
Integrating Existing Assertions With Contracts

Document #: P3290R0
Date: 2024-05-22
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Timur Doumler <papers@timur.audio>
John Lakos <jlakos@bloomberg.net>

Abstract

SG21 has been actively working on an MVP for a C++ Contracts facility, P2900. This novel facility
aims to provide powerful contract assertions in three forms: pre, post, and contract_assert.
Taken as a unit, these three standard names allow users to express, in a consistent syntax,
individual, independent contract checks in their software without changing the meaning (i.e.,
essential behavior) of that software. Pre-existing contract-checking facilities such as assert, have
semantics that allow contract checks to legitimately spread across many independent assertions
and associated preprocessor-guarded blocks of code. In so doing, they also necessarily greatly limit
their own utility in new code where the target is to substantially minimize undefined behavior
and improve safety by reducing security vulnerabilities and generally improving correctness. In
this paper, we propose three additions to the Contracts MVP; these three additions will allow
current users of the standard C assert macro, as well as similar homegrown assertion facilities,
to seamlessly integrate with and exploit a maximal subset of our burgeoning C++ Contracts
MVP without compromising its ability to improve security and correctness.

Contents
1 Introduction 2

2 Proposals 4
2.1 Support Directly Invoking the Contract-Violation Handler 5
2.2 Conditionally Integrate C assert with C++ Contracts 9
2.3 Introduce a New Contract Assertion Statement With More Familiar Semantics 10

3 Wording Changes 14

4 Conclusion 14

1

mailto:jberne4@bloomberg.net
mailto:papers@timur.audio
mailto:jlakos@bloomberg.net

Revision History
Revision 0

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
Over the past five years, SG21 has been diligently developing an MVP for a C++ Contract facility
([P2900R7]). This facility is exceedingly useful for incrementally enhancing safety, security, and
correctness in both new and legacy code. Through its previous incarnations and especially within
SG21, capturing the ability to express and take advantage of discrete contract checks in the language
has been a priority, whereas replicating the preprocessor-derived semantics of the standard assert
macro and similar bespoke macro-based facilities has not.

An important distinguishing feature of the SG21 Contracts proposal is that each individual evaluation
of a contract assertion it proposes to provide — whether using pre, post, or contract_assert — is,
when checked, independent of every other assertion check, including previous and future evaluations
of the same assertion. Thanks to this important property, the semantics with which assertions can
be evaluated are completely implementation defined1 and, importantly, can vary (at run time) from
one evaluation to the next.

Historical contract-checking facilities, however, such as the standard assert macro or various
customized macro-based improvements on it, have a subtly different model due to their fundamental
macro-based nature. Individual assertion macros reliably have the same semantic — based on one
or more configuration macros, such as NDEBUG, referenced when the assertion macro itself is defined
— any time they are used within a translation unit (TU). Keeping the semantic consistent across
all local uses of the same macro creates an implicit dependency among the evaluations of their
associated predicates, which can be safely relied upon, often to good effect. Of course, being a
macro, any change of behavior that is not consistent across all definitions of a function throughout
an entire program leads to violations of the One Definition Rule (ODR).

The contract assertions of the SG21 MVP make such implicit dependencies problematic; they do
not require, or even allow, the semantic of a given contract assertion to be knowable at compile
time. In so doing, the MVP removes ODR concerns that accompany the classic preproccessor-based
model for varying semantics by expanding to distinct sequences of code. An implementation merely
defines how the user’s choice of configurations and linking options will result in a final semantic
when the predicate of a given contract is evaluated. To maintain a sound logical model on which we
can build, any single contract assertion must be a single, independent contract check.

This same model of contract assertions being independent of one another means that each individual
contract assertion can be added or removed from a program without changing the correctness of that
program. This property is the logical foundation of incrementally improving a program’s correctness
using Contracts.

1This model for semantics, where implementations are given complete freedom to define arbitrarily flexible
mechanisms to control the semantics of contract assertion evaluation, is the result of the adoption of [P2877R0] by
SG21.

2

This very different design approach lends itself to many important new use cases while not precluding
any existing ones — although some may require additional features not present in the MVP before
they can be realized. As a result, predicates that worked as intended in assert macros in legacy
programs will not necessarily work correctly if simply migrated unchanged to contract_assert. In
practice, however, most education on the use of assertions includes instructions to avoid predicates
that have side effects when evaluated, meaning the overwhelming majority of assertions will be
supported with ease.

To enable the many essential features for C++ Contracts to eventually be usable at scale in industrial
settings with more than just a few programmers, discouraging any side effects in predicates becomes
necessary and desirable as does prohibiting destructive side effects; i.e., any side effects of evaluation
that actually alter the correctness of a program, including the results of any subsequent evaluations
of contract assertions.

For reasons relating to consistency, code mobility, and effective testing for destructive side effects,
the compiler is permitted to repeat the evaluation of any contract assertion up to an implementation-
defined number of times, but we expect most implementations to define this number as a function
of the number of repetitions requested when compiling the program.2

To further reinforce the notion that, unlike with the standard assert macro, side effects in C++
contract_assert are not well supported, we have introduced the novel notion of const-ification;
i.e., any identifier representing a local variable, a member variable, *this, or (for post only) the
result object, has const added to its type and is thus made nonmodifiable. The underlying object
remains modifiable if it has not been declared const; hence, in cases where an API must be used
that makes no modifications but does not work on const-qualified objects, a const_cast is a viable
and well-defined mechanism to allow the use of such APIs. Conversely, any code that fails to compile
as a result of const-ification is highly likely to be an inadvertent error by well-meaning developers
and to be trivially fixed (see [P3268R0]).

These properties of the C++ contract_assert make it inherently incompatible with some stateful
uses of assert where a single checking mechanism is spread out over multiple contract assertions
(e.g., setting a flag in one assertion and unsetting it in another assertion) or multiple evaluations of
the same contract assertion (e.g., incrementing a counter inside an assertion and checking whether
the counter’s value is below some fixed number). Thus, plenty of legacy assertions cannot not be
reliably migrated to MVP Contracts as defined in [P2900R7] without depending on the implementer
to provide a special build mode. Even then, such a mode would fork the language, which we have
worked diligently to avoid; libraries that depend on this build mode would be unsuitable for users
who wish to make use of any other build mode.

Since presenting our nascent MVP to EWG in Japan (c. April, 2024), an ongoing debate has arisen
over which (mutually exclusive until now) option the MVP should aim to provide:

1. a self-consistent new facility primarily focused on making new and existing code safer

2. a fancy version of assert that removes some of assert’s rough edges but supports a complete
superset of its valid uses

Requiring both is in direct conflict with the default behavior for contract_assert. Therefore, perhaps
2See [P3119R1], Section 4.

3

we should set aside discussion of what exactly contract_assert should do and instead creatively
collaborate to find a solution (or set of solutions) that will address everyone’s needs yet allow C++
Contracts to evolve to reach its full potential post-MVP.

This paper proposes three separate, mutually compatible ways in which the needs of those who
advocate for option 2 over option 1 can be met in the MVP without permanently hindering the
ability to smoothly support large subsets of the use cases identified by SG21 in [P1995R1]. Having a
long-term solution that satisfies all those goals consistently and in an easily understandable fashion
is far more likely to result in a robust, safe, scalable C++ Contracts facility than simply aiming to
build a fancy assert replacement would do now.

1. Directly calling the contract-violation handler: Provide a mechanism to integrate
existing contract-checking facilities with the central contract-violation handling mechanism of
[P2900R7], while retaining precisely the same (possibly incompatible) semantics.

2. Conditionally integrating assert with Contracts: Augment the specification for the
standard assert macro to conditionally support invoking the (nonthrowing) C++ contract-
violation handler (instead of outputting a message to the standard error stream) before
aborting; this semantic would be similar to the enforce semantic.

3. Add a new form of contract assertion with more familiar semantics: Introduce a
distinct but parallel form of contract assertion that aims to fully address precisely the same use
cases as the standard assert macro which contract_assert does not serve. Originally discussed
with the name contract_c_assert as a potential mechanism to improve consensus, it is clear
that the primary discerning feature of this new assertion is that it allows for presenting contract
assertions that are only a small part of a larger contract-checking algorithm, and therefore
we propose an initial name of partial_contract_assert. This new assertion statement would
allow side effects and would not perform const-ification by default.

Each of these individual proposals adds distinct value and is aimed at providing immediate support
for easily allowing existing code to use the new C++ Contracts MVP upon release. With the
adoption of one or more of these three independent proposals, we hope to significantly advance the
Contracts MVP since the vast majority of concerns regarding lack of support for a drop-in C-assert
replacement will have been addressed.

2 Proposals
In this section, we provide three independent, mutually compatible proposals that provide support
for immediately allowing existing contract-checking facilities to integrate with C++ Contracts in a
variety of ways. Our goal in each case is to provide exactly what users of legacy assertion facilities
need.

All names are obviously initial suggestions, with proposed reasoning, but still highly likely to be
subject to future changes during the standardization process.

4

2.1 Support Directly Invoking the Contract-Violation Handler

One of the primary purposes of adopting a Contracts facility into the Standard in lieu of continuing
to use bespoke solutions is to centralize the management, response, and mitigation approach to
detected bugs in large-scale software. By having a central, user-selectable contract-violation handler,
those who assemble large programs can avoid having distinct libraries producing different bug
responses that do not fit into a single and consistent diagnostic and mitigation strategy.

All uses of pre, post, and contract_assert will, when a contract violation is detected by an enforced
or observed contract, invoke the same contract-violation handler regardless of where in the program
the violated contract assertion might be. This centralized reporting facility is one of the core benefits
of having a Contracts facility in the language itself. With [P2900R7], users of legacy contract-checking
facilities do not (yet) have a mechanism to integrate with that same reporting mechanism.

We propose to address the current inability of the Contracts MVP to integrate with legacy assertion
mechanisms by providing a library API to replicate the behaviors of the various contract evaluation
semantics when a contract violation has been detected. These utility functions then provide a direct
mechanism to invoke the contract-violation handler as well as to terminate execution in a fashion
that matches the termination behavior of a contract assertion evaluation having the enforce or
quick_enforce semantic. Several design considerations have been identified during the process of
developing what we propose.

• Each distinct checked semantic has, associated with it, different behaviors related to how
violations are handled. A contract assertion evaluated with the observe semantic will continue
execution when the contract-violation handler returns; evaluations with the enforce semantic
will instead terminate the program in an implementation-defined fashion; and evaluations with
the quick_enforce semantic do not call the contract-violation handler and have a potentially
distinct mechanism for terminating the program but might also record data about the violation
in debug information that is not accessible at run time. To that end, we propose that the
name of each semantic be embedded in the function name so that these properties can be
annotated on the function when possible.

• A mechanism need not trigger the handling of a contract violation the way an evaluation with
the ignore semantic would since that semantic never identifies contract violations and has no
behavior to emulate.

• A more targeted function that simply took all the properties of a contract_violation object,
populated one, and invoked the contract-violation handler but did nothing else would have a
more fundamental problem: The contract-violation handler would be unable to depend on any
promises inherent in the values provided, such as a guarantee that the program will terminate
if the violation handler returns when the semantic is enforce.

• Perhaps a feasible approach would to pass to a more general function a semantic as a
value of type std::contracts::evaluation_semantic, but that approach would bring along
the need to answer the complex question of how it should behave when given unknown or
implementation-defined values for the semantic. For the same reason, we carefully crafted
std::contracts::contract_violation so that it cannot be created by users, which would allow
users to pass an arbitrary such object to ::handle_contract_violation.

5

• A different function we might propose would use the same semantic as is configured for other
contract assertions, but that is not a clearly well-defined value that could be accessed, and
the flexibility of that choice of semantic is a big part of the source of problems when just
migrating from older facilities directly to contract assertions. Such a utility function would also
be confusing when integrated with an existing assertion facility because it would result in two
layers of configuration — the existing macro-based controls and the controls which impact all
other contract assertions — determining the resulting semantic of older macros. Rather than
provide yet another point where implementation-defined controls can alter program behaviors,
we instead are focusing on providing a more concrete building block to use as a foundation for
existing facilities.

• Two recommended practices for contract semantic configuration are put forth in [P2900R7].
Providing a function that tied into builds where these recommended practices were in play,
however, might be possible.

– Those recommended practices are just a minimum for what we expect, and any richer or
nonglobal configuration of Contracts does not fit into that model.

– If the global configuration is to ignore all contract assertions, then by the time an existing
assertion facility has decided to invoke the handler, it has also already decided to forgo
ignoring the assertion since the predicate in question has already been evaluated.

– The only other recommended practice is to enforce, and for that we are providing explicit
functions to execute the behavior of the enforce semantic.

• Converting a predicate expression to a comment field in the contract_violation object can
be easily accomplished using the stringizing operator #, and often an expression is not even
apt for capturing the form of violation that is being manually detected; hence, we propose
that the comment be provided via a const char * function parameter.

• Source location can be detected using a defaulted std::source_location function parameter,
but this option need not be specified explicitly. Instead, we can simply dictate that the
generated contract_violation object’s location property has the location of the call site. This
approach also leaves leeway, in some builds, to discard such information where it is deemed
private.

• The enumerated kind and detection_mode values could be passed as arguments to our new
functions, but doing so would greatly increase the number of overloads we would need to
provide for each checked semantic that might invoke the handler and, therefore, increases the
complexity of using this otherwise fairly straightforward facility. Hence, we instead suggest,
for these enumerations, new values that simply capture that a manually detected contract
violation was encountered.

Naming is generally hard, and gaining consensus on naming is even harder. Instead of presenting
the names as final, we present them to be as clear as possible for their intended use, which is to
manually trigger the violation-handling behavior of the various contract-evaluation semantics.

Putting all of these considerations together we suggest the following initial minimal proposal for an
API.

6

Proposal 1.1: Triggering Enforce and Observe Semantics

Add the following to the header <contracts>:
namespace std::contracts {

[[noreturn]] void handle_enforced_contract_violation(const char* comment);
void handle_observed_contract_violation(const char* comment);

}

Each of these functions will perform similarly but has unique behavior.
• Create and populate an object of type std::contract_violation.

– The comment property will be the value provided as a function argument.
– The location property is recommended to be the location of the function invocation,

though as usual it may also be a default-constructed std::source_location or
have any other value.

– The kind property will be a new value, manual, of the
std::contracts::assertion_kind enumeration.

– The detection_mode property will be a newly added value, manual, of the
std::contracts::detection_mode enumeration.

– The evaluation_semantic property will be the semantic value that matches the
particular function being invoked.

• The installed contract-violation handler will be invoked with this generated
contract_violation object.

• If the contract-violation handler returns normally within
handle_enforced_contract_violation, the program will be terminated in an
implementation-defined manner.

• If the contract-violation handler returns normally within
handle_observed_contract_violation, this function returns normally.

• If an exception escapes from the contract-violation handler, it propagates normally.

The above proposal covers all semantics that invoke the contract-violation handler, which is the
primary purpose of this proposal.

The most recently added semantic, however, does have some functionality that is not easily reproduced
elsewhere. We could consider, as a second proposal on top of the above, a third function, which
would have the semantics of a contract violation with the quick_enforce semantic, introduced in
[P3191R0]:

Proposal 1.2: Triggering Quick_Enforce Violations

Add the following to the header <contracts>:
[[noreturn]] void handle_quick_enforced_contract_violation(const char* comment) noexcept;

• Terminate the program in an implementation-defined manner.

In addition to the specified runtime behavior, just as with a contract evaluated with the quick_enforce
semantic, we can gain non-normative benefits from invoking the above function. If comment is a
compile-time string, it may be embedded in debug information in a manner outside the purview of

7

the abstract machine and the Standard itself but still provide useful information when applying
some forms of diagnostic tools.

As a separate proposal on top of the above, we also suggest having noexcept overloads of the
functions that might invoke the contract-violation handler.

This behavior can be achieved in (at least) two other ways that come with associated drawbacks.

1. Invocations of the handle functions can be placed inside try/catch blocks that then manually
invoke std::terminate():

try {
handle_enforced_contract_violation(comment);

} catch (...) {
std::terminate();

}

This approach achieves the goal of not allowing an exception to escape but at the cost of
potentially significantly greater code-size overhead compared to a noexcept function that
need only mark a stack frame as being a noexcept boundary. When a codebase has enough
assertions, this overhead has shown to be a concern for some developers.

2. The handle function can be wrapped in a user-provided noexcept function:
[[noreturn]] void my_handle_enforced_contract_violation(const char* comment) noexcept)
{

std::contracts::handle_enforced_contract_violation(comment);
}

This approach will potentially have improved code generation but comes at the cost of the call
location of the handle function always being within the same wrapper function, thereby losing
valuable information that was intended to be conveyed to the contract-violation handler.

Therefore, we propose adding overloads to the proposed API that take an additional argument of
type std::nothrow_t, just as is done for nonthrowing operator new.

Proposal 1.3: noexcept Overloads

Add the following to the header <contracts>:
namespace std::contracts {

[[noreturn]] void handle_enforced_contract_violation(const char* comment,
const std::nothrow_t&) noexcept

void handle_observe_contract_violation(const char* comment,
const std::nothrow_t&) noexcept

}

If an exception escapes the invocation of the contract-violation handler made by these
functions, std::terminate will be invoked. Otherwise, these functions behave identically to
the corresponding overloads without the std::nothrow_t parameter.

No overload that takes a std::nothrow_t is necessary for handle_quick_enforced_contract_violation
since in this case there is no invocation of a contract-violation handler that could exit via an exception

8

(and the function itself is already marked noexcept).

Should a new checking semantic be added to the Standard in the future, we would need to add,
in a similar fashion, corresponding functions to manually trigger that semantic’s behavior upon
detecting a contract violation. Given that any new semantic potentially has a distinct interface,
each is equally likely to result in a new function or set of functions to parallel those we propose here.

2.2 Conditionally Integrate C assert with C++ Contracts

Direct use of the standard assert macro is commonly taught and used widely in industry for a
variety of purposes. In our experience, the overwhelming majority of such uses of assert involve
no side effects whatsoever. The remaining side effects are often just temporary print statements or
inadvertent errors, yet some practicable, valuable uses remain.

Requiring an organization to pore over all their legacy uses of assert to ensure that no destructive
side effects occur before benefiting from a central contract-violation handler provided by the
[P2900R7] seems time-consuming and counterproductive.

Even given the ability for user-defined macro-based facilities to integrate with the contract-violation
handler, as proposed in the previous section, direct users of the standard assert macro still have no
similar mechanism, and requiring each organization to write their own assertion facility and then
rename each assert to that new macro seems needlessly user-hostile.

We recommend, as a simple change with vast potential benefit, an addendum to the C++ specification
for the assert macro, allowing it to invoke the C++ contract-violation handler instead of merely
outputting a diagnostic message to the standard error stream. By default, behavior would not
change, and users would have to explicitly opt in, thereby making this a fully backward-compatible,
conditionally supported extension. Note that the behavior would be almost equivalent to the two-
argument overload of enforce_contract_violation (see section 2.1), with the change that kind will
be a new enumeration value, cassert, and the detection_mode will be the value predicate_false.

We recommend this additional latitude for the standard assert macro to invoke the C++ violation
handler be an allowance, not a requirement, due to the nature of assert being a facility shared
between C and C++. Some platforms may find making any changes to the behavior of the assert
facility to be difficult or ill advised. We, therefore, propose this change to be implementation defined
and will likely see this change take effect only when users explicitly request it, e.g., via command-line
options.

Proposal 2: Integration of assert With the Contract-Violation Handler

When the evaluation of the expression in an assert macro yields false, which happens
only when NDEBUG is undefined, the implementation defines whether the currently specified
diagnostic is output to the standard error stream or the contract-violation handler is invoked.
If the contract-violation handler is invoked, the behavior is equivalent to a call to the function
handle_enforced_contract_violation(#__VA_ARGS__,std::nothrow), but the kind property
of the generated contract_violation object will be a new enumerator, cassert, and the
detection_mode will be the value predicate_false.

9

2.3 Introduce a New Contract Assertion Statement With More Familiar
Semantics

Like many other aspects of the C++26 MVP, a seemingly simple problem isn’t always that simple.
A question that often comes up is why contract_assert has semantics that differ from those of the
more simple model inherent in the assert macro, a tool with longevity.

Central to the concept of contract checking is that introducing contracts into a program should
not alter the correctness of the program, but should simply identify the cases where the program is
correct or incorrect.

Each of the contract assertion kinds in the MVP today might select a different evaluation semantic
every time it is evaluated in a program, independently of both the semantic of other contract
assertions and even the semantic of earlier evaluations of the same contract assertion. Due to this
ability to change semantic on each evaluation, it is essential that each evaluation of a contract
assertion not alter the correctness of the program independently of all other contract assertion
evaluations.

By contrast, the semantic with which assert macros are invoked is chosen based on the state
of the NDEBUG macro when the header <assert.h> or <cassert> is processed. If NDEBUG is defined,
that semantic is effectively ignore; otherwise, it is enforce. Therefore, it is perfectly reasonable for
evaluations of assertion macros to depend on earlier evaluations of assertion macros or on blocks
guarded by #ifndef NDEBUG, within the same translation unit.

If pre, post, and contract_assert preserved the same stateful properties as assert for its direct
users, many fundamental tools would be removed from those who are building programs augmented
with contract assertions.

• Arbitrary subsets of assertions could not be enabled or disabled independently while main-
taining a correct program. This restriction would prevent commonly identified use cases, such
as enforcing all preconditions and ignoring all postconditions, or more eclectic yet still valid
options, such as enforcing a fixed (yet randomly selected) percentage of all contract assertions
and ignoring others.

• Runtime selection of the evaluation semantic could not change while a program is running
because modifying such a flag to enable assertions that would be correct only if earlier
assertions had been evaluated would result in immediately encountering falsely identified
contract violations.

• We could never safely assume individual contract assertions because their correctness might
depend on earlier evaluations of contract assertions that would not have taken effect if they
had been assumed.

We would hope to eventually see, layered on top of the Contracts MVP, new syntax that allows
users to clearly specify when a relationship occurs between distinct contract assertions such that
their evaluations could not be made independent of one another — i.e., grouping assertions and
supporting code into user-defined groups that can be individually controlled.3 Sadly, that design is
out of scope for the Contracts MVP targeting C++26.

3See section 2.2.20 of [P2755R1] for an initial suggestion as to how such a facility might be expressed and behave,
though there is recognizably far more to explore in this space before a complete proposal can be offered.

10

A possible interim solution is to provide a new syntax that places assertion-statement-like constructs
that are controlled as a single unit within a translation unit. Normal contract_assert statements
could remain entirely independent of themselves and one another, which serves the vast majority of
use cases, while this new construct would help bridge the gap with the subset of assert predicates
that are not independently evaluable.

Let’s now take a closer look at what use cases the standard assert macro enables over the current
MVP and why.

The stronger evaluation guarantees of assert allow a programmer to reason about how assertion
evaluations relate to one another due to their behavior being tied to the state of macro definitions.
Consider, for example, making use of assert to protect against recursive invocation of a function by
using an RAII type that does all modifications and checks inside assert macro invocations so as to
have no checking overhead when NDEBUG is not defined:

#include <cassert>
class NoRecursionGuard
{
private:

bool* d_inFunction_p;
public:

NoRecursionGuard(bool* inFunction_p)
: d_inFunction_p(inFunction_p)

{
assert(!*d_inFunction_p);
assert(*d_inFunction_p = true);

}
~NoRecursionGuard()
{

assert(*d_inFunction_p);
assert(! (*d_inFunction_p = false));

}
};

void nonrecursive()
{

static bool inFunction = false;
NoRecursionGuard guard(&inFunction);

// Do stuff.
}

None of the assertions within NoRecursion’s constructor or destructor will work as intended if elided
or repeated or if any mix of them is ignored while others are checked. With assert, however, this
concern is never an issue because all these assertion predicates are either checked or unchecked as a
single unit based on the value of NDEBUG when assert is defined. With NDEBUG defined, everything
involved in the check against recursion is optimized away.

Conceptually, each of these assertions is only a piece of a larger compound contract check that
maintains internal state as the different assert expressions are reached. To support this kind of use
case, we must consider several points.

11

• Assertions such as those above maintain state entirely by having side effects of evaluations of
the assert macro. In general, however, the state being maintained and the code to maintain
are often placed inside blocks guarded by #ifndef NDEBUG.

• Typical legacy assertion facilities provide no syntactic indication of when assertions are or
are not tied together. Therefore, the safest approach to replicate the expected semantics of
such facilities is to keep the semantics of our proposed replacement consistent through all
uses within definitions from the same TU. Just like macro-based facilities, we also need to
extend the ODR to make ill-formed, no diagnostic required those cases where the same use
gets different semantics in different inlined definitions; if we don’t, we lose guarantees that an
individual assertion will be evaluated or not evaluated consistently throughout the life of a
program.

• Importantly, const-ification — i.e., treating each identifier in the assertion’s predicates as if
it were passed by const lvalue reference — is more of a hindrance to writing these kinds of
assertions than a help, so it should not apply to this new piece of the Contracts facility we
present here.

• Elision and duplication, similarly, break the semantics of a facility where we depend on the
side effects of evaluating contract predicates. Therefore, we should not support those either.

• The name for this new facility should convey its intended purpose and semantics and be clearly
distinct from contract_assert.

– While the semantics are intended to mimic those of assert, the option contract_cassert
is far too similar to contract_assert. Though contract_c_assert is sufficiently visually
distinct, it is describing the behavior of a new and eminently useful C++ Contracts feature
in terms of a facility that many are actively trying to obsolete and eventually deprecate
and where the difference in meaning from contract_assert is subtle to understand and
not obviously inherent in assert to those who are not well studied in its behavior.

– So, if the meaning we ascribe to a contact_c_assert is that it is a part of a bigger contract
assertion that applies to the entire TU (and, by extension, program), we would like to
choose a name that indicates that.

∗ Some short-sighted names might tie this construct to just its nature as having a
consistent semantic throughout a translation unit, with varying degrees of accuracy:

· contract_global_assert

· contract_tu_assert

· contract_program_assert

· contract_ubiquitous_assert

∗ But such wide-spread interdependence need not be the case. Post-MVP, we might
decide to allow labels to create smaller cliques of assertions within a given TU to be
treated as atomically checked or not. A better, more durable name would reflect that
a particular contract assertion is part of a larger cohesive (atomic) whole, which for

12

now is the entire TU or program. To that end, we might consider more a expressive
name:

· partial_contract_assert

· dependent_contract_assert

· connected_contract_assert

Though partial_contract_assert might sound like its a partial assert that happens to
be a contract assert, that’s not the intent; it is an assert that part of a larger contract
check (“partial-contract assert”) of which there are typically more (or else this one is
stateful), and hence we cannot elide or repeat predicates. Other, more intuitive spellings
are certainly possible:

∗ contract_part_assert

(which means “contract-part assert” or “assert for part of a contract”). For now, we’ll use
partial_contract_assert as a working name and save the nuance of naming for another
day.

Therefore, we propose our remaining suggested name for the new facility, partial-contract
assertions, and the corresponding new keyword, partial_contract_assert, since each
assertion specified with this new facility is semantically part of a single large contract
check consisting of all such assertions in the TU.

• As suggested above, future evolution of this facility might consider grouping the evaluations
of partial-contract assertions by more than just the TU in which they are defined.

– The simplest case is a partial-contract assertion that depends on only its own earlier
evaluations to remain correct, such as one that increments a counter when checked and
must not be invoked more than a specified number of times. This requirement might
apply within a single function invocation (if the incremented variable is automatic) or
across all function invocations (if the stateful variable has static storage duration).

– In some cases, the only needed requirement is that all evaluations within a single function
call are made with either all checked semantics (observe, enforce, or quick_enforce) or all
unchecked ones (ignore and, post-MVP, assume).

– Other situations require that matching assertions across different invocations of the
enclosing function be evaluated together but are otherwise independent of any other
partial-contract assertion.

Each of the use cases above that require subgroupings within the TU would require additional
syntax to be added to this proposal to specify the groupings themselves and to exist at the
appropriate scope and for the appropriate duration.

Putting this together, we propose a new type of assertion statement, partial_contract_assert.

13

Proposal 3: partial_contract_assert

Add a new kind of contract assertion, partial_contract_assert, which mirrors
contract_assert but with the following differences.

• A partial-contract assertion is introduced by the new keyword,
partial_contract_assert.

• Each partial-contract assertion in a TU will be evaluated with the same implementation-
defined contract-evaluation semantic.

• Extend the ODR so that a partial-contract assertion must always have the same
evaluation semantic; otherwise, the program is ill-formed, no diagnostic required.

• When a checking semantic (enforce, quick_enforce, or observe) is used to evaluate a
partial-contract assertion, the predicate is evaluated as normal and may not be elided.

• Partial-contract assertions do not form parts of contract-assertion sequences and thus
will always be evaluated in lexical order with respect to all other contract assertions.

• The evaluation of a partial-contract assertion may not itself be repeated.
• Within a partial-contract assertion, the type of id-expressions referring to objects with

automatic storage duration is not implicitly made const as is done within the predicates
of other contract assertions.

This facility provides a clear mechanism to specify a contract assertion that is part of an implicit
larger whole. Not coincidentally, such a partial-contract assertion is precisely what a standard assert
macro provides. The more limited choices of evaluation semantics, removal of elision, duplication, and
const-ification of contract_assert that led to partial_contract_assert remove several potential
benefits but provide a mechanism that is a direct replacement for many more use cases currently
served by the standard assert macro and similar macro-based tools.

3 Wording Changes

4 Conclusion
The core building block of the Contracts MVP which we have sought to provide — the ability to
simply and nonintrusively state that, at a particular point of evaluation in a program, a certain
predicate must be true — is a tool that serves many needs quite well. In particular, such predicates
form a key basis for documenting and checking the correctness of a program at run time or compile
time, and any effects a predicate might have that alter the correctness of a program must be
considered destructive and avoided. What contract assertions in the Contracts MVP do not provide
and until now have not sought to provide is a complete drop-in replacement for all the use cases
that might be covered by existing macro-based assertion facilities. Much of the friction arises from
uses of those facilities that check contract checks as a compound operation of multiple evaluations of
contract predicates, often in practice combined with additional blocks of code enclosed in preprocessor
guards such as #ifndef NDEBUG. Making contract_assert satisfy all these use cases on its own would
necessarily sacrifice other use cases we have been working to satisfy.

In this paper, we have put forth three independent yet mutually compatible proposals, any or all of
which might be a valuable addition to the Contracts MVP.

14

1. Provide utility functions that enable the violation handler to be invoked from bespoke legacy
assertion facilities.

2. Modify the definition of the C++ assert macro to conditionally support invoking the C++
Contracts violation handler (instead of printing the currently specified diagnostics) before
aborting to allow existing use of C assert to be expanded (only if explicitly requested) without
having to rework a massive amount of legacy code.

3. Provide a parallel construct to contract_assert that more closely mirrors the semantics of
the standard assert macro, effectively creating a drop-in replacement for that and many other
existing contract-checking facilities.

Adopting these three solutions will be highly beneficial.

• Each supports additional use cases that are known to be unsupported by the current MVP as
defined by [P2900R7].

• Collectively, they help clarify the need for novel behavior — benefiting those who use it and
those who don’t — simply by learning why they were incorporated into the MVP.

• We hope that the Contracts MVP, by clearly providing mechanisms to suppport known use
cases for existing tools, will achieve increased consensus in WG21.

Any feedback or suggestions that might further help improve consensus are welcome.

Acknowledgements
Thanks to John Spicer for extensive discussions that led to some of these proposals, and Lori Hughes
for helping to greatly increase the readability and quality of this paper.

Bibliography
[P1995R1] Joshua Berne, Andrzej Krzemieński, Ryan McDougall, Timur Doumler, and Herb

Sutter, “Contracts — Use Cases”, 2020
http://wg21.link/P1995R1

[P2755R1] Joshua Berne, Jake Fevold, and John Lakos, “A Bold Plan for a Complete Contracts
Facility”, 2024
http://wg21.link/P2755R1

[P2877R0] Joshua Berne and Tom Honermann, “Contract Build Modes, Semantics, and Imple-
mentation Strategies”, 2023
http://wg21.link/P2877R0

[P2900R7] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2024
http://wg21.link/P2900R7

[P3119R1] Joshua Berne, “Tokyo Technical Fixes to Contracts”, 2024
http://wg21.link/P3119R1

15

http://wg21.link/P1995R1
http://wg21.link/P2755R1
http://wg21.link/P2877R0
http://wg21.link/P2900R7
http://wg21.link/P3119R1

[P3191R0] Louis Dionne, Yeoul Na, and Konstantin Varlamov, “Feedback on the scalability of
contract violation handlers in P2900”, 2024
http://wg21.link/P3191R0

[P3268R0] Peter Bindels, “C++ Contracts Constification Challenges Concerning Current Code”,
2024
http://wg21.link/P3268R0

16

http://wg21.link/P3191R0
http://wg21.link/P3268R0

	1 Introduction
	2 Proposals
	2.1 Support Directly Invoking the Contract-Violation Handler
	2.2 Conditionally Integrate C assert with C++ Contracts
	2.3 Introduce a New Contract Assertion Statement With More Familiar Semantics

	3 Wording Changes
	4 Conclusion

