
Tokyo Technical Fixes to Contracts

Document #: P3119R1
Date: 2024-05-09
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

During EWG discussion of Contracts at the 2024 Tokyo WG21 meeting a number of minor issues
were brought up. This paper discusses them and proposes resolutions.

Contents
1 Introduction 2

2 Array Parameters 2

3 Use of C variadic functions parameters 3

4 Unbounded Evaluations 4

5 Proposed Wording 6

6 Conclusion 6

1

mailto:jberne4@bloomberg.net


Revision History
Revision 1

• Updated proposal on unbounded evaluations

• Added results of polls on proposal 1 and Proposal 2.

Revision 0

• Original version of the paper for discussion during an SG21 telecon.

1 Introduction
On march 20, 2024 EWG met to discuss [P2900R6]. A few minor issues were brought up, which are
discussed below along with reasoned proposals for their resolution.

2 Array Parameters
In postconditions we require that any function parameter that is ODR-used be marked const.
This becomes a problem for array parameters due to array to pointer decay, as there is no way to
mark such a parameter so that the resulting pointer itself is const, as the following two function
declarations are equivalent and you can see that the parameter is a pointer to const int and not a
const pointer:

void f(const int a[]);
void f(int * const a)

Adding a postcondition to the first declaration above will not do the right thing, as the pointer itself
is not const:

void f(const int a[]) post( a[0] == 5 )
{

static int x[1];
a = x;
a[0] = 5; // postcondition will be satisfied

}

void g()
{

int b[5] = {0,1,2,3,4,5};
f(b);
contract_assert(b[0] == 5); // oops, that didn't happen.

}

Because there is no way to make the resulting pointer after pointer decay const, we should just
disallow this usage. Any developer that wants to use an array parameter in a postcondition can
change that parameter to be a pointer manually – there is no change in signature, ABI, or anything
else significant in requiring this change.

2



Proposal 1: No Array Parameters In Postconditions

ODR-using an array parameter from the predicate of a postcondition is ill-formed.

This proposal was discussed on April 4, 2024 during an SG21 telecon. The following poll was taken:

2024-04-04 Poll 7

For the Contracts MVP, make it ill-formed to odr-use an array parameter from the predicate
of a postcondition, as specified in Proposal 1 of P3119R0.
SF F N A SA
3 12 0 0 0

Result: Consensus

3 Use of C variadic functions parameters
We must consider how C variadic function parameters can be used in preconditions and postcondi-
tions.

In general, the sequence of va_start to va_end must occur within the same function. For contract
assertions, it seems like we should have two modifications to these rules:

1. Any use of va_start within a contract assertion predicate must be matched by a use of va_end
in the same predicate. In other words, for the purposes of C variable argument lists each
contract predicate is a distinct function.

2. A postcondition assertion cannot make reference to C-style variadic arguments as there is no
mechanism to make them const.

Unfortunately, the first requirement (as with the C requirement on the matching of va_start and
va_end in a function) cannot be statically checked and thus must be made undefined behavior.
Therefore it might be better to outright prevent the use of va_start in contract predicates entirely.

For now, this conservative approach is what we propose:

Proposal 2: No C variadics

If a contract predicate encloses a use of va_start, the program is ill-formed.

This proposal was discussed on April 4, 2024 during an SG21 telecon. During that discussion, it
became clear that some platforms would not be able to diagnose this issue because the macros used
for handling C variadic functions transform into expressions that have no identifiable traits once
preprocessing is complete. Therefore, the room decided that, while this should still be ill-formed, no
diagnostic should be required for this problem.

The following poll was taken:

3

https://wiki.edg.com/bin/view/Wg21telecons2024/Teleconference2024-04-04


2024-04-04 Poll 8

For the Contracts MVP, make it ill-formed, no diagnostic required for a contract predicate to
enclose a use of va_start.
SF F N A SA
5 10 1 0 0

Result: Consensus

4 Unbounded Evaluations
Two problems with allowing an unbounded number of evaluations to occur for contract assertions
within a contract assertion sequence have been brought up:

• A contract assertion that will exhibit UB after a number of repeated assertions could be
considered to exhibit UB always — the particular example given was for a contract assertion
that incremented an int as a side effect, something which will always eventually have undefined
behavior if repeated a sufficient number of time. Treating the contract assertion evaluation
as UB would, of course, require a particularly hostile compiler — yet it is worth considering
something that might mitigate this concern.

• Real time systems which require a hard bound on the runtime complexity of software will be
unable to use contracts if the Standard allows an unbounded number of evaluations. Even if,
in practice, all platforms might be able to provide a practical limit on the number of repeated
evaluations they might emit, this lack in the specification itself might lead some to avoid
adopting Contracts in the first place.

There are, however, still reasons to allow repeated evaluations:

• With a mix of caller-side and callee-side evaluations across different translation units it can
become impossible for a platform to guarantee that contract assertions are evaluated at least
once when requested. Permission to, in some configurations, emit checks on both sides of the
function invocation boundary prevents cases where a compiler would have to instead err on
the side of not checking at all — a much worse possibility. This argues for allowing at least 2
evaluations of each contract assertion.

• The possibility of repeated evaluations helps make it even more clear to users that side effects
are discouraged in contract assertions, as any dependency on the exact number of times side
effects will occur is going to be unreliable.

• A particularly thorough mechanism to test for destructive contract assertions is to evaluate
them repeatedly during testing and observe if results change. A conforming compiler option
to request an arbitrary number of repetitions is an excellent mechanism to verify this – and
on a compiler that is instructed to do this, most subsequent evaluations will be elided away
completely.

A solution to the above problems that prevents the guaranteed undefined behavior, keeps contract
assertion evaluation time bounded, all without preventing the motivating cases for repeated evalua-
tions is to simply have implementations define a limit on the number of evaluations. This prevents

4

https://wiki.edg.com/bin/view/Wg21telecons2024/Teleconference2024-04-04


the Standard from needing to provide an arbitrary number while allowing implementations to choose
between the freedom of setting a particularly high number or anything as low as 1.

A value of 64 is recommended for this implementation limit as it is a number of iterations where i++
is not going to be guaranteed undefined behavior for any signed type for i.

Proposal 3.A: Implementation defined limit on evaluations

The number of times a contract assertion may be repeated in a contract assertion sequence is
an implementation limit (added to [implimits]) whose recommended value is 64.

There are, however, issues which this proposal does not address:

• Many users need to reason about exact upper bounds on the number of operations their
functions might perform. In particular, multiplying the number of operations a contract
assertion could perform by an unknown integral limit is a hindrance to providing cross-
platform guarantees. Often, this is not as specific as number of machine operations which
might be subject to variance with different optimization levels but instead is measured in
terms of higher level functions that might be executed, such as allocations and deallocations
that might occur.

• Not having a clear understanding of the number of evaluations that may occur is a com-
mon concern with the general specification of contract assertions in [P2900R6]. Even an
implementation-defined limit still causes concerns about how high the cost of a contract
assertion might be and how many times an observed contract violation might invoke the
violation handler.

• Implementation limits as specified in [implimits] are predominantly not of this flavor. The
existing limits are all limits that an implementation puts on a program beyond which there
will not be support, not limits the implementation puts on what it will do. Limitations on
the implementation itself are generally specified by making the corresponding quantities
unspecified or implementation defined with a corresponding bound.

Initially,1 the proposals for repetition were left completely unspecified to maximize implementation
freedom and not require that implementations fully document all possible permutations that might
lead to multiple evaluations, especially when mixing translation units compiled with different
contract flags. In retrospect, this has led to a large amount of concern that compilers will take this
as an opportunity to wantonly evaluate the same contract assertion far more times than desired.

Taking a page from [P2877R0], it seems that the solution that clarifies all of our expectations is to
put the number of repeat evaluations into the same bucket that we put the semantics with which
those contract assertions will be evaluated. Currently, we make that implementation defined with
the understanding that this means that implementations will provide all needed build options to
select explicitly how those values will be chosen. We can, and seemingly should, do the same for
repeated evaluations of a contract assertion.

In addition, to parallel what has been done for specifying the selection of contract semantics, we
1Note that this is the author of this paper providing information about unstated motivation for the contents of an

earlier paper ([P2751R1]) by the same author.

5



should provide a recommended practice about what users might be able to specify and what the
expected default should be.

Proposal 3.B: Implementation defined number of repetitions

Within a contract-assertion sequence a previously evaluated contract assertion may be
evaluated again with the same or a different evaluation semantic, up to an implementation-
defined number of times.
Recommended Practice: An implementation should provide an option to perform a specified
number of repeated evaluations for contract assertions. By default no additional repetitions
should be performed.

Note a few things:

• It would be expected that implementations which support mixing caller-side and callee-side
checking would provide corresponding documentation that such mixes would, by default,
repeat evaluations of precondition and postcondition assertions one additional time. When
asking for multiple evaluations, an implementation might document that it introduces those
extra repetitions to caller-side checks, callee-side checks, or both.

• This formulation, hopefully, makes it more clear that repetition is a feature that users must
opt in to with open eyes and not a problem that must be endured. With non-destructive
contract assertions there will be no semantic problems when repeating evaluations of contract
assertions, and by choosing higher repetitions a user is clearly accepting the potential added
runtime cost.

• The selection of repetitions, as with the chosen semantic for those evaluations, is explicitly
not constrained to being set globally or to even be the same value on different executions of
the same function.

• Rich configuration options such as repeating just preconditions assertions, postconditions
assertions, assertion statements, or even individual contract assertions are all conforming
options as long as the available options have their effects included by the platform in the
definition of how many repetitions there might be.

5 Proposed Wording
Wording will be produced when time is available or when SG21 has consensus on these proposals.
Wording is relative to [P2900R6].

6 Conclusion
This has hopefully made [P2900R6] an even more robust proposal for inclusion into C++.

Acknowledgements
Thanks to EWG for the productive discussion on the details of [P2900R6].

6



Bibliography
[P2751R1] Joshua Berne, “Evaluation of Checked Contract-Checking Annotations”, 2023

http://wg21.link/P2751R1

[P2877R0] Joshua Berne and Tom Honermann, “Contract Build Modes, Semantics, and Imple-
mentation Strategies”, 2023
http://wg21.link/P2877R0

[P2900R6] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2024
http://wg21.link/P2900R6

7

http://wg21.link/P2751R1
http://wg21.link/P2877R0
http://wg21.link/P2900R6

	1 Introduction
	2 Array Parameters
	3 Use of C variadic functions parameters
	4 Unbounded Evaluations
	5 Proposed Wording
	6 Conclusion

