
Fixing the library API for
contract violation handling
Gašper Ažman (gasper.azman@gmail.com)

Timur Doumler (papers@timur.audio)

Document #: P3227R1
Date: 2024-10-24
Project: Programming Language C++
Audience: SG21, LEWG

Abstract
This paper proposes several improvements to the contract-violation handling API of the
Contracts MVP. One change enables a user-defined contract violation handler to intercept
termination of the program by the contract evaluation semantic – which is intended to be
possible, but is not actually possible with the current API. Another change makes it easier
and less error-prone to query whether an exception was thrown during evaluation of a
contract predicate and to retrieve that exception. A third change improves the usability of the
provided enums.

1 Motivation
The current Contracts MVP proposal [P2900R9] provides the ability to install, at link time, a
user-defined contract-violation handler. Information about the contract violation and the
contract evaluation semantic is passed to this handler in the form of an object of type
contract_violation.

In particular, the handler might want to branch on the following two boolean queries:

1. Will the contract-violation handling mechanism attempt to terminate the program after
the handler has returned? If the latter is the case, we may want to prevent this
termination from happening by throwing an exception from the handler;

2. Did the predicate evaluate to false, or did its evaluation exit via an exception? If the
latter is the case, we may want to retrieve that exception, and handle or rethrow it.

Unfortunately, the library API for contract violation handling currently proposed in [P2900R9]
does not provide adequate tools for making the above queries.

1

https://wg21.link/p2900r9
https://wg21.link/p2900r9

2 Adding the necessary member functions

2.1 Detecting a terminating semantic
The сurrently proposed API for detecting a contract evaluation semantic under which the
contract-violation handling mechanism will attempt to terminate the program after the
handler has returned – consists of a member function semantic() which returns an enum
evaluation_semantic, defined as follows:

enum class evaluation_semantic : unspecified {

enforce = 1,

observe = 2,

// additional implementation-defined enumerators

};

If, in the contract-violation handler, we know that no implementation-defined additional
semantics are present, then (and only then) can this enum answer the question of whether
we are dealing with an evaluation semantic that will attempt termination:

void handle_contract_violation(const& contract_violation) {

if (violation.semantic() == evaluation_semantic::enforce)

throw DoNotTerminate();

}

However, if the implementation provides any additional implementation-defined semantics,
we cannot portably determine whether the semantic will attempt termination or not, since
there is no API available to query whether that is the case. In other words, we do not have a
way to ask this question unless we can write an exhaustive list of all available evaluation
semantics, which is inherently non-portable.

Furthermore, the full set of semantics may only be known at link-time. Imagine a sanitizer
(perhaps ThreadSanitizer) that emits a separate semantic for some kind of violation (say a
detected race condition, which may or may not be benign), and only one translation unit is
built with it. Without knowledge of such tooling at handler design time, even the Standard
Library cannot provide such a query if given merely an evaluation_semantic value.

Instead of switching on concrete semantics, what the handler needs is a boolean query "will
the current evaluation semantic attempt to terminate the program"? We call such a semantic
a terminating semantic. We can easily enable this query by adding a new member function
is_terminating that returns bool. With this addition, the above code becomes:

void handle_contract_violation(const& contract_violation) {

if (violation.is_terminating())

throw DoNotTerminate();

}

which expresses the user's intent unambiguously and succinctly.

2

2.2 Handling a predicate evaluation exception
In the current API, determining whether predicate evaluation exited via an exception, and
retrieving that particular exception, requires the following incantation:

void handle_contract_violation (contract_violation& violation) {

if (violation.detection_mode() == detection_mode::evaluation_exception)

my::handle(std::current_exception());

}

Even when omitting std::contracts:: qualifiers (as we do throughout this paper), the
above is rather cryptic. An average C++ developer might not be able to tell what is actually
going on in the code above. Even worse, they might be tempted to simply query
std::current_exception() to retrieve the exception:

void handle_contract_violation (contract_violation& violation) {

if (auto ex = std::current_exception())

my::handle(ex);

}

However, this is incorrect, as std::current_exception() may also point to an unrelated
exception that was in the process of being handled when the contract violation occurred:

try {

my_vector.at(idx); // throws std::out_of_range exception

}

catch (std::out_of_range) {

contract_assert(database_valid()); // evaluates to false, calls handler

// code handling std::out_of_range exception...

}

void handle_contract_violation (contract_violation& violation) {

if (auto ex = std::current_exception())

// `ex` now points to the earlier std::out_of_range exception :(

}

This double duty of std::current_exception does not lead to a good user experience. We
need a dedicated API to retrieve specifically the exception thrown during the contract check.
This is easy to achieve by adding a new member function evaluation_exception that
returns a std::exception_ptr to that exception if there is one, or an empty
std::exception_ptr otherwise. This eliminates the need to use the detection_mode

enum and the function std::current_exception in the contract-violation handler at all:

void handle_contract_violation (contract_violation& violation) {

if (auto ex = violation.evaluation_exception())

my::handle(ex);

}

3

3 Discussion

3.1 Previous attempts at detecting termination
Earlier versions of the Contracts MVP had the member function will_continue() which
was adopted via [P2811R7] and was intended to solve the same problem as our proposed
is_terminating().

The initially proposed specification of will_continue() was that it should return true if
"evaluation will continue after the violated contract check should the contract-violation
handler return normally." This somewhat vague specification (what does "continue" mean,
exactly?) was made more precise when [P2811R7] was merged into the Contracts MVP: it
then said that will_continue() should return true if "flow of control will continue into
user-provided code should the contract-violation handler return normally".

However, it turned out that this is not only very difficult to specify correctly, but also the wrong
question to ask. If a contract assertion is evaluated with a semantic that will attempt
termination, such as enforce, the exact mode of termination is implementation-defined and
may result in destructor calls and/or calls to cleanup functions such as std::atexit,
std::terminate_handler, etc. which all qualify as user-defined code. Therefore,
will_continue() may return true even if the program will actually terminate.

It was unclear at the time how to fix this broken specification. Therefore, will_continue()
was removed from the Contracts MVP via [P3073R0]. Having grown wiser, we now know
that the right question to ask in the contract-violation handler is not "will evaluation
continue?" or "will evaluation continue into user-defined code?", but "will the
contract-violation handling mechanism attempt to terminate the program?" which is exactly
how our proposed new member function is_terminating is specified. This is also the
reason why the proposed name starts with "is", not with "will" – we are querying a property
that expresses intent, not predicting the future.

3.2 Enforcing semantic vs. terminating semantic
[P2900R9] currently has the notion of enforcing semantics, and specifies that enforce and
quick_enforce are both enforcing semantics. No normative definition for "enforcing
semantics" is included in the wording, other than that enforce and quick_enforce are both
enforcing semantics, but the front matter states that enforcing semantics "do not allow
program execution to continue past an identified contract violation". It has therefore been
suggested that a better name for our proposed new member function would be
is_enforcing, or perhaps is_enforced (since the violated contract assertion is being
enforced) and that this function should be specified to return true if the violated contract
assertion was evaluated with an enforcing semantic.

However, it is important to note that "does not allow program execution to continue past an
identified contract violation" is not synonymous with "will attempt to terminate the program on
contract violation", which is the property that our newly proposed member function is

4

https://wg21.link/p2811r7
https://wg21.link/p2811r7
https://wg21.link/p3073r0
https://wg21.link/p2900r9

querying. For example, one could imagine an evaluation semantic that enforces a contract
assertion – does not allow program execution to continue past an identified contract violation
– by throwing an exception,1 or perhaps by stalling the affected thread indefinitely. Such
semantics would be enforcing in the sense of [P2900R9], but would not attempt to terminate
the program on contract violation, and we would therefore want to treat them differently from
terminating semantics. In particular, we would only want to throw our own exception from the
contract-violation handler to prevent termination if we are dealing with a terminating
semantic, not just any enforcing semantic. We therefore need to carefully distinguish these
cases.

In this paper, we are specifically addressing the need to identify a terminating semantic. To
avoid further confusion, we propose that both the front matter and the proposed wording in
[P2900R9] be changed to replace the term enforcing semantics with terminating semantics,
to normatively define the latter term, and to classify enforce and quick_enforce as
terminating semantics.

If, in the future, compiler vendors or the C++ Standard itself will introduce enforcing
semantics that are not terminating semantics, we can then reintroduce the former term and
introduce another member function querying the associated property. We are not proposing
to do so now. We should introduce such queries as the need for them arises; we cannot
possibly predict the full set of properties that one might want to query in the contract-violation
handler in the future, and we should generally avoid adding entities to the Standard unless
there is a clear use case and we are sure that we are not cutting off design space.

3.3 Rephrasing semantics as properties
One way of thinking about contract evaluation semantics more generally is to consider them
combinations of a set of orthogonal properties. This idea has been explored more thoroughly
in [P3237R0]. The current four semantics in [P2900R9] can be represented in a matrix as
follows (note that not all possible combinations of properties make sense):

determines the value
of the predicate?

calls the contract-
violation handler?

terminates the
program on violation?

ignore no no no

observe yes yes no

enforce yes yes yes

quick_enforce yes no yes

We can define more properties in addition to the three listed above. Such additional
properties are currently not needed to distinguish the four evaluation semantics in
[P2900R9], but may become useful for distinguishing semantics if compiler vendors or the
C++ Standard itself start introducing more of them. In the previous paragraph, we have seen

1 Note that this is not entirely contrived as such a contract evaluation semantic – called
"Eval_and_throw mode" at the time – was in fact proposed in [P2698R0].

5

https://wg21.link/p2900r9
https://wg21.link/p2900r9
https://wg21.link/p3237r0
https://wg21.link/p2900r9
https://wg21.link/p2900r9
https://wg21.link/p2698r0

one such property, "allows program execution to continue past an identified contract
violation?" – the enforcing property – which is distinct from the terminating property. As
shown in [P3237R0], this matrix can be expanded with even more properties, such as "is the
predicate assumed to be true after the assertion?" or "what is the mode of termination?" to
accommodate possible future semantics, such as the assume semantic or the terminate
semantic proposed in [P3205R0].

It seems tempting to remove the notion of "evaluation semantics" altogether and instead
describe the possible behaviours when evaluating a contract assertion with the above
properties, or at least make the properties the primary entities and demote the named
semantics to aliases for certain combinations.

At first glance, it seems that talking about properties rather than semantics is more helpful,
as this allows branching directly on the relevant property rather than having to switch on the
entire evaluation_semantic enum – whose values will never be exhaustively known – for
every such property. In this paper, we propose to map one such property, whether the
current semantic will attempt termination – the only property that, with the current set of four
semantics, is not already known when the contract-violation handler has been called – to a
function querying that property directly in that handler.

However, upon deeper contemplation, focusing on properties as the primary entities seems
unwise. Defining the possible semantics via orthogonal properties was existing practice in
the C++2a Contracts proposal [P0542R5], which had a contract level (default, audit, axiom),
a build level (off, default, audit), a continuation mode (on, off), and at some point a proposed
assumption mode (on, off) (see [P1710R0], [P1711R0], [P1730R0]). Reasoning about which
contract evaluation semantics are actually possible, and which of these are desirable, when
combining these properties turned out to be very difficult and confusing (see [P1421R0]).
The introduction of named semantics as the primary entities in the Contracts MVP has
proven to be helpful as it allows users to compartmentalise the possible behaviours of
evaluating a contract assertion in a way that they would not do otherwise.

Therefore, while we do believe that adding functions that let the user query such properties
or traits of the evaluation semantics in the contract violation handler is useful, and we
propose one such function here, we do not propose to replace named semantics with
properties as the primary entities as proposed in [P3237R0].

3.4 What to do with the enumerations
In order to query whether the current semantic is a terminating semantic, we deliberately
propose a member function is_terminating(), which can only be called inside the handler,
instead of a free function is_terminating_semantic(evaluation_semantic). As we
concluded in Section 2.1, the Standard library cannot, in general, provide such a free
function, as the full set of available semantics may only be known at link-time. At this point,
the evaluation_semantic enum is no longer useful for querying this property.

6

https://wg21.link/p3237r0
https://wg21.link/p3205r0
https://wg21.link/p0542r5
https://wg21.link/p1710r0
https://wg21.link/p1711r0
https://wg21.link/p1730r0
https://wg21.link/p1421r0
https://wg21.link/p3237r0

Similarly, with the addition of a new member function evaluation_exception, the
detection_mode enum is no longer useful for querying whether an exception was thrown
during the contract check, and retrieving that exception.

Finally, extensible enums are generally problematic because it is impossible to write an
exhaustive switch; worse, a user might write a switch that they think is exhaustive, and when
the C++ Standard or a compiler vendor adds a new semantic or detection mode later, they
break that user's code.

However, it turns out that the primary use case for either enum is not branching or switching
at all, but logging, which is very helpful in a contract-violation handler. With the enum,
logging the current semantic or detection mode – including any vendor-specific options – can
be accomplished in a single statement, rather than having to branch on multiple properties
for this purpose.

A secondary use case for the evaluation_semantic enum is to serve as a vocabulary type
to refer to evaluation semantics in other contexts. No such context besides the
contract-violation handler currently exists in [P2900R9]. However, compiler vendors may
provide, as an extension, labels on the assertion to specify the desired semantic explicitly
(we know of at least one vendor who plans to provide this). The enum is very helpful for this
purpose. It seems preferable to not have to switch to a different enum if such labels are
upgraded from vendor extensions to Standard features in a later standardisation cycle (see
[P2755R1] for a discussion of such labels).

We therefore do not propose to remove either enum. However, we do propose to make it
clear (via a Note in the specification) that the evaluation_semantic enum is intended for
logging and as a vocabulary type, and not for querying whether the current semantic is a
terminating semantic. To make the evaluation_semantic enum more useful as a
vocabulary type for labels, we further propose to add enumeration values for all four possible
semantics, not just the two that may call the contract-violation handler.

[P3237R0] proposes to change evaluation_semantic from an enum to a struct with four
fields: checks, calls_handler, assumed_after, and terminates, which maps to four
distinct properties of possible evaluation semantics. Alternatively, evaluation_semantic
could remain an enum but the numerical values could be chosen such that the bits of that
value directly map to the distinct properties, rather than just enumerating the possible
semantics with 1, 2, 3, and 4.2

However, in this paper we deliberately do not propose to associate the numerical values of
this enum with any particular properties of the semantic, such as whether it is a terminating
semantic, or to give any further meaning to those numerical values at all. Such properties
should be queried via functions like the proposed is_terminating(), not via the value of
evaluation_semantic.

2 It has been suggested that it would be strange if one of these enums, if zero-initialised, would not
have a valid value, and that therefore the enum value for ignore should be 0. However, we do not
propose such a change here as we believe it is useful to be able to detect the case where the enum
has not been explicitly initialised with a valid value.

7

https://wg21.link/p2900r9
https://wg21.link/p2755r1
https://wg21.link/p3237r0

We do not want to prescribe whether or how such properties should be represented in the
ABI; we do not want to preclude implementations where whether is_terminating() returns
true is potentially dependent on runtime configuration that is not directly represented in the
value of the semantic; finally, we cannot conclude at this point that we have truly
exhaustively explored this entire space and will never come across contract evaluation
semantics that do not have those properties, or where those properties do not make sense.

4 Proposed wording
We propose the following changes to [P2900R9].

● Modify [basic.contract.eval] as follows:

A contract assertion may be evaluated using one of the following four evaluation
semantics: ignore, observe, enforce, or quick_enforce. The ignore semantic is a
non-checking semantic; observe, enforce, and quick_enforce are checking
semantics; enforce and quick_enforce are enforcing semantics.
A checking semantic is an evaluation semantic which determines the value of the
predicate to detect a contract violation; a terminating semantic is an evaluation
semantic which will prevent program execution from continuing past a violated
contract assertion by terminating the program. Observe, enforce, and
quick_enforce are checking semantics; enforce and quick_enforce are
terminating semantics.

● Add the following new member functions to to class contract_violation:

bool is_terminating() const noexcept;

Returns: true if the current evaluation semantic is a terminating semantic, i.e., if
the contract-violation handling mechanism will attempt to terminate the program
after the contract-violation handler has returned; false otherwise.

exception_ptr evaluation_exception() const noexcept;

Returns: If the contract violation occurred because the evaluation of the
predicate exited via an exception, an exception_ptr that holds either a copy or
a reference to that exception object; otherwise, an empty exception_ptr.

● Modify the enumeration evaluation_semantic as follows:

enum class evaluation_semantic : unspecified {

ignore = 1,

enforce = 1,

observe = 2,

enforce = 3,

quick_enforce = 4

};

8

https://wg21.link/p2900r9

[Note: No enumeration values for the ignore or quick_enforce semantics are
provided because evaluations with those evaluation semantics cannot result in a
call to the contract- violation handler.This enumeration is intended for logging
and as a vocabulary type. To determine whether the current evaluation semantic
is a terminating semantic, is_terminating() should be used instead. — end
note]

Revision history
R0 → R1: Fixed minor wording bug (green highlighting was in the wrong place)

Acknowledgements
Many thanks to Eric Fiselier, Andrei Zissu, Joshua Berne, and Lisa Lippincott for discussing
and reviewing this proposal and providing valuable feedback.

References
[P0542R5] Gabriel Dos Reis, J. Daniel Garcia, John Lakos, Alisdair Meredith, Nathan Myers,
and Bjarne Stroustrup. "Support for contract based programming in C++". 2018-06-08

[P1421R0] Andrzej Krzemieński. "Assigning semantics to different Contract Checking
Statements". 2019-01-18.

[P1710R0] Ville Voutilainen. "Adding a global contract assumption mode". 2019-06-17

[P1711R0] Bjarne Stroustrup. "What to do about contracts?". 2019-06-13

[P1730R0] Hyman Rosen, John Lakos, and Alisdair Meredith. "Adding a global contract
assumption mode". 2019-06-14

[P2698R0] Bjarne Stroustrip. "Unconditional termination is a serious problem". 2022-11-18

[P2755R1] Joshua Berne, Jake Fevold, and John Lakos: "A Bold Plan for a Complete
Contracts Facility". 2024-04-11

[P2811R7] Joshua Berne: "Contract-violation handlers". 2023-06-27

[P2900R9] Joshua Berne, Timur Doumler, and Andrzej Krzemieński: "Contracts for C++".
2024-10-11

[P3073R0] Timur Doumler and Ville Voutilainen: "Remove evaluation_undefined_behavior
and will_continue from the Contracts MVP". 2024-01-27

[P3205R0] Gašper Ažman, Jeff Snyder, Andrei Zissu, and Ben Craig: "Throwing from a
noexcept function should be a contract violation". 2024-04-15

[P3237R0] Andrei Zissu: "Matrix Representation of Contract Semantics". 2024-04-15

9

https://wg21.link/p0542r5
https://wg21.link/p1421r0
https://wg21.link/p1710r0
https://wg21.link/p1711r0
https://wg21.link/p1730r0
https://wg21.link/p2698r0
https://wg21.link/p2755r1
https://wg21.link/p2811r7
https://wg21.link/p2900r9
https://wg21.link/p3073r0
https://wg21.link/p3205r0
https://wg21.link/p3237r0

