
Revisiting side effects, elision, and duplication
of contract predicate evaluations

Timur Doumler (papers@timur.audio)

Document #: P3228R1
Date: 2024-05-21
Project: Programming Language C++
Audience: SG21, EWG

Abstract

The current Contracts MVP [P2900R6] allows side effects in contract predicates. It further
specifies that evaluating a predicate when performing a contract check can be elided when the
value of the predicate is known without evaluation, and that evaluations of contract assertions
can further be duplicated, leading to observable side effects either not occurring, or occurring
any number of times. During the design review of [P2900R6], concerns were raised whether this
is really the correct design. It has been suggested that the status quo should be tightened to
require exactly one evaluation, or at least introduce some upper bound on the allowed number of
evaluations. This paper attempts to inform and structure this discussion. We consider what side
effects are and which kinds of side effects are allowed in contract predicates in the Contracts
MVP programming model. We then perform a thorough exploration of the available design
space. We discuss the different conflicting design requirements and their motivation, list the
possible solutions for how predicate evaluation could be specified, and analyse which of these
solutions satisfy which design requirements.

Contents
1 Introduction . 3

1.1 The Contracts MVP status quo . 3
1.2 Existing practice in C++ . 3
1.3 Existing practice in other programming languages 3
1.4 Previous Contracts proposals for C++ . 4
1.5 Current discussion . 5

2 Side effects . 6
2.1 Side effects in the core language . 6
2.2 Side effects outside of the cone of evaluation . 6
2.3 Why allow side effects in contract predicates? . 7
2.4 Benign and destructive side effects . 8
2.5 Independence of predicate evaluations . 9
2.6 Side effects in assumed assertions . 10

3 Design requirements . 12
3.1 Exactly one evaluation . 12

1

mailto:papers@timur.audio

3.2 Deterministic upper bound on number of evaluations 14
3.3 Allow duplications . 15
3.4 Allow elisions . 16
3.5 Allow more than two repetitions . 17

4 The solution space . 17
5 Discussion . 19

Bibliography . 20

Revision history

Revision 1 (2024-05-02; Pre-St. Louis Mailing)

— Added new section “Side effects” and restructured other sections accordingly

— Updated material to reflect most recent SG21 discussions

Revision 0 (2024-04-16)

— Original version

2

1 Introduction

1.1 The Contracts MVP status quo

The current Contracts MVP [P2900R6], as forwarded by SG21 to EWG and LEWG for design
review, allows the predicate p of a contract assertion to be a C++ expression that has side effects
when evaluated, such as printing a message or modifying an object (with the caveat that modifying
a local variable requires a const_cast due to [P2900R6]’s implicit const-ification rule).
When performing a contract check, i.e. evaluating the contract assertion with a checking semantic
(observe, enforce, or quick_enforce), if the implementation can statically determine that evaluation of
the predicate p will return a value B (rather than throwing an exception, terminating, longjmp-ing,
etc.) and it can further statically determine the value B itself (true or false), [P2900R6] allows
the implementation to elide the evaluation of the predicate expression and instead use B directly as
the result of the contract check. In this case, any side effects from the evaluation of p will not occur,
establishing an exception from the as-if-rule similar to copy elision. Note that such an elision of p
can never lead to a call to the contract-violation handler being elided or to the program continuing
execution past an enforced contract violation.
[P2900R6] further allows the same contract assertion to be evaluated twice, or even more times, with
no specified upper bound on the number of evaluations. Inside a contract assertion sequence, i.e., a
sequence of consecutive contract assertions (separated only by vacuous operations), any previously
evaluated contract assertion may be evaluated again. This has the consequence that the following
example program,

int i = 0;
void f() pre ((++i, true));

void g() {
f();
std::cout << i;

}

is allowed to print 0, 1, or any other integer value such as 42.

1.2 Existing practice in C++

The only Contracts facility that exists in C++ today is the assert macro, and by extension, similar
non-standard assertion macros. Contract checks using the assert macro can be either enabled
or disabled with the macro NDEBUG. When contract checks are enabled, the predicate is evaluated
exactly once, and any potential side effects are observed exactly once.
We are not aware of any implementation and deployment experience with elision and duplication of
contract predicate evaluations as proposed in [P2900R6].

1.3 Existing practice in other programming languages

A number of programming languages offer a Contracts facility as a core language feature; we
considered Ada, D, and Eiffel. All three languages follow the same model as the assert macro in
C++. Contract checks can be either enabled or disabled, with varying granularity (for example,
in Eiffel, this choice can be made per class). When contract checks are enabled, the predicate is
evaluated exactly once, and any potential side effects are observed exactly once.

3

None of these languages attempts to prevent side effects in contract predicates. Notably, the D
programming language actually has a facility to reject functions with side effects at compile time
using the “pure” annotation, however D chose to not require contract predicates to be “pure”.
While prior art in other programming languages is certainly relevant, it should be considered
with a grain of salt. First, [P2900R6] has been designed to enable use cases that none of the
above-mentioned languages support, for example a “mixed mode” where the same contract assertion
in the same function can have checking semantics in one translation unit and non-checking semantics
in another translation unit in the same program. Second, contracts-based programming in these
other languages has failed to become a widely established practice. Ada enjoys some success in
certain safety-critical applications such as avionics, air traffic control, railways, banking, military
and space technology, but is overall nowhere near as popular or as widely used across many different
industries as C++ is. D and Eiffel are arguably niche languages that are no longer particularly
relevant today.

1.4 Previous Contracts proposals for C++

Early Contracts proposals for C++ either did not consider the question of side effects ([N1613],
[N1669]), adopted the model of macro assert in which side effects are treated as in any other C++
expression ([N3604], [N4378]), or stated that side effects “should not be allowed” without proposing
any concrete mechanism for disallowing them ([N4110]).
Elision of predicate evaluations was first proposed in [N1669] and revisions thereof, to be allowed
if the compiler can determine that the predicate is true, similar to the current specification in
[P2900R6] (with the difference that the latter also allows elision if the compiler can determine
that the predicate is false). Duplication was first considered in [P0247R0], which stated that
“evaluating some checks twice seems tolerable and in general not avoidable”. Most other early
Contracts proposals either did not mention elisions and duplication at all, or adopted the assert
model where neither elisions nor duplications can happen.
In [P0542R5] (“C++2a Contracts”), as adopted into the C++20 Working Draft, the issue of contract
check elision and duplication was side-stepped by specifying that evaluating a contract predicate
that has observable side effects is undefined behaviour. For contract predicates without side effects,
elision and duplication is unobservable under the as-if rule, and therefore does not require special
treatment (except that duplication of an observed contract assertion may lead to multiple calls to
the contract-violation handler — a situation that [P0542R5] did not consider).
[P1670R0] proposed to change the specification in the C++20 Working Draft to make predicates
with side effects well-defined but allow elision of the predicate evaluation, and provided extensive
motivation for allowing such elision. This paper was never adopted into the C++20 Working Draft
because Contracts were removed from it before the paper was considered; however, post-C++20,
this specification for side effect elision made its way into an early version of the Contracts MVP
[P2388R4]. The latter is also the first proposal that explicitly allowed duplication of the evaluation
(but not an arbitrary number of repetitions as [P2900R6] does).
This Contracts MVP specification went through several subsequent iterations. [P2388R0] clarified
that it should be allowed to elide or duplicate all (as opposed to “some”) side effects of the evaluated
predicate, as long as this does not affect the result of that evaluation. [P2388R3] relaxed this
restriction and allowed eliding or duplicating side effects per subexpression of a predicate. [P2521R5]
strengthened the rule again to “all or none” of the side effects of a predicate.
As work on the Contracts MVP progressed, SG21 spent an extensive amount of time discussing
this topic. [P2751R1] proposed to loosen the [P2521R5] model: instead of just allowing elision
or duplication, the number of evaluations of a checked contract assertion is deliberately made
unspecified. Such an evaluation can therefore be elided, evaluated once, twice, or even more times,

4

with no specified upper bound. [P2751R1] provided extensive motivation and use cases for this
proposal. A counter-proposal, [P2756R0], instead proposed to strengthen the [P2521R5] model
by specifying that the predicate of a checked contract assertion should be evaluated exactly once.
SG21 ended up adopting [P2751R1] and rejecting [P2756R0] for the Contracts MVP (poll results
see [P2751R1], Section 5).
The direction paper [P2680R1] proposed a different design direction whereby contract predicates
with side effects outside of the cone of evaluation of the contract assertion would be ill-formed
by default. However, even this paper provided an escape hatch in the form of so-called “relaxed”
predicates that can exhibit side effects like any other C++ expressions, and therefore did not remove
the need to specify the behaviour of predicates with side effects (an issue that the paper itself did
not address). The design direction proposed by [P2680R1] ultimately failed to get consensus in
SG21.

1.5 Current discussion

At the March 2024 WG21 meeting in Tokyo, [P2900R6] went through a first round of design review
in EWG. During this design review, the following concerns about the current approach of allowing
elisions as well as an arbitrary number of evaluations were raised:

— A contract assertion that will exhibit undefined behaviour after a number of repeated assertions
(say, repeated, accumulating signed integer addition) can be considered to exhibit undefined
behaviour always, as there is no specified upper bound on the number of evaluations;

— Low-latency and real-time systems require a deterministic upper bound on the runtime
complexity of a contract assertion;

— For some safety-critical systems, a deterministic upper bound is not sufficient, and a guarantee
is required that a checked assertion is evaluated a known, deterministic number of times.

In addition, an EWG guidance poll revealed that a significant number of people prefer that contract
assertions should not be allowed to be evaluated more than once (see [D3197R0]):

EWG Poll 2024-03-20 (Tokyo)

P2900R6 Contracts should not be able to evaluate preconditions/postconditions/assertions
more than once per invocation.

SF F N A SA
13 8 15 10 8

The paper [P3119R0] was written in response to EWG’s review. It attempts to address the
issues with undefined behaviour and the lack of a deterministic upper bound by introducing an
implementation-defined upper bound, and recommending a value of 64. However, the paper does
not attempt to address requests by EWG members that the number of evaluations be specified as
exactly once or not more than once.
In light of this new situation, [D3197R0], the response paper to EWG’s review, proposed to re-discuss
the issue of contract check elision and duplication in SG21. This proposal gained SG21 consensus.
Given that the room seems to be split on this issue, the solution proposed in [P3119R0] may be
insufficient and we may have to consider a more deterministic model for predicate evaluation if we
wish to gain approval for the Contracts MVP by EWG, CWG, and the WG21 plenary. Alternatively,
if SG21 confirms that the current specification (with or without the modification proposed in
[P3119R0]) is the intended one, we need to strengthen the motivation for it to gain approval. The

5

goal of the present paper is to provide a solid basis for understanding the tradeoffs and motivations
of the different possible solutions in order to help SG21 and EWG make an informed decision.

2 Side effects

Before we can consider the design space for elision and duplication of contract predicate, we need
to gain a solid understanding of the concept of side effects in contract predicates and how they
are treated in the programming model of [P2900R6] and other programming models for contract
assertions. In this section, we review the concepts that are essential for understanding the current
discussion. For more in-depth discussion of predicates with side effects, see [P2570R2], [P2712R0],
[P2751R1], and references therein.

2.1 Side effects in the core language

The contract predicate is a C++ expression contextually converted to bool. According to the C++
Standard ([intro.execution]), such an expression has side effects when evaluated if it does any of the
following operations:

— reading an object designated by a volatile glvalue,

— modifying an object,

— calling a library I/O function,

— calling a function that does any of those operations.

Under this definition, most C++ expressions have side effects. C++ expressions without side effects
are limited to reading non-volatile values and comparing those values, as well as performing value
computations on prvalues.
No algorithm exists to statically prove whether an arbitrary C++ expression will have side effects
when executed. It is therefore impossible to make contract predicates ill-formed based on whether
the predicate expression will have side effects when executed. First, any such analysis is made
impossible by the existence of opaque functions whose definitions are in a different translation unit.
Second, even if all function definitions were transparent to the compiler, proving that an arbitrary
C++ expression is side-effect-free would still be equivalent in complexity to the Halting problem.
It is possible to define a subset of C++ expressions for which the side-effect-free property can be
proven, and C++ compilers usually have internal logic to make this determination for the purposes
of various optimisations. However, we currently lack the specification tools to specify such a subset
in the C++ Standard, and in addition this subset is very small and excludes all but the most trivial
of allowed forms of expressions.

2.2 Side effects outside of the cone of evaluation

[P2680R1] considered the concept of a predicate that is side-effect free when seen from the outside
of its cone of evaluation. In addition to side-effect-free predicates, this set includes predicates
that during evaluation modify only (non-volatile) objects whose lifetime lies entirely within the
evaluation of the predicate, thereby making any side effect unobservable after the evaluation of the
predicate is complete. Consider:

6

https://eel.is/c++draft/intro.execution#7

int f(int i) {
++i;
return i;

}

int g(int i)
pre(f(i) > 0);

In the above example, the contract predicate in the declaration of g is not side-effect-free (because
it calls another function f that modifies an object), but is side-effect-free outside of its cone of
evaluation (because the modified object does not outlive the predicate evaluation). However, if we
change f such that it modifies the passed-in object rather than a copy, for example if we make f
take i by non-const reference, this property is no longer satisfied.
This concept has existing practice in C++: side effects are not allowed outside of the cone of
constant evaluation, thereby preventing “stateful metaprogramming”. However, this same approach
cannot be applied to contract predicates to identify if they will have side effects. For constant
evaluation, the prevention of side effects is applied as an expression is evaluated at compile time
with a particular set of input values, and errors are reported only when there are inappropriate side
effects for that particular evaluation with those particular inputs. To identify (at compile time) if a
contract predicate would have side effects (at run time) would require that this determination be
done for all possible inputs, and thus require identifying all possible valid flows of control through
a function, a problem that is essentially equivalent to solving the Halting problem for all but the
most trivial of allowed forms of expressions.

2.3 Why allow side effects in contract predicates?

As discussed in Sections 2.1 and 2.2, rejecting predicates with side effects outside of their cone of
evaluation at compile time would require reducing the set of allowed predicates to a small subset of
C++ expressions. For the Contracts MVP, SG21 considered this subset to be too small to be useful
for any practical application of Contracts, as this would exclude any opaque function call and any
expression not sufficiently simple that a compiler can prove it to be side-effect-free for any possible
runtime input (see also [P2700R1]). In addition, we currently lack the specification tools to specify
such a subset for the C++ Standard.
At the same time, making predicates with side effects outside of their cone of evaluation undefined
behaviour like in [P0542R5] would be a particularly user-hostile choice that would undermine the
safety of the proposed Contracts facility and go against the declared design goal of [P2900R6] to not
intentionally add any new undefined behaviour to the C++ language (for a more detailed discussion,
see [P1670R0]). Making them erroneous behaviour as defined in [P2795R5] would avoid the safety
concerns, but would be similarly user-hostile, because many useful contract predicates could lead to
unexpected termination of the program when checked, even if these predicates would evaluate to
true and no contract violation would occur.
There are many use cases for predicates with side effects outside of their cone of evaluation.
[P2712R0] provides a taxonomy of different kinds of such predicates, with many examples where
side effects outside of their cone of evaluation of the predicate occur and are useful.
For example, while checking a contract assertion, the user might want to allocate memory to perform
an algorithm that asserts some non-trivial property of a range, or lock and unlock a mutex to
assert the value of a variable that can be accessed concurrently from multiple threads. Further, a
contract predicate expression might call an function f, perhaps located in a different component of
the program such as a third-party library. This library function is unaware that it is being used for
a predicate evaluation by the program. It also does not advertise to clients whether it guarantees a
lack of side effects when evaluated, and there is no mechanism in the C++ language for such an

7

advertisement. The owner of f might add a statement to the implementation of f that has a side
effect entirely unrelated to the rest of the program, such as logging for debugging purposes; doing
so should “just work” and not break the program.
For all these reasons, the Contracts MVP chose to not make predicates with side effects outside
of their cone of evaluation ill-formed, nor to make them undefined or erroneous behaviour. The
only option left is that evaluating predicates with side effects must be well-formed and well-defined
behaviour. Any solution for the problem of elision and duplication must ensure that this is the case.

2.4 Benign and destructive side effects

While we choose to allow predicates with side effects, it is helpful to distinguish between so-called
benign and destructive side effects. The former should be explicitly supported, while the latter
should be considered a bug (while still being well-formed and well-defined behaviour).
A side effect is benign if whether or not the side effect occurs (or how many times it occurs) does not
have an impact on whether the program is functionally correct, i.e. whether the program satisfies
its plain-language contract. Another way to say this is that a side effect is benign if it does not
affect the essential behaviour of the program (a term defined in [P2053R1]). A third way to say
this is that a side effect is benign if it is lippincott-indiscernible (a term defined in [P2461R1]). All
three definitions are equivalent. A destructive side effect is a side effect that is not benign.
An interesting property of this definition is that it is unspecifiable in the C++ Standard whether a
side effect is benign, as this depends on the plain-language contract of the program, which is not
provable or even specifiable in the general case.1 For example, logging to standard output while
evaluating a contract predicate would be considered a benign side effect in many programs, but not
if the standard output of the program is part of its contract (consider a command line utility such
as grep). For another example, allocating a buffer to perform some algorithm on a range would be
considered a benign side effect in many programs, but not if the program keeps track of the number
of allocations and it is considered a bug in the program if this number exceeds a certain limit.
A corollary is that it is impossible to treat benign and destructive side effects differently within the
purview of the C++ abstract machine, for example, by specifying that the latter is ill-formed, or
undefined or erroneous behaviour, while the former is not.
While destructive side effects are well-defined behaviour, as a rule they should always be considered
a bug. This is an important design principle of the Contracts MVP. Fundamentally, contract
assertions should test the correctness of a program without changing the correctness of that program.
If adding a contract assertion to an existing program would alter the behaviour such that the new
program with the contract assertion added would become correct where the original program was
incorrect, or incorrect where the existing program was correct, such contract assertions fail at their
primary purpose of diagnosing bugs, and instead themselves introduce so-called Heisenbugs. Many
design choices2 in the Contracts MVP have been made specifically to satisfy this design principle.

1The plain-language contract of a program — i.e., which guarantees the program provides about its behaviour, and
under what circumstances it can be considered functionally correct — can be specified through any combination of
contract assertions, human-readable specification, or implicitly by convention and the developer’s intent. In general, it
is possible to specify only a subset of the plain-language contract with contract assertions, which means that contract
assertions cannot be used to prove that a program is correct, only that it contains a contract violation. For a detailed
discussion of the difference between plain-language contracts and contract assertions, see [P2900R6], Section 2.

2Examples include: making it ill-formed for a contract assertion to trigger an implicit lambda capture, thereby
preventing situations where adding a contract assertion could change the properties of the closure type; defining that a
contract assertion is always a core constant expression even if its predicate is not, thereby preventing situations where
adding a contract assertion could change which overload is selected due to SFINAE; and making contract_assert a
statement rather than an expression, such that noexcept(contract_assert(expr) is ill-formed, thereby preventing
situations where adding a contract assertion could change the result of the noexcept operator.

8

2.5 Independence of predicate evaluations

From the above definition for benign and destructive side effects, we can conclude that if evaluating
a contract assertion has a side effect that can change the result of evaluating a different contract
assertion, then such a side effect is destructive.
Let us consider a program without contract assertions. If we now add N contract assertions to this
program, and the side effects of evaluating one contract assertion could change the result evaluating
a different contract assertion, this creates up to 2N possible program states to consider, some of
which may be correct while others are not. On the other hand, if all of the contract assertions have
only benign side effects, adding these contract assertions does not add any additional states to the
program, or at least not in a way relevant to the correctness and essential behaviour of the program.
In the programming model of the Contracts MVP, whether or not any particular contract assertion
is checked (evaluated with a checking semantic) is implementation-defined. [P2900R6] does not
mandate any particular mechanism for the selection of evaluation semantic: it may happen at
compile time, link time, load time, or run time. The evaluation semantic may vary across translation
units, vary across different contract assertions in the same translation unit or even in the same
function, or even vary for subsequent evaluations of the same contract assertion.
In practice, the choice of semantics will most likely be controlled by a command-line option to the
compiler, and [P2900R6] recommends to provide an “all assertions ignored” and “all assertions
enforced” option, but other mechanisms of selection are equally conforming. For example, an
implementation could provide a way to start a process with assertions ignored, and then later at an
arbitrary point in time attach a debugger to this process and enable assertion checking from that
point on.
It follows from this programming model that if a contract assertion has a side effect that can
change the result of subsequent evaluations of the same contract assertion, then such a side effect is
destructive.
Such assertions occur in practice. For example, an assertion may count the number of times a
recursion or iteration occurs or a certain statement is executed, and report a contract violation if
this number exceeds some fixed limit. Consider the following function from Clang:3

/// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
/// evaluation of predicates that depend on instruction operands or flags.
const MCSchedClassDesc *TargetSchedModel::
resolveSchedClass(const MachineInstr *MI) const {

// Get the definition’s scheduling class descriptor from this machine model.
unsigned SchedClass = MI->getDesc().getSchedClass();
const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
if (!SCDesc->isValid())

return SCDesc;

#ifndef NDEBUG
unsigned NIter = 0;

#endif
while (SCDesc->isVariant()) {

assert(++NIter < 6 && "Variants are nested deeper than the magic number");

SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
SCDesc = SchedModel.getSchedClassDesc(SchedClass);

}
return SCDesc;

}

3Full source code: https://shorturl.at/BJOQ2

9

https://shorturl.at/BJOQ2

The contract assertion inside the while loop increments the counter NIter to keep track of the
number of iterations; exceeding a certain number is considered a contract violation. The value of
NIter is not observed anywhere in the program outside of this particular assertion, however the
side effect of incrementing NIter affects the result of subsequent evaluations of the same assertion
and is therefore a destructive side effect according to our definition.
When using macro assert, every check is either always on or always off,4 depending on whether
NDEBUG is defined. In other programming languages with language-level Contracts facilities such
as Ada, D, and Eiffel, the same applies: every check is either always on or always off. With such
a Contracts facility, the above assertion works as intended. In the Contracts MVP programming
model however, the evaluation semantics of this assertion can vary freely, even at runtime, and
therefore any evaluation of this assertion cannot rely on previous evaluations of the same assertion,
and the above assertion is broken.
If the user attempts to port the code as written above to the Contracts MVP by replacing assert
with contract_assert, it will not compile. First, the Contracts MVP does not offer a facility like
NDEBUG for conditionally declaring a variable only when the associated contract assertion is checked.
However, it is plausible that we would add a facility as a post-MVP extension to conditionally
enable such code. Second, in the Contracts MVP, local variables such as NIter are implicitly const
and the increment would not compile as it is modifying a local variable.
The user might be tempted to wrap NIter into a const_cast, or make it static, to circumvent the
compile error. This would make the above code compile, but it would introduce a bug unless it is
somehow statically guaranteed that the assertion is always checked or always unchecked, which is not
something that can be expressed the Contracts MVP, regardless of whether elisions or duplications
of checked assertions are allowed. Instead, the only way to make this assertion work in the Contracts
MVP is to factor the destructive side effect out of the predicate:

while (SCDesc->isVariant()) {
++NIter; // increment outside of the assertion
contract_assert(NIter < 6);
// ...

}

We conclude that contract_assert cannot be used as a drop-in replacement for assert for any
stateful predicate, regardless of whether elisions or duplications of checked assertions are allowed or
exactly one evaluation of the predicate of a checked assertion is guaranteed.

2.6 Side effects in assumed assertions

If we ever want to add the assume semantic to C++ Contracts,5 or should any platform choose
to provide one,6 any predicate with a destructive side effect will immediately be even worse,
introducing assumptions possibly unrelated to the correctness of the program. Consider the
following example:

4Compiling the same macro-based assertion with checks on in one translation unit and with checks off in another
translation unit is in general a violation of the ODR rule and not supported by the C++ Standard.

5The assume semantic has been deliberately left out of [P2900R6] to limit the scope of the MVP, but is a planned
post-MVP extension. Like the ignore semantic, the assume semantic is a non-checking semantic, i.e., the predicate
is not evaluated. However, unlike the ignore semantic, the assume semantic gives the compiler the permission to
assume that the predicate would be true if evaluated, and optimise the program based on this assumption; if the
predicate would not be true if evaluated, the behaviour is undefined. In other words, contract_assert(X), when
evaluated with the assume semantic, is equivalent to [[assume(X)]]. For more information about assumptions, and
in particular the meaning of side effects in an assumed predicate, see [P1774R8]. For additional motivation why the
assume semantic should be part of a C++ Contracts facility, see [P3100R0].

6This is possible today by providing a build mode where an assertion macro resolves to [[assume(X)]], or for
pre-C++23 compilers, to one of the appropriate compiler built-ins that offer the same functionality.

10

struct List {
int d_data; // index of node in List, starting with 0 for the head node
List* d_next;

};

void f(List* l) {
//#ifndef NDEBUG

int index = 0;
//#endif

while (l) {
contract_assert(++index == l->d_data);
process(l->d_data);
l = l->d_next;

}
}

The assertion above is another example of a destructive side effect that affects subsequent evaluations
of the same contract assertion. In this example, the destructive side effect has particularly unfortunate
consequences when the contract assertion is evaluated with the assume semantic. In this case, the
compiler will know that index is never modified, so the line

contract_assert(++index == l->d_data);

becomes equivalent to
[[assume(1 == l->d_data)]];

which in turn allows the compiler to transform the function f into the following:
void f(List* l) {

while (l) {
process(1);
l = l->d_next;

}
}

This transformation silently breaks the program and results in the wrong data being processed,
even though the program is correct apart from the destructive side effect in the assertion. Just like
before, this bug can be fixed by factoring the increment out of the predicate, which will make the
assumption work as intended:

void f(List* l) {
//#ifndef NDEBUG

int index = 0;
//#endif

while (l) {
//#ifndef NDEBUG

++index;
//#endif

contract_assert(index == l->d_data);
process(l->d_data);
l = l->d_next;

}
}
++index;
contract_assert(index == l->d_data);

This kind of breakage is another reason why in the programming model of the Contracts MVP,
side effects that maintain state within a contract assertion are considered destructive and are not
supported, even though we cannot make them ill-formed or undefined or erroneous behaviour; this
property holds regardless of whether elisions or duplications of checked assertions are allowed or
exactly one evaluation of the predicate of a checked assertion is guaranteed.

11

3 Design requirements

Now that we have established a framework to reason about side effects in contract assertions, we
can return to the main subject of this paper: reconsidering whether such side effects should be
allowed to be elided, duplicated, or occur an arbitrary number of times when a contract assertion is
evaluated, as currently proposed in [P2900R6], or whether we should introduce some upper bound
to the number of evaluations or perhaps specify that the side effects should occur at most once or
exactly once when a contract assertion is evaluated. In this section, we summarise the different,
partially conflicting design requirements that have motivated different proposals in this space, and
discuss the known motivating use cases for all of these requirements.
For the following discussion, we do not consider what happens when a contract assertion is evaluated
with the ignore semantic, as such an evaluation never evaluates the predicate, but only what should
happen when a contract assertion is evaluated with a checking semantic. This is an important
distinction: on the one hand, a predicate might not get evaluated because the contract assertion is
evaluated with the ignore semantic, and on the other hand, a predicate might not get evaluated
even if the contract assertion is evaluated with a checking semantic in case elisions are allowed (see
Section 3.4) and such an elision has been performed. When we speak about elisions in this paper,
we always mean the latter case and never the former.
Further, we consider only contract predicates that have side effects (as defined in Section 2.1)
when evaluated. For “pure” contract predicates with no side effects, according to the as-if rule, it
is unobservable whether they are evaluated zero, one, or multiple times, as long as the compiler
has correctly determined whether the result of such an evaluation would be true or false, and
therefore no specification for elision or duplication of of “pure” contract predicates is necessary or
even possible within the C++ abstract machine.
Finally, we do not consider contract assertions whose evaluation may end up being elided because
of undefined behaviour occurring either during evaluation of the predicate itself or elsewhere in the
program (see [P2900R6], Section 3.6.4). For the following discussion, we consider only programs
that would have well-defined behaviour if a given predicate was evaluated once.

3.1 Exactly one evaluation

Guaranteeing a deterministic number of predicate evaluations is a desirable property for a number
of use cases. This requirement effectively translates to guaranteeing exactly one evaluation, as it
does not seem useful to specify, for example, that each contract assertion is always evaluated twice.
From a language specification perspective, a deterministic number of evaluations is required if we
wish to minimise the amount of implementation-defined and unspecified behaviour added to the
C++ language by the Contracts MVP. This has been brought up as a significant concern in EWG.
Further, deterministic behaviour is a requirement in some safety-critical systems, which may be
unable to use Contracts at all unless this requirement is satisfied. To our knowledge, general
coding guidelines for safety-critical systems such as MISRA typically do not place deterministic
requirements on aspects of an algorithm such as the number of evaluations, but only requirements on
a deterministic upper bound or “worst-case behaviour”, which is addressed in Section 3.2. However,
more stringent requirements on deterministic behaviour are required for certain use cases.
For example, in systems that perform work in between regularly timed callbacks on a real-time
thread, need to maximise the amount of work done in these intervals, and need to provide a guarantee
that the work is completed before the next callback occurs, it is necessary to be able to reason
about the exact operations that a C++ statement may perform when executed. Note that requiring
a deterministic observable behaviour with regard to side effects does not imply a deterministic
execution time, or a deterministic sequence of CPU instructions. These aspects of a program’s

12

behaviour, while observable and sometimes important, are outside of the purview of the C++
abstract machine and are not side effects in the core language sense (see Section 2.1). Requiring a
deterministic observable behaviour is therefore a necessary, but not a sufficient requirement for such
real-time use cases. Note that deterministic observable behaviour could also be achieved for these
cases by banning contract predicates with side effects in the coding guidelines.
Independently of any safety or real-time requirements, it seems desirable to be able to reason
about which exact statements are actually being executed when a contract predicate is checked.
Benign side effects on contract predicates include operations such as locking and unlocking a mutex,
allocating memory, or utilising some other resource in order to perform the contract check. It
seems desirable to be able to reason about how many times such a contract check will attempt
to acquire a lock, or allocate memory, rather than having these operations occur an unspecified,
non-deterministic amount of times when contract checks are enabled, even if this is not part of the
program’s plain-language contract (see Section 2.4). In particular, when debugging misbehaving
code with contract assertions enabled, diagnosing the bug (either in the program or in the contract
predicate itself) can be more difficult if the developer cannot reason about which operations are
being performed by the program.
In order to reason about the operations being performed, it would arguably be helpful if the act of
performing a contract check could be mapped to equivalent C++ code. [P2900R6] Section 3.5.8
proposes the following mapping:

evaluation_semantic _semantic = __current_semantic(); // semantic may be determined at
if (evaluation_semantic::ignore == _semantic) { // compile time, link time, run time...

// non-checking semantic - do nothing
}
else if (evaluation_semantic::observe == _semantic

|| evaluation_semantic::enforce == _semantic
|| evaluation_semantic::quick_enforce == _semantic) {

// checking semantic - determine the value of the predicate
bool _violation;
try {

_violation = __check_predicate(X); // no guarantee whether/how many times X is evaluated
}
// handle violation

}

If we instead guarantee that a checked contract assertion evaluates its predicate exactly once, the
mapping becomes:

// ...
// checking semantic - determine the value of the predicate
bool _violation;
try {

_violation = !X; // evaluates X exactly once
}
// handle violation

}

[P2756R0] argues that such a mapping that evaluates the predicate exactly once is the most
simple, intuitive, and easy to reason about solution. Guaranteeing one evaluation is also the only
solution that follows existing practice of the assert macro, other C++ assertion macros, and other
programming languages with a Contracts facility (Ada, D, Eiffel, etc.), all of which evaluate the
predicate of a checked assertion exactly once, and guarantee that any potential side effects are
observed exactly once.7

7Note that even if we guarantee exactly one evaluation, there are other aspects of how a checked contract assertion
behaves in the Contracts MVP that differs from the behaviour of these existing facilities, such as how an exception
thrown from the predicate evaluation is handled.

13

While implementations can certainly provide a conforming “exactly once” mode with any of the
solutions discussed in this paper, only the solution guaranteeing exactly one evaluation allows the
user to portably rely on the side effects of a predicate evaluation, and in particular benign side
effects that do not affect the correctness of the predicate itself or the surrounding program.8 This is
the behaviour that users are familiar with. Most users will likely intuitively expect this behaviour
when they start using the new C++ Contracts facility, leading to surprise and frustration when the
actual behaviour is subtly different.
As discussed in section 2.5, stateful predicates with a destructive side effect affecting subsequent
evaluations of the same assertion, which work with macro assert, would stop working if assert is
changed to contract_assert, or to pre or post and moved outside of the function body, without
further changes. Most such cases would not compile if assert is changed to contract_assert due
to implicit constification and the lack of a facility similar to NDEBUG. However, some such cases
might exist in production code, and work as intended, that would compile if assert is changed to
contract_assert, in particular if the variable modified inside the predicate is not a local variable,
and its declaration is not wrapped in an #ifdef NDEBUG block.
In such cases, changing assert to contract_assert is a transformation that can silently break
the program and potentially introduce undefined behaviour without any diagnostic message. The
possibility of such breakage due to turning deterministic into non-deterministic evaluation is arguably
a particularly user-hostile way to break users’ assumptions about how assertions work; the mere
existence of this possibility, however theoretical, could significantly hamper the adoption of C++
Contracts.
On the other hand, as discussed in section 2.5, guaranteeing exactly one evaluation when checked
would not actually be sufficient to make the transformation from assert to contract_assert work
for any such stateful assertions. In addition, we would have to roll back the adoption of [P2877R0]
and revert the flexible evaluation semantics model to static build modes where either all assertions
are on or all assertions are off, with unspecified semantics for mixed mode, as in [P0542R5] (“C++2a
Contracts”) and [P2388R4] (“Minimum Contract Support: either No_eval or Eval_and_abort”).

3.2 Deterministic upper bound on number of evaluations

Many low-latency and real-time systems such as video games and audio processing software do
not necessarily require full deterministic behaviour, but do require at least a deterministic upper
bound on the runtime complexity of a contract assertion because such systems need to ensure
that a deadline for computing a result such as a video frame or an audio buffer is always met.
Similar “worst case” requirements are also common in safety-critical systems and mandated by
coding guidelines such as MISRA. Such systems may be unable to use Contracts at all unless this
requirement is satisfied.
In addition, without a deterministic upper bound on the number of evaluations, a contract assertion
that will exhibit undefined behaviour after a number of repeated assertions (for example, accumulat-
ing signed integer addition) can be considered to exhibit undefined behaviour always. It is therefore
conforming for a particularly hostile compiler to treat such contract assertions as unreachable code.
Both of these issues are discussed in more detail in [P3119R0].
There are two ways to specify such an upper bound: either normatively specify a concrete number
in the Standard (for example, “at most two evaluations”), or merely specify that an implementation
has to define some deterministic upper bound but leave the actual number unspecified. The latter
is proposed by [P3119R0].

8Of course, one could argue that if the predicate evaluation has a side effect that the user wishes to rely upon,
such a side effect then effectively becomes a part of the plain-language contract of the program (or in other words, a
part of the essential behaviour of the program), and therefore is a destructive side effect that the Contracts MVP
does not support (see Section 2.4).

14

For consumer-facing, cross-platform applications, which often need to support different compilers, a
normatively specified upper bound seems preferable to an implementation-defined one, because the
latter could change across compilers or even across different versions of the same compiler, making
it harder to reason about the code and the guarantees it provides.
Regardless of whether such an upper bound on the number of evaluations is normatively specified
or implementation-defined, there are use cases where neither is a sufficiently strong guarantee, and
the stricter “deterministic number of evaluations” guarantee is required instead (see Section 3.1).

3.3 Allow duplications

The main motivation for allowing duplication of predicate evaluations is to allow the implementation
to perform caller-side checking9 while preserving ABI compatibility. To our best knowledge, caller-
side checking cannot be implemented without either allowing duplication or requiring ABI changes.
When considering such changes, preserving ABI compatibility is crucial for allowing user applications
to link against shared libraries such as system libraries: regardless of the shape of the application’s
dependency graph, and which components in that graph are compiled with or without Contracts
support, the program must still link and execute correctly.
Consider a shared library that has function contract assertions on its function declarations, and
an application that uses this library by compiling against a header and then dynamically linking
against a shared library. The provider of the shared library may ship the compiled library binary
with callee-side checks disabled or enabled; the developer of the application may not have any
control over this.
The developer of the application should have the choice of compiling the application with caller-side
checks either enabled or disabled (the latter resulting in the caller-side-checkable subset of the library
checks being checked, which can be useful to diagnose problems). Either version of the application
should be compatible with either version of the shared library, without having to recompile and
re-link10 when switching between a shared library that has callee-side checking enabled and one
that has them disabled. When linking an application having caller-side checks enabled and a
library having callee-side checks enabled, running the program will result in some function contract
assertions in that library being checked twice.
We can consider implementation strategies that would allow this use case while also guaranteeing
that contract checks be evaluated exactly once (or not more than once). However, this requires
that the implementation provides a way for function calls compiled with caller-side checking to skip
callee-side checking and thereby avoid a duplicated check. Such strategies come with tradeoffs. One
possible strategy would be to compile the library binary such that each function with precondition
or postcondition assertions has two entry points, one that performs the callee-side check and one

9Note that only a subset of contract checks can be implemented caller-side. Some contract checks can be
implemented only callee-side. This is the case for indirect function calls, for example, through a function pointer or a
facility like std::function. In such scenarios, a callee-side check can be generated only if the compiler front-end sees
the function contract assertion related to the function call, i.e. it knows which function will be called and can see the
declaration of that function. It is also the case for checking postconditions in the Microsoft ABI, as this ABI performs
argument destruction callee-side and postcondition checks are guaranteed to happen before argument destruction.
Note further that, if we adopt the proposed design in [P3097R0] and [P3165R0] for supporting function contract
assertions on virtual functions, the reverse will also become true: only a subset of contract checks can be implemented
callee-side. In particular, checks for function contract assertions of the statically called function in a virtual function
call can be generated only caller-side as the statically called function is unknown to the callee.

10Without this requirement, guaranteeing that contract checks be evaluated exactly once would be relatively
easy: if in the library, checks are disabled, in the application we call a thunk wrapper, which checks precondition
assertions and then calls the function; otherwise, we just call the function. The library’s build never affects whether
the preconditions are checked, only the application build does. However, in this implementation model, we cannot flip
precondition checks on and off by just building the library differently and then running an unmodified application
with it. Instead, we would need to recompile the application, which might be prohibitively slow or impossible.

15

that does not, thereby allowing function calls compiled with caller-side checking to choose the latter
entry point. However, this can significantly increase the amount of symbols in the binary, and
requires a change to the ABI. Another possibility is to compile the library such that the choice
whether to perform callee-side checks can be made dynamically at runtime, but this would incur
additional runtime overhead and again require a change to the ABI.
For some users, the tradeoffs of either strategy will be unacceptable: if the ABI change is not
backwards-compatible, this makes the strategy undeployable, and in a world where some C++
applications require tens of gigabytes of memory to link due to the sheer amount of symbols, there
is a strong incentive to avoid adding more symbols. Further, there is currently no implementation
experience for either strategy11. Avoiding these tradeoffs however requires us to either explicitly
allow duplication of predicate evaluations, or to place this use case outside of the scope of the C++
Standard and treat support for it as a non-conforming vendor extension, as we do for example for
-fno-exceptions.

3.4 Allow elisions

Allowing elisions of predicate evaluations is discussed in more detail [P1670R0] and [P2751R1]. One
reason to allow elisions is that this would make it clear that side effects in contract predicates cannot
be relied upon, thereby dissuading developers from writing contract assertions with destructive
side effects (see Section 2.5). This comes along with an increased likelihood of benefitting from
assumptions (see Section 2.6).
Another reason is that allowing elisions enables reasoning about contract assertions at a higher level
rather than merely in terms of their immediate runtime effects. Consider the following example:

int f(int i)
pre (i > 0); // opaque function

int g(int i)
pre (i > 0) {
return f(i) - 1;

}

int main() {
int i;
std::cin >> i;
return g(i);

}

In the example above, the preconditions of g and f constitute a sequence of contract assertions,
creating a situation where checks can be elided according to the specification in [P2900R6]. At
compile time, the implementation can perform symbolic evaluation to prove that, if the precondition
check in g succeeds, the precondition check in f must succeed as well, and elide the second check,
even though the value of i is not known at compile time. When the program runs, only the
precondition of g() is checked; nevertheless, we can rely on the precondition of f() always being
true.
In a large code base that is rigorously annotated with contract assertions, being able to elide checks
from sequences in this fashion — even in the presence of opaque function calls — has the potential
to greatly reduce the amount of runtime overhead that these checks require, while still having a
program at is rigorously checked, because many of the contract assertions can be statically proven
to hold. However, such symbolic evaluation is possible only if it can rely on repeated evaluations

11Caller-side checking itself does not have implementation experience either, but it is arguably somewhat less
theoretical, because compilers know how to parse the function contract specifiers of a function declaration and rewrite
a function call f() into a caller-side checked function call such as (pre_check() ? f() : abort()).

16

of the same predicate (or an equivalent predicate) anywhere in the sequence to result in the same
value. A predicate satisfies this criterion when it is free of destructive side effects.
Contract predicates that have destructive side effects, such as in the NIter example in Section 3.1,
make such symbolic evaluations and correctness proofs impossible. At the same time, it is in general
impossible to prove that a C++ expression does not have side effects; it is further impossible for
a C++ compiler to distinguish between benign and destructive side effects. Therefore, enabling
symbolic evaluation and correctness proofs as described above requires treating predicates as if
they had no side effects, and perform elisions under this assumption. This approach invariably
leads to the possibility that any observable side effects (including benign ones) may be elided by
the compiler.
Note that treating predicates as if they had no side effects does not imply that a contract predicate
that has side effects leads to undefined behaviour, the way it did in [P0542R5] (“C++2a Contracts”).
In [P2900R6], non-complying predicates can lead to elisions of observable side effects, but not to
any other nondeterministic consequences such as unbounded undefined behaviour and time-travel
optimisations.

3.5 Allow more than two repetitions

Supporting caller-side checking while preserving ABI compatibility may require allowing evaluation
to occur twice, but we are not aware of any scenario where a particular configuration would require
allowing evaluation to occur three times or more. It seems therefore that it would be enough to
allow evaluation to occur up to twice.
However, [P3119R0] describes a use case for allowing an unspecified number of evaluations larger
than 2. We discussed in Section 2.5 and 2.6 how the Contracts MVP programming model requires
contract predicates to be free of destructive side effects. Failure to do so is a bug, but not ill-formed
or undefined or erroneous behaviour. Allowing an unspecified number of evaluations, similarly to
allowing elisions, would make it clear that side effects in contract predicates cannot be relied upon,
thereby dissuading developers from writing contract assertions with destructive side effects (see
Section 2.5). Beyond this, allowing an unspecified number of evaluations enables a strategy to
identify such buggy assertions, described in [P3119R0]). This strategy consists of running a test
where each assertion is evaluated an arbitrary number of times N , where N can be passed via a
compiler flag. For sufficiently high N , breakage due to destructive side effects will be more easily
observable in the form of failing tests and/or altered program behaviour.
If the Contracts MVP allows more than two repetitions, such a compiler flag can be implemented in
a conforming way. It is desirable for this flag to be conforming, because otherwise it becomes more
difficult to argue that an assertion with destructive side effects that breaks in such a test mode is
actually a bug, and incentivise a library author to fix such a bug.

4 The solution space

Now that we have discussed different design requirements for allowing or disallowing elisions,
duplications, or arbitrary repetitions of contract predicate evaluations, we can explore the available
solution space.
This paper does not propose any concrete changes to the Contracts MVP. Instead, we list all
plausible specification strategies for how many times the predicate of a checked contract assertion
may be evaluated, and provide an analysis of which solutions satisfy which design requirements.
The intent of the paper is to add some structure to the discussion and to highlight the engineering

17

tradeoffs that each solution involves, to help reach consensus on the best solution in SG21 and
EWG.
Whether elisions are allowed is orthogonal to the other concerns, so we can split the solution space
into solutions that allow elisions and solutions that do not. The four known solutions that allow
elisions are as follows (all four have been proposed at some point):

A0. At most once, i.e. evaluation may be elided but not duplicated ([P1670R0], [D3197R0]).

B0. At most twice ([P2521R5]), i.e. evaluation may be both elided and duplicated.

C0. An unspecified number of times with an implementation-defined upper bound N ([P3119R0]).

D0. An unspecified number of times with no upper bound (status quo, [P2900R6]).

Further, we can construct four solutions that are analogous to the above but do not allow elisions
(only one of those, A1, has been formally proposed):

A1. Exactly once ([P2756R0]).

B1. Once or twice, i.e. evaluation may be duplicated but not elided.

C1. An unspecified number of times but at least once with implementation-defined upper bound N .

D1. An unspecified number of times but at least once with no upper bound.

Remember that we consider only evaluations of contract assertions with checked evaluation seman-
tics (observe, enforce, or quick_enforce), as evaluations with unchecked evaluation semantics
(ignore) always evaluate the predicate zero times and we do not consider removing ignore from
the MVP or changing how it is specified. Remember further that we consider only evaluation of
predicates with observable side effects. For predicates with no observable side effects, neither elision
nor duplication are observable under the as-if rule, and therefore all of the above solutions are
equivalent.
A few more solutions than the ones listed above are theoretically possible, such as requiring a
deterministic number of evaluations that is not once (e.g. “every contract assertion must always
be evaluated twice”), or requiring a normatively specified (as opposed to implementation-defined)
upper bound larger than two. We do not consider these solutions here because we are not aware of
any benefits these might have over the ones listed above.
Further, there has been a suggestion that we could allow duplications and simultaneously ensure a
deterministic amount of evaluations with a solution that says that the predicate must be evaluated
exactly N times, where N is implementation-defined. An implementation may then say that, for
example, N is 1 if the function called is in a statically linked library, but 2 if the library is linked
dynamically. However, a conforming implementation may satisfy such a specification by simply
saying that N is any number between 0 and 64 (for example), therefore such a solution is equivalent
to solution C0.
Now that we enumerated all the requirements and possible solutions, we can create a decision
matrix that visualises which possible solutions satisfy which design requirements (Table 1). The
order of the design requirements in this matrix does not imply a ranking by importance; we are not
attempting to perform such a ranking in this paper.

18

Design requirement A0 A1 B0 B1 C0 C1 D0 D1
Nr. of evaluations: 0 – 1 1 0 – 2 1 – 2 0 – N 1 – N 0 – ∞ 1 – ∞

Exactly one evaluation
Normative upper bound
Some deterministic upper bound
Allow duplications
Allow elisions
Allow more than two repetitions

Table 1: Decision matrix for the number of contract predicate evaluations.

5 Discussion

The decision matrix in Table 1 reveals that it is impossible to satisfy all design requirements. Of the
six design requirements presented, all of which can be well-motivated as we have seen above, at most
four design requirements can be satisfied simultaneously by any solution considered in this paper.
Choosing a solution will therefore require making a tradeoff between contradicting requirements.
For example, SG21 and EWG will need to decide whether it is more important to have a normatively
specified deterministic number of evaluations (which effectively translates to “exactly one evaluation
when checked” — see Section 3.1), or whether it is more important to allow duplications of
evaluations in order to support caller-side checking without an ABI break (Section 3.3), as satisfying
both of these requirements is impossible.
In case the latter is deemed to be the better tradeoff, four more decisions need to be made: whether
to allow elisions (Section 3.4), whether to allow more than two repetitions (Section 3.5), whether
to require a deterministic upper bound on those repetitions (Section 3.2), and whether such a
deterministic upper bound should be normative or implementation-defined.
If SG21 and EWG can get consensus on the above questions, it becomes unambiguous which concrete
solution to choose for the specification.
Notably, it is possible to choose one solution for pre and post and a different solution for
contract_assert. One such proposal is [P3257R0]. It proposes to retain the status quo (so-
lution D0) for pre and post, but to adopt solution A1 for contract_assert. The latter has
different tradeoffs than the former. In particular, the need to support caller-side checking does not
exist for contract_assert, because assertion statements can appear only inside the function body
and are therefore always checked callee-side. Instead, there is a new design requirement: it might
be desirable to pick the same solution for contract_assert as we did for pre and post so that the
three assertion kinds provided in the Contracts MVP behave in a consistent fashion.
That said, the consistency requirement should be weighed against the other requirements. For
example, SG21 and EWG can decide that having a deterministic number of evaluations is par-
ticularly important for contract_assert, and less so for pre and post, and that further, having
a deterministic number of evaluations for contract_assert is more important than consistency
between the three assertion kinds.
However, breaking the consistency between the three assertion kinds would have implications for
teachability, complexity of the language, etc. It would also widen the gap12 between the use of

12pre and post on the one hand, and contract_assert on the other hand, are already not fully consistent. One
difference is that contract_assert does not allow referring to the return object directly. If the return object is an
rvalue, referring to it requires taking an extra copy, which might not be possible if the return type is non-copyable.
Another difference is that pre and post are evaluated outside of a function-try block, while contract_assert is

19

pre and the use of contract_assert at the start of a function, or the use of post and the use of
contract_assert before returning. Lowering pre and post into the function body in this fashion
is the only mechanism offered by [P2900R6] to insulate precondition and postcondition checks from
client translation units when the developer considers them an implementation detail. Further, using
contract_assert to specify preconditions and postconditions is an effective technique to check
the precondition of a function that does not itself declare those preconditions, and establish the
postcondition of a function that does not itself declare those postconditions, i.e. to add “missing”
precondition and postcondition assertions caller-side.
Another aspect of choosing the right solution is the question of forward-compatibility. Choosing a
more loosely specified solution now (with D0 being the most loosely specified) does not preclude
strengthening the specification to a more strictly specified solution later (with A1 being the most
strictly specified), while an evolution in the other direction would not be possible without breaking
changes.
It is our hope that the analysis provided in this paper will be helpful for SG21 and EWG to choose
the best tradeoffs for the number of evaluations problem, and to arrive at a consensus solution for
all three assertion kinds in the Contracts MVP that will be part of the Contracts facility eventually
incorporated into the C++ standard.

Acknowledgements

Thanks to John Spicer, Joshua Berne, Ville Voutilainen, Gašper Ažman, Andreas Weis, and
Anthony Williams for the illuminating discussions that led to this paper. Thanks to Joshua Berne
for reviewing this paper and providing the List code example. Thanks to Jonas Persson, Andrew
Tomazos, Jens Maurer, Andrzej Krzemieński, John Lakos, Ran Regev, and Greg Marr for their
helpful comments. Thanks to everyone who participated in the discussion on the SG21 reflector
which this paper attempts to capture.

Bibliography

[D3197R0] Timur Doumler and John Spicer. A response to the Tokyo EWG polls on the Contracts
MVP (P2900R6). https://wg21.link/d3197r0, 2024-04-04.

[N1613] Thorsten Ottosen. Proposal to add Design by Contract to C++. https://wg21.link/
n1613, 2004-03-29.

[N1669] Thorsten Ottosen. Proposal to add Contract Programming to C++ (revision 1). https:
//wg21.link/n1669, 2004-09-10.

[N3604] John Lakos and Alexei Zakharov. Centralized Defensive-Programming Support for
Narrow Contracts. https://wg21.link/n3604, 2013-03-08.

[N4110] J. Daniel Garcia. Exploring the design space of contract specifications for C++. https:
//wg21.link/n4110, 2014-07-06.

[N4378] John Lakos, Nathan Myers, Alexei Zakharov, and Alexander Beels. Language Support
for Contract Assertions (Revision 10). https://wg21.link/n4378, 2015-02-08.

evaluated inside, so the behaviour of a throwing violation handler will differ. A third difference is that in a constructor,
pre is evaluated before the member initialiser list, while contract_assert as the first statement in the function body
is evaluated after, which changes the meaning of the predicate. Despite these differences, in the most common case —
moving a pre on a free function or regular member function into the function body with a contract_assert as the
first statement — both will behave consistently with the current specification in [P2900R6].

20

https://wg21.link/d3197r0
https://wg21.link/n1613
https://wg21.link/n1613
https://wg21.link/n1669
https://wg21.link/n1669
https://wg21.link/n3604
https://wg21.link/n4110
https://wg21.link/n4110
https://wg21.link/n4378

[P0247R0] Nathan Myers. Criteria for Contract Support. https://wg21.link/p0247, 2016-02-12.

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. https://wg21.link/p0542r5, 2018-06-08.

[P1670R0] Alisdair Meredith and Joshua Berne. Side Effects of Checked Contracts and Predicate
Elision. https://wg21.link/p1670r0, 2019-06-06.

[P1774R8] Timur Doumler. Portable assumptions. https://wg21.link/p1774r8, 2022-06-14.

[P2053R1] Rostislav Khlebnikov and John Lakos. Defensive Checking Versus Input Validation.
https://wg21.link/p2053r1, 2020-08-14.

[P2388R0] Andrzej Krzemieński and Gašper Ažman. Abort-only contract support. https://wg21.
link/p2388r0, 2021-06-15.

[P2388R3] Andrzej Krzemieński and Gašper Ažman. Minimum Contract Support: either No_eval
or Eval_and_abort contracts. https://wg21.link/p2388r3, 2021-10-13.

[P2388R4] Andrzej Krzemieński and Gašper Ažman. Minimum Contract Support: either No_eval
or Eval_and_abort contracts. https://wg21.link/p2388r3, 2021-11-15.

[P2461R1] Gašper Ažman, Caleb Sunstrum, and Bronek Kozicki. Closure-Based Syntax for Con-
tracts. https://wg21.link//p2461r1, 2021-11-15.

[P2521R5] Andrzej Krzemieński, Gašper Ažman, Joshua Berne, Bronek Kozicki, Ryan McDougall,
and Caleb Sunstrum. Contract support – Record of SG21 consensus. https://wg21.
link/p2521r5, 2023-08-15.

[P2570R2] Andrzej Krzemieński. Contract predicates that are not predicates. https://wg21.link/
p2570r2, 2023-01-14.

[P2680R1] Gabriel Dos Reis. Contracts for C++: Prioritizing Safety. https://wg21.link/p2680r1,
2022-12-15.

[P2700R1] Timur Doumler, Andrzej Krzemieński, John Lakos, Joshua Berne, Brian Bi, Peter Brett,
Oliver Rosten, and Herb Sutter. CQuestions on P2680 “Contracts for C++: Prioritizing
Safety”. https://wg21.link/p2700r1, 2022-12-17.

[P2712R0] Joshua Berne. Classification of Contract-Checking Predicates. https://wg21.link/
p2712r0, 2022-11-13.

[P2751R1] Joshua Berne. Evaluation of Checked Contract-Checking Annotations. https://wg21.
link/p2751r1, 2023-02-14.

[P2756R0] Andrew Tomazos. Proposal of Simple Contract Side Effect Semantics. https://wg21.
link/p2756r0, 2022-12-31.

[P2795R5] Thomas Köppe. Erroneous behaviour for uninitialized reads. https://wg21.link/
p2795r5, 2024-03-22.

[P2877R0] Joshua Berne and Tom Honermann. Contract Build Modes, Semantics, and Implemen-
tation Strategies. https://wg21.link/p2877r0, 2023-06-09.

[P2900R6] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r6, 2024-02-29.

[P3097R0] Timur Doumler, Joshua Berne, and Gašper Ažman. Contracts for C++: Support for
Virtual Functions. https://wg21.link/p3097r0, 2024-04-15.

21

https://wg21.link/p0247
https://wg21.link/p0542r5
https://wg21.link/p1670r0
https://wg21.link/p1774r8
https://wg21.link/p2053r1
https://wg21.link/p2388r0
https://wg21.link/p2388r0
https://wg21.link/p2388r3
https://wg21.link/p2388r3
https://wg21.link//p2461r1
https://wg21.link/p2521r5
https://wg21.link/p2521r5
https://wg21.link/p2570r2
https://wg21.link/p2570r2
https://wg21.link/p2680r1
https://wg21.link/p2700r1
https://wg21.link/p2712r0
https://wg21.link/p2712r0
https://wg21.link/p2751r1
https://wg21.link/p2751r1
https://wg21.link/p2756r0
https://wg21.link/p2756r0
https://wg21.link/p2795r5
https://wg21.link/p2795r5
https://wg21.link/p2877r0
https://wg21.link/p2900r6
https://wg21.link/p2900r6
https://wg21.link/p3097r0

[P3100R0] Timur Doumler. Contracts, undefined behaviour, and unspecified behaviour. https:
//wg21.link/p3100r0, 2024-04-15.

[P3119R0] Joshua Berne. Tokyo Technical Fixes to Contracts. https://wg21.link/p3119r0,
2024-04-03.

[P3165R0] Ville Voutilainen. Contracts on virtual functions for the Contracts MVP . https:
//wg21.link/p3165r0, 2024-02-16.

[P3257R0] Jens Maurer. Make the predicate of contract_assert more regular. https://wg21.
link/p3257r0, 2024-04-26.

22

https://wg21.link/p3100r0
https://wg21.link/p3100r0
https://wg21.link/p3119r0
https://wg21.link/p3165r0
https://wg21.link/p3165r0
https://wg21.link/p3257r0
https://wg21.link/p3257r0

	1 Introduction
	1.1 The Contracts MVP status quo
	1.2 Existing practice in C++
	1.3 Existing practice in other programming languages
	1.4 Previous Contracts proposals for C++
	1.5 Current discussion

	2 Side effects
	2.1 Side effects in the core language
	2.2 Side effects outside of the cone of evaluation
	2.3 Why allow side effects in contract predicates?
	2.4 Benign and destructive side effects
	2.5 Independence of predicate evaluations
	2.6 Side effects in assumed assertions

	3 Design requirements
	3.1 Exactly one evaluation
	3.2 Deterministic upper bound on number of evaluations
	3.3 Allow duplications
	3.4 Allow elisions
	3.5 Allow more than two repetitions

	4 The solution space
	5 Discussion
	 Bibliography

