
Document Number: P3286R0
Date: 2024-06-15
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Module Metadata Format for Distribution
with Pre-Built Libraries

Abstract
This paper specifies the format for pre-built libraries to advertise the metadata about the C++
Modules being provided, with the information required to perform the translation of the
Importable Units into Built Module Interface files. The format complements the work from
P2701R01 and P2577R22 with the concrete format to be used when advertising modules in the
distribution of pre-built libraries. This will complement the Modules Ecosystem TR with the
format to be used by tooling implementers.

1. Context
This paper is a continuation of the work from P2701R0 and P2577R2, this paper is just
specifying the format for the metadata file. More specifically, the need for this format became
concrete as the libc++ standard library is now shipping experimental support for the std and
std.compat modules, and with that build systems need to be able to produce the Built Module
Interface (BMI) files for the modules provided by the standard library.

The discussion happened initially in the libc++ pull request3, which then spawned a thread in the
SG15 mailing list, where an initial format was proposed4. This paper, therefore, formalizes that
proposal.

It should be noted that this format will also be used for the distribution of pre-built libraries in
general, not just the standard library. Future integration with the evolving package management
ecosystem is something that we should look out for.

2. Assumptions
The same assumptions documented in P1689R55 also apply to the format being proposed here.

5 BOECKEL, Ben. KING, Brad. Format for describing dependencies of source files. 2022.
https://wg21.link/p1689r5

4 https://lists.isocpp.org/sg15/2023/12/2240.php
3 https://github.com/llvm/llvm-project/pull/75741
2 RUOSO, Daniel. C++ Modules Discovery in Prebuilt Library Releases, 2022. https://wg21.link/P2577R2

1 RUOSO, Daniel. Translating Linker Input Files to Module Metadata Files, 2022.
https://wg21.link/P2701R0

mailto:druoso@bloomberg.net
https://wg21.link/p1689r5
https://lists.isocpp.org/sg15/2023/12/2240.php
https://github.com/llvm/llvm-project/pull/75741
https://wg21.link/P27577R2
https://wg21.link/P2701R0

3. Implementation Experience
This has been released as an experimental feature in libc++. There has been early
experimentation in CMake to add the ability to generate the BMI for those modules.
Experimental `import std` support landed for clang 18.0.2+ in CMake for the upcoming 3.30
release using this format.

4. Requirements
The requirements for this format were mostly laid out in P2577R2 and P2701R0. Further
requirements were gathered in discussions on how libc++ would describe the standard modules
for build systems. For simplicity, those requirements will be summarized here:

● A build system should have a way to identify which modules are provided by a pre-built
library.

● Locating the metadata file:
○ For the Standard Library:

■ The build system should be able to query the toolchain (either the
compiler or relevant packaging tools) for the location of that metadata file.

○ Other Libraries:
■ In the absence of stronger package management, in environments where

that is viable, the build system may infer the location of the metadata
based on link-line fragments (P2701R0).

■ If package management is present, that information can be gathered in
implementation-defined ways.

○ The path to the metadata file should be related to the input files that are given to
the linker. The expectation is that different builds of the library may have different
metadata files.

● The contents of the metadata must include:
○ The “logical name”6 name of the importable unit being provided.
○ The path to the primary source file for the importable unit.
○ Any additional include paths required to translate that particular importable unit.
○ Any compiler definitions required to translate that particular importable unit.
○ Whether the module is a module provided by the standard library or not, since

those module names are reserved.
● The contents of the metadata may include:

○ The “logical name” of importable units that are a dependency of that translation
unit.

○ Vendor-specific attributes

6 The concept of “logical name” is specified in BOECKEL, Ben. KING, Brad. Format for describing
dependencies of source files. 2022. https://wg21.link/p1689r5

2

https://wg21.link/p1689r5

JavaScript

5. Format
The file will be encoded in JSON7 and the data model is described in this paper as a JSON
Schema8. As it happens for P1689R5, the format will also require that file paths must be
constrained to valid utf-8 sequences9.

5.1. Schema
For the information provided by the format, the following JSON Schema10 may be used.

{
"$schema": "",
"$id": "http://example.com/root.json",
"type": "object",
"title": "WG21 SG15 C++ Module Metatadata Format",
"definitions": {
"vendor": {
"$id": "#vendor",
"type": "object",
"description": "vendor-specific information. The key is the name of the

vendor and the value is implementation defined.",
"patternProperties": {

"^.+$": {
"type": "object",
"description": "implementation-defined data for the vendor

using that identifier"
}

}
},
"datablock": {
"$id": "#datablock",
"type": "object",
"description": "A filepath",
"minLength": 1

},

10 Austin Wright and Henry Andrews. JSON Schema: A Media Type for Describing JSON Documents.
https://tools.ietf.org/html/draft-handrews-json-schema-01.

9 In the 2024 Tokyo meeting, there was general consensus that we need to work with the Unicode Study
Group to figure out the appropriate mechanisms to refer to files where the names are representable as
utf-8 sequences.

8 Austin Wright and Henry Andrews. JSON Schema: A Media Type for Describing JSON Documents.
https://tools.ietf.org/html/draft-handrews-json-schema-01.

7 The JSON Data Interchange Syntax.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.

3

https://tools.ietf.org/html/draft-handrews-json-schema-01
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

"preprocessor-define": {
"$ird": "#preprocessor-define",
"type": "object",
"description": "a definition to be set in the preprocessor",
"required": [
"name"

],
"properties": {
"name": {
"type": "string",
"description": "the name of the token to be defined in the

preprocessor"
},
"value": {
"type": "string",
"description": "the value to be set. If not present it is

equivalent to -DFOO in gcc and clang",
"default": null

},
"undef": {
"type": "boolean",
"default": false,
"description": "If set, instructs the preprocessor to make that

value undefined. Equivalent to -UFOO in gcc and clang. Incompatible with using
a value at the same time."

},
"vendor": {
"$ref": "#/definitions/vendor"

}
}

},
"local-arguments": {
"$id": "#local-arguments",
"type": "object",
"description": "Local arguments to be used when translating the module

unit",
"properties": {
"include-directories": {
"type": "array",
"description": "An array of paths that need to be appended to the

compilation include search path, same semantics as appending -I in gcc and
clang.",

"items": {
"$ref": "#/definitions/datablock"

4

}
},
"system-include-directories": {
"type": "array",
"description": "An array of paths that need to be appended to the

compilation include path as system locations, same semantics as appending
-isystem in gcc and clang.",

"items": {
"$ref": "#/definitions/datablock"

}
},
"definitions": {
"type": "array",
"description": "An array of definitions for the preprocessor.",
"items": {
"$ref": "#/definitions/preprocessor-define"

}
},
"vendor": {
"$ref": "#/definitions/vendor"

}
}

},
"module": {
"$id": "#module",
"type": "object",
"description": "Metadata about a module provided by the library",
"required": [
"logical-name",
"source-path"

],
"properties": {
"logical-name": {
"$ref": "#/definitions/datablock"

},
"is-interface": {
"type": "boolean",
"description": "True if this is an interface unit (primary or

interface partition), false if it's an internal partition.",
"default": true

},
"source-path": {
"$ref": "#/definitions/datablock"

},

5

"is-std-library": {
"type": "boolean",
"description": "Whether this module is part of the standard

library, and therefore allowed to use the reserved names",
"default": false

},
"local-arguments": {
"$ref": "#/definitions/local-arguments",
"default": {}

},
"vendor": {
"$ref": "#/definitions/vendor"

}
}

}
},
"required": [
"version"

],
"properties": {
"version": {
"$id": "#version",
"type": "integer",
"description": "The version of the output specification"

},
"revision": {
"$id": "#revision",
"type": "integer",
"description": "The revision of the output specification",
"default": 0

},
"modules": {
"$id": "#rules",
"type": "array",
"title": "rules",
"default": [],
"items": {
"$ref": "#/definitions/module"

}
}

}
}

6

JavaScript

JavaScript

5.2. Examples
The following example represents what could be used for declaring modules that are part of the
standard library.

{
"version": 1,
"revision": 1,
"modules": [
{
"logical-name": "std",
"source-path": "modules/std.cppm",
"is-std-library": true

},
{
"logical-name": "std.compat",
"source-path": "modules/std.compat.cppm"
"is-std-library": true

},
{
"logical-name": "std:someinterfacepartition",
"source-path": "modules/std-someinterfacepartition.cppm"
"is-std-library": true

}
]

}

The following example represents modules provided by an arbitrary other library with additional
preprocessor requirements.

{
"version": 1,
"revision": 1,
"modules": [
{
"logical-name": "foo",
"source-path": "modules/foo.cppm",
"local-arguments": {
"definitions": [
{
"name": "FOO_CONFIG_VALUE",
"value": 42

7

}
]

}
}

]
}

5.3. Resolving relative paths
The build system will get the path to this file by either asking the toolchain or an underlying
package manager for it. The path provided to this file should be used as-is, without any
additional symbolic link resolution.

Any file or directory referenced by the metadata file in relative form should be considered
relative to the path provided, any relative path in the metadata file will be resolved based on the
path provided by the toolchain or package manager.

6. Versioning
This format follows the same model defined in P1689R5.

8

