defined in
the program.

2 A C++ program may provide the definition for any of the The following dynamic memory
allocation functions signatures declared in header <new> ([basic.stc.dynamic], [new.syn])
are replaceable ([dcl.fct.def.replace]):

operator new(std::size_t)
operator new(std::size_t, std::align_val_t)
operator new(std::size_t, const std::nothrow_t&)
operator new(std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete(void*)
operator delete(void*, std::size_t)
operator delete(void*, std::align_val_t)
operator delete(void*, std::size_t, std::align_val_t)
operator delete(void*, const std::nothrow_t&)
operator delete(void*, std::align_val_t, const std::nothrow_t&)

operator new[](std::size_t)
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operator new[](std::size_t, std::align_val_t)
operator new[](std::size_t, const std::nothrow_t&)
operator new[](std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete[](void*)
operator delete[](void*, std::size_t)
operator delete[](void*, std::align_val_t)
operator delete[](void*, std::size_t, std::align_val_t)
operator delete[](void*, const std::nothrow_t&)
operator delete[](void*, std::align_val_t, const std::nothrow_t&)

3 A C++ program may provide the definition of the The following function signature
declared in header <debugging> is replaceable ([dcl.fct.def.replace]):

bool std::is_debugger_present() noexcept

4 The program’s definitions are used instead of the default versions supplied by the
implementation ([new.delete]). Such replacement occurs prior to program startup
([basic.def.odr], [basic.start]). The program’s declarations shall not be specified as inline.
No diagnostic is required.

16.4.6 Conforming implementations [conforming]

16.4.6.(13+e) Contract assertions [res.contract.assertions]

Add new section [res.contract.assertions], after [res.on.exception.handling]:

Contract assertions [res.contract.assertions]
1 Unless specified otherwise, an implementation is allowed but not required to check the

specified preconditions and postconditions of a function in the C++ standard library using
contract assertions ([basic.contract]).

17 Language support library [support]

17.1 General [support.general]

Modify [support.general], paragraph 2:
2 The following subclauses describe common type definitions used throughout the library,

characteristics of the predefined types, functions supporting start and termination of
a C++ program, support for dynamic memory management, support for dynamic type
identification, support for contract-violation handling, support for exception processing,
support for initializer lists, and other runtime support, as summarized in Table 38.
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Modify [tab:support.summary], Table 38: Language support library summary:

Subclause Header
[...]
[support.exception] Exception handling <exception>
[support.contracts] Contract-violation handling <contracts>
[support.initlist] Initializer lists <initializer_list>
[...]

17.3 Implementation properties [support.limits]

17.3.2 Header <version> synopsis [version.syn]

Modify [version.syn], paragraph 2, , with XXXX replaced by the appropriate value:
2 Each of the macros defined in <version> is also defined after inclusion of any member of

the set of library headers indicated in the corresponding comment in this synopsis.
[...]
#define __cpp_lib_concepts 202207L

// freestanding, also in <concepts>, <compare>
#define __cpp_lib_contracts 20XXXXL // freestanding, also in <contracts>
#define __cpp_lib_constexpr_algorithms 202306L

// also in <algorithm>, <utility>
[...]

17.6.3 Storage allocation and deallocation [new.delete]

17.6.3.2 Single-object forms [new.delete.single]

Modify [new.delete.single], paragraphs 2, 6, 13, and 21:

Replaceable: A C++ program may define a function with this function signature,
and thereby displace the default version defined by the C++ standard library
([dcl.fct.def.replace]).

17.6.3.3 Array forms [new.delete.array]

Modify [new.delete.array], paragraphs 2, 6, 12, and 18:

Replaceable: A C++ program may define a function with this function signature,
and thereby displace the default version defined by the C++ standard library
([dcl.fct.def.replace]).

17.(9+f) Exception handling [support.contracts]

Add a new subclause [support.contracts] after [support.exception]:

Contract-violation handling [support.contracts]
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17.(9+f).1 Header <contracts> synopsis [contracts.syn]

Header <contracts> synopsis [contracts.syn]
1 The header <contracts> defines types for reporting information about contract violations

([basic.contract.eval]) generated by the implementation.
// all freestanding
namespace std::contracts {

enum class assertion_kind : unspecified {
pre = 1,
post = 2,
assert = 3

};

enum class evaluation_semantic : unspecified {
ignore = 1,
observe = 2,
enforce = 3,
quick_enforce = 4

};

enum class detection_mode : unspecified {
predicate_false = 1,
evaluation_exception = 2

};

class contract_violation {
// no user−accessible constructor

public:
// cannot be copied or moved
contract_violation(const contract_violation&) = delete;
// cannot be assigned to
contract_violation& operator=(const contract_violation&) = delete;

/∗ see below ∗/ ~contract_violation();

const char* comment() const noexcept;
std::contracts::detection_mode detection_mode() const noexcept;
std::exception_ptr evaluation_exception() const noexcept;
bool is_terminating() const noexcept;
assertion_kind kind() const noexcept;
source_location location() const noexcept;
evaluation_semantic semantic() const noexcept;

};

void invoke_default_contract_violation_handler(const contract_violation&);
}
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17.(9+f).2 Enumerations [support.contracts.enum]

Enumerations [support.contracts.enum]

17.(9+f).2.1 General [support.contracts.enum.general]

General [support.contracts.enum.general]
1 Recommended practice: For all enumerations in this subclause, if implementation-defined

enumerators are provided, they should have a minimum value of 1000. [ Note: The names
of such enumerators can be only identifiers reserved for the implementation ([lex.name]).

— end note ]

17.(9+f).2.2 Enum class assertion_kind [support.contracts.enum.kind]

Enum class assertion_kind [support.contracts.enum.kind]
1 The enumerators of assertion_kind correspond to the possible syntactic forms of a

contract assertion ([basic.contract]):

— assertion_kind::pre: the evaluated contract assertion was a precondition assertion.

— assertion_kind::post: the evaluated contract assertion was a postcondition
assertion.

— assertion_kind::assert: the evaluated contract assertion was an assertion-statement.

17.(9+f).2.3 Enum class evaluation_semantic [support.contracts.enum.semantic]

Enum class evaluation_semantic [support.contracts.enum.semantic]
1 The enumerators of evaluation_semantic correspond to the possible evaluation semantics

([basic.contract.eval]) with which a contract assertion may be evaluated:

— evaluation_semantic::ignore: the ignore evaluation semantic.

— evaluation_semantic::observe: the observe evaluation semantic.

— evaluation_semantic::enforce: the enforce evaluation semantic.

— evaluation_semantic::quick_enforce: the quick-enforce evaluation semantic.

17.(9+f).2.4 Enum class detection_mode [support.contracts.enum.detection]

Enum class detection_mode [support.contracts.enum.detection]
1 The enumerators of detection_mode correspond to the manners in which a contract

violation ([basic.contract.eval]) can be identified:

— detection_mode::predicate_false: the contract violation occurred because the pred-
icate evaluated to false or would have evaluated to false.

— detection_mode::evaluation_exception: the contract violation occurred because the
evaluation of the predicate exited via an exception.
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17.(9+f).3 Class contract_violation [support.contracts.violation]

Class contract_violation [support.contracts.violation]
1 The class contract_violation describes information about a contract violation ([ba-

sic.contract.eval]) generated by the implementation. Objects of this type can be created
only by the implementation. Whether the destructor is virtual is implementation-defined.

const char* comment() const noexcept;

2 Returns: An implementation-defined null-terminated multibyte string in the ordinary
literal encoding ([lex.charset]).

3 Recommended practice: The string returned should contain a textual representation
of the predicate of the violated contract assertion or an empty string if storing a
textual representation of violated predicates is undesired. [ Note: The source code
produced may be truncated, be reformatted, represent the code before or after
preprocessing, or be summarized. — end note ]

std::contracts::detection_mode detection_mode() const noexcept;

4 Returns: The enumerator value corresponding to the manner in which the contract
violation was identified.

std::exception_ptr evaluation_exception() const noexcept;

5 Returns: If the contract violation occurred because the evaluation of the predicate
exited via an exception, an exception_ptr object that refers to that exception or a
copy of that exception; otherwise, a null exception_ptr object.

bool is_terminating() const noexcept;

6 Returns: true if the current evaluation semantic is a terminating semantic ([ba-
sic.contract.eval]); false otherwise.

assertion_kind kind() const noexcept;

7 Returns: The enumerator value corresponding to the syntactic form of the violated
contract assertion.

source_location location() const noexcept;

8 Returns: A source_location object with implementation-defined value.
9 Recommended practice: The value returned should be a default constructed

source_location object or a value identifying the violated contract assertion:

— When possible, if the violated contract assertion was a precondition, the source
location of the function invocation should be returned.

— Otherwise, the source location of the contract assertion should be returned.

evaluation_semantic semantic() const noexcept;
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10 Returns: The enumerator value corresponding to the the evaluation semantic with
which the violated contract assertion was evaluated.

11 [ Note: This member function is provided for logging purposes and to identify
implementation-defined semantics. — end note ]

17.(9+f).4 Invoke default handler [support.contracts.invoke]

invoke_default_contract_violation_handler [support.contracts.invoke]

void invoke_default_contract_violation_handler(const contract_violation&);

1 Effects: equivalent to invoking the default contract-violation handler ([ba-
sic.contract.handler]).

19 Diagnostics library [diagnostics]

19.7 Debugging [debugging]

19.7.3 Utility [debugging.utility]

Modify [debugging.utility], paragraph 3:
3 Replaceable: A C++ program may define a function with this function signature,

and thereby displace the default version defined by the C++ standard library
([dcl.fct.def.replace]).
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4.3 Annex Wording

Modified Section Contents

C.1 C++ and ISO C++ 2023 [diff.cpp23] 120
C.1.(1+g) Clause 5: Lexical conventions [diff.cpp23.lex] 120
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Modifications

C.1 C++ and ISO C++ 2023 [diff.cpp23]

C.1.(1+g) Clause 5: Lexical conventions [diff.cpp23.lex]

Add a new section to Annex C, [diff.cpp23], after [diff.cpp23.general]:

Lexical conventions [diff.cpp23.lex]
1 Affected subclause: [lex.key]

Change: New keywords.
Rationale: Required for new features.

— The contract_assert keyword is added to introduce a contract assertion through
an assertion-statement ([stmt.contract.assert]).

Effect on original feature: Valid C++ 2023 code using contract_assert as an identifier
is not valid in this revision of C++.
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5 Conclusion
The idea of a Contracts facility in the C++ Standard has been an area of active work and development
for over two decades. This proposal represents the culmination of significant effort to reach consensus
in the Contracts study group (SG21). We feel that this proposal will provide significant benefits
to C++ users as it stands and that it will serve as a foundation that can grow to meet the needs
expressed by our many constituents. We hope that this MVP proposal will be well received by the
C++ community and that it will pave the way to a better, safer C++ ecosystem.
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