Document #: P3249R0

Date: 2024-22-4

Project: Programming Language C++
Audience: SG21, EWG

Reply-to: Ran Regev <regev.ran@gmail.com>

A unified syntax for Pattern Matching
and Contracts when introducing a new
name

Table Of Contents

Table Of Contents
Abstract
Motivation
Current State

Examples

Proposal
A Decision is Needed

Possible Extensions (not ted in thi r
Other Attempts to unify the syntaxes

A word on keystrokes

Wording

References

mailto:regev.ran@gmail.com

Abstract

This paper suggests a unified syntax when introducing a new name in Pattern Matching and
Contracts.

Motivation

There are situations where Pattern Matching [P2688] needs to introduce a new name in the
pattern part that is later referenced in the expression-statement part.

There is a situation where Contracts [P2900] needs to introduce a new name in postconditions
as part of the post's predicate.

With the current state of the two features these two similar constructs have a different syntax.
Having two constructs that essentially do the same has drawbacks:

e It makes the language more complex.

e |tis harder to learn
Uniting the syntax has benefits:

e Recurring syntax is easier to understand, simpler.

e Easierto learn.

Current State

Pattern matching introduces a new name in pattern with the contextual keyword /et, the new
name and a two symbols sign =>.
Contracts introduce a new name in a postcondition with the new name and a colon.

Examples

Pattern Matching:

int 1 = £();
i match {
42 let val => print(val);

let x => print(x);
}

x and val refer to the pattern being matched and may be used in the expression-statement that
follows.

Contracts:
int foo()

post(ret : ret > 0)

ret is part of the postcondition predicate and refers to the returned value of foo. It may be used
after the colon in the boolean expression.

Proposal

Use /et and => to introduce a new name in Contracts. (see wording below)
For example:

int foo()

post(let r => r > 0)

A Decision is Needed

Both Contracts and Pattern Matching are not standardized. It means that Pattern Matching may
end up having a syntax that is not as in [P2688R1]. In the worst scenario we might end up with
Contracts having the syntax suggested in P2688R1 and Pattern Matching ends up having a
completely different syntax. This is of course not the intent and we do hope to end up with the
same syntax.

However, waiting for pattern matching to materialize and only then cooperating with it is not
possible - it might be materialized too late, after Contracts are standardized. Moreover, end
users don'’t really care about internal WG21 processes that result in inconsistency - they want a
coherent language.

In addition, not trying to merge the syntaxes will surely result in two different syntaxes for the
same thing, while trying to merge the syntaxes only may result in two different syntaxes.
Assuming Contracts materialized before pattern-matching - the fact that we use the same
syntax as its R1 version will only add an additional constraint on pattern matching
considerations if someone will ask for a different syntax. In this situation it is on
pattern-matching (and EWG) to decide which force is stronger - alignment with Contracts or
whatever is the reason for deviating from R1 syntax. SG21, however, did its best to unify the
syntax.

Possible Extensions (not suggested in this paper)

Once the new name is introduced it can be easily used in various expressions, like pattern
matching and do expressions:

int foo()
post(let ret =>
ret match {
1 => true;

2 => true;
_ => false;

do expression [P2802]:

int foo()
post(let ret =>
do {
if (ret * 10 < 145) {
do_return false;
} else {
do_return true;

Other Attempts to unify the syntaxes

A.

[P3210] claims that “A Postcondition *is* a Pattern Match”.

This paper [D3249] claims that “A Postcondition might be a Pattern Match” but can also be other
things and therefore P3210 falls short of suggesting only one of the possible extensions.

P3210 suggests more than one syntax. One syntax for “simple” cases and one for “complex”
syntaxes. This complexity is redundant and can be avoided.

P3210 removes completely the need to introduce a new name or the keyword match, as it
assumes that a postcondition is a pattern matching. This leads to a somewhat awkward syntax
when a boolean expression is combined with the defaulted pattern matching.

For example, to a postcondition to be true under [(EaEEN e ol ol-i a0] N oI} i S (515D

int foo()

post (
1 => true;

2 => true;
let ret => ret > 100

)3

D3249 on the other hand suggests (future extension only) for the same condition to be written:

int foo()
post (let ret =>
match {
1 => true;
2 => true;
} or
ret > 100
)

P3210 also suggests the keyword result as the name of the returned value but this paper does
not tackle this property of P3210.

B.
There was a suggestion for post-MVP in [P2961 Section 6.2] to enable structured-binding of the
returned value in postconditions:

std::pair<int,int> f()
post([a,b] : a < b);

With this paper and pattern matching this can be done like any other pattern matching:

std::pair<int,int> f()

post(let result => result match let [a,b] if a < b);

A word on keystrokes

Some people prefer to minimize keystrokes and completely remove the need in introducing the
new name in places where it is “obvious” what is done and implicit understanding of the context
is enough (e.g. P3210 where the need to state that we are pattern-matching the result is
redundant all together).

This paper (D3249) does not eliminate this option - a result-name-introducer is still optional and
may be omitted whenever it is redundant. If in the future we discover for example that
postcondition is indeed by default a pattern-matching and introducing a name for the returned is
redundant, this paper does not close the door to this option. There will be existing codebases
that use /et - that stays the same. A new code may omit the entire construction. On the other
hand, if in the first place in some constructs we don’t explicitly state that we are referring to the

returned name, we’ll not be able to change it later as codebases will not have the returned
values name.

Wording
The proposed changes are relative to P2900R6

Modify [dcl.contract.func]

let ==>

References

[P2688R1] Michael Park, Pattern Matching: match Expression
[P2900R6] Joshua Berne, Contracts for C++

[P2806R2] Bruno Cardoso Lopes, do expressions

[P3210R0] Andrew Tomazos, A Postcondition *is* a Pattern Match
[P2961R2] Timur Doumler, A natural syntax for Contracts

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2688r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2900r6.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2806r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3210r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2961r2.pdf

