
C++26 Needs Contract Checking
{Safety, Security, Performance} – All Three, Required Now

Christian Eltzschig <christian@ekxide.io> ekxide IO GmbH
Mathias Kraus <mathias@ekxide.io> ekxide IO GmbH
Ryan McDougall <ryanm@applied.co> Applied Intuition
Pez Zarifian <pez@applied.co> Applied Intuition

Abstract
Contract Checking is the single most important way to address C++ memory safety from C++ in
a simple, easy, and backward compatible way. The opportunity cost of not having Contract
Checking in C++26 is too high.

Background
C++ is the domain language for a large array of important industries. Some safety critical
industries are represented in more detail in P2026. Historically C++ has been known to be fast
and efficient – but like C before it – not necessarily “computationally safe”. By “computationally
safe” we mean the union of all features that make it hard to make incorrect programs – such as
type-safety, memory-safety, thread-safety, lifetime-safety, bounds-safety, etc. This is in contrast
to “physical safety” – by which we mean all the things that keep Life and Property from Harm –
in the physical world.

Some of the harms that can happen in the physical world come from incorrect software – and
some of those harms are serious – loss of billions, death of individuals, or increasingly –
vulnerability of state infrastructure to hostile (even state) actors. This is why the Office of the
President of the United States of America has urged projects to avoid C++. While it is fun to
speculate about the C++ prowess of the President – and take note that this advice is in no way
binding – it is also clear that this unprecedented intervention is driven by real world safety
concerns, and many industry partners are starting to ask about the safety and security of the
products the C++ community are offering.

While Rust is a fine language, many of such companies have large investments in existing C++
code bases, and moving to Rust in order to gain better memory and thread-safety is not
feasible. It involves significant effort and will necessarily result in transition phases which will
inject their fair share of risks as well. Safety is better served with micro-evolution from a well
understood and proven field. Moving to Rust is a significant change in terms of technology
management and therefore, represents a risk.

mailto:christian@ekxide.io
https://ekxide.io/
mailto:mathias@ekxide.io
https://ekxide.io/
mailto:ryanm@applied.co
https://www.appliedintuition.com/
mailto:pez@applied.co
https://www.appliedintuition.com/
http://wg21.link/p2026
https://www.infoworld.com/article/3713203/white-house-urges-developers-to-dump-c-and-c.html
https://www.infoworld.com/article/3713203/white-house-urges-developers-to-dump-c-and-c.html


While the end result might be more memory safe by being in Rust, there are significant financial
costs – including developer training, hiring, tooling, security training etc. More importantly
however, it does not account for the opportunity-cost of taking the same amount of time to
make the C++ computationally safer.

The C++ community wants the latter – more tools to make C++ computationally more safe –
now. We want to be investing this time in making C++ better, not migrating it to Rust.

What makes software “Safe”?
Safety – like performance, security, or usability – is a system property – ie. it cannot be
measured as merely the sum of its parts. A defect in a single link in a chain of responsibility has
the potential to ruin the entire system. For example a single defect in a Rust unsafe block
could cause a memory safe code to fail in a cascade. That is to say – computational safety is
necessary but not sufficient for assuring physical safety.

Physically safety-critical software is made by adding layer after layer of redundant checks and
fallbacks – then testing the system in trial after trial in a representative environment – until we’re
able to make a statistical argument that harm is unlikely to happen. This is discussed further in
P1517 – but simply put we:

1. Think really hard about everything that could cause harm, write it down in a big table,
and make sure that by the end we’ve got some kind of answer for each one of those
items.

2. Think really hard about every best practice we know of, and make sure it’s in force –
even if it sometimes feels a bit annoying.

3. Write down – in detail – every responsible party for every single component. This is
accountability.

4. Write up the set of assumptions that each component will have – that’s its “contract”.
5. Write up all the ways we can message the software that something has gone wrong –

those are “errors”.
6. Write up all the ways the software can message us that something’s gone wrong – that

is “health”.
7. Have the code fix, report, fail over, and fail safe for each of those things.
8. Have and regularly run tests at every layer of integration:

a. Unit
b. Component
c. System
d. Deployment
e. Acceptance
f. etc…

9. Try to run tests that cover even highly unlikely scenarios – stuff that’s hard to dream up.
This is where fuzz testing, simulation, and real-world proving are used.

http://wg21.link/p1517


10. Think really hard about how much of the end result is covered by one of these layers,
and then make a statistical argument that harm is therefore unlikely.

11. Get a third party to agree with your reasoning – often a state based regulator.

Notice that the majority of software engineering with Rust or C++ only really happens in step 7 –
so even if we had the same memory-safety tools as Rust, and thus eliminated all memory safety
problems – we would still need to do most of the same redundant checking and testing.

Redundancy is important because mistakes happen by accident – we need to reduce the odds
that any one mistake can slip past all possible checks. We can tell the installers of airplane
panels to be careful about fastening all the bolts, but if someone isn’t double (or more) checking
that all bolts are fastened, then one day an unlikely event will happen, and a Boeing 737 MAX 9
panel will fall off mid flight.

Why do we need Contract Checking?
Run-time contract checking is redundant checking that ensures that design time contracts are in
force at run time. Good software engineers are already encoding compile-time contracts in the
type system – which the compiler has already evaluated and “proven” – so the potential holes in
our contract enforcement exist at run-time.

Contract Checking in C++26 is the single most impactful way a C++ programmer can use the
language to contribute to program correctness. Regular unit tests can test that an expected
thing happens – and are definitely the single most impactful thing any programmer can do to
ensure program correctness – but they have a harder time with unexpected things. Contract
checking is a natural complement to unit testing, because the conditions for incorrectness are
explicitly built into the code.

On the surface contract checking does not address the main source of bugs in C++ – (lack of)
memory safety. However with a bit of effort, contract checking is huge improvement in memory
safety too – because you can now declare bounds-safety in your contract – ie.

void f(const auto& container, size_t index)
pre(index < container.size());

Type-safety could also be used here, but that greatly complicates the type system through
combinatorial explosion of type interactions, which may make code harder to reason about. For
example we can wrap the bounds-unsafe code in a bounds-safe container:

void f(const CheckedIndexContainer<T>& container);
f(CheckedIndexContainer{container, index});



The index still must be checked at run-time – so it’s just moving the contract requirements from
the function interface to a per-contract type in another file. When passing data between different
functions, the programmer will have to request an explicit type conversion, which would incur
both syntax and runtime overhead. C++26 Contract Checking syntax is a simple and expressive
way to quickly and easily add checking to C++. Ease and flexibility matter at scale.

Many of the systems we use today are physically safe because they are effectively minor
variations on systems that have already been mass deployed before. For a 2024 model
automobile, the crash test results for the physical chassis are rarely divergent from the 2023
model’s. The same conservatism applies to software – re-using proven code is preferred to
major rewrites. As consumers demand faster innovation, that conservatism will no longer be
protective – it must be the software that works to ensure software is safe. While macro, assert,
or exception based contract checking is in wide use by many firms, to keep pace with
expectations, our tools need to be better.

Based on a simple analysis of several safety-critical code bases on the order of ~10MLoC, there
are >50KLoC of macro-based contract checks. That’s over 50,000 points where a flow of control
– even an extremely unlikely one – could otherwise lead to serious consequences. If this results
in a security breach on a power plant for example, that one “hole” is all that’s needed to affect a
city.

Why do we need Contract Checking Now?
Because the opportunity cost of waiting any longer – for basic functionality – is too high.

In order to both address the industry concerns about the viability of C++, and to measurably
improve the safety and security of the C++ programs today, programmers should be improving
their checking and testing without delay. If we cannot offer even the most basic functionality until
2029, many rational firms will decide to use that time to migrate off of C++.

What’s more, there’s no excuse for not shipping Contract Checking in C++26. While the
proposal in P2900 could always use improvement and refinement – the smallest feature subset
that will both displace previous contract checking mechanisms, and make it easier to quickly
add more checking is:

1. Function-appertaining Syntax that
a. Declares its Preconditions.
b. Can be Parsed by Static Analysis.

2. Injects run-time Checks that
a. Run regular C++ code.
b. Inhibits “Time-Travel” Optimization within checks.

https://wg21.link/p2900
https://wg21.link/p1494


This is based on over a decade of experience working directly on safety critical software –
writing tens of thousands of individual contract checks – and plotting internal defect metric
dashboards. The majority of contract checks, by a large margin, are of the following kinds:

1. That a resource (like a pointer) is not invalid (eg. null).
2. That a value (such as an index) is within expected bounds.
3. That an “unreachable” state has not been entered.

These kinds of checks are universal to all languages at all times – and even with good error
handling and type-safe best practice – there will be thousands of them. If every postcondition is
the precondition for another function, then all invalid flows can be captured by preconditions.

The code that is required to meet these 3 cases are simple – but do call into arbitrary size,
begin, or end (and equivalent) of methods of container-like objects. The safety and
correctness of such checks is not a significant source of defects – as long as the checks are not
optimized away – then checks can simply and reliably consist of “regular C++ code”.

There have often been comments to the effect of “if Contract Checking doesn’t have
<feature> then it’s pointless/useless/not viable” – while the statements may be well intended,
they are objectively wrong according to established industry practice. While its usefulness might
be greatly diminished for many users – it is still broadly useful to most programmers, who just
want to check that their most basic contract assumptions hold. Extensions to this basic
functionality can be added over time.

There has also been some concern specifically with P2900 in specific that it defers too much to
implementation defined behavior. This is by design, and is not a concern for safety critical users.
Such users are relying explicitly and directly on specific compiler versions during all their testing,
and deploying with a different compiler would represent deploying an untested product. Having
more standardized behavior between implementations is certainly an improvement when porting
to a new platform, but it is assumed this is something that can be done incrementally.

Why do we not have Contract Checking yet?
A big reason is the industry and culture of writing high quality software has not fully matured into
a shared perspective to the point where all the design decisions are “obvious”. There are a few
firms that are at the leading edge of safety and security – but the reality is most present day
software doesn’t pose much of a threat of harm if it fails. Websites can be reloaded. Mobile apps
can be replaced. Both run in a “sandbox”. Most programmers have come to understand
“software quality” from their own perspective, and the imperatives for improving quality aren’t
universal.

But a less flattering reason is that ISO, WG21, and SG21 (to their own degrees) are not fully
representative of the actual end users of C++ – the ones writing code today. These groups are

https://wg21.link/p1494
https://wg21.link/p2900


volunteer based – and often the people busiest writing the code that puts rubber to the road are
the ones least available to attend committee meetings. The end result is that conversations in
meetings tend to be dominated by a minority of voices, sometimes those who have learned to
raise the temperature in order to discourage participation. Some of the loudest voices come
from finance or “big tech” – and while those are important industries – they do not represent the
best interests of automotive, aerospace, or robotics companies (to name a few).
Disproportionate representation of actual C++ users is a miscarriage of our professional duty to
do what’s right by the community and industry at large.

It is my intention with this paper to:

1. Give voice to every-day programmers that are writing practical safety-critical software in
C++.

2. Call to action for SG21 and EWG to improve the quality and professionalism of our work.
3. Call to action for SG21 and EWG to put a minimum viable specification into the draft for

C++26 that meets the basic requirements.

Calls to Action

To the Committee At Large
1. Take an interest in Safety and Security. Show up to SG21 and SG23. Ask questions.
2. Think about users who may not be the ones you’re most familiar with.
3. Think about the quality of conversations you’re having. Don’t let loudest voices

dominate.

To SG21
1. Dismissiveness – or other verbal combativeness – degrades the quality of discussion

and pushes out contributors. This can no longer be acceptable.
2. Repeating the same arguments without new information wastes time. If it cannot change

anyone’s mind, then you don’t need to repeat it.
3. Papers with good arguments change minds. Not publishing compelling papers limits your

own impact.
4. Too many of our users are currently underserved. Let’s deliver practical results for users.

Any single company – for example a “financial” company, or a “big tech” company – do
not wholly represent our users.

To SG23
1. Take a strong stance on what safety means for C++.
2. Help define for EWG what it can do to support safety in C++. Set the goalposts.



To EWG
1. Consider unmet safety and security needs to be an existential problem for C++.
2. Prioritize delivering a minimum viable feature that at least

a. Function-appertaining Syntax that
i. Declares its Preconditions.
ii. Can be Parsed by Static Analysis.

b. Injects run-time Checks that
i. Run regular C++ code.
ii. Inhibits “Time-Travel” Optimization within checks.

3. Understand the opportunity cost of pursuing the ideal feature. Code is being written, run,
and scrutinized in the years without a simple contract checking facility.


