Implicit user-defined conversion functions as operator.()

Document #: P3298R0

Date: 2024-05-22

Project: Programming Language C+-+
Audience: EWGI

Reply-to: Bengt Gustafsson

<bengt.gustafsson@beamways.com>

Contents
1 Abstract 2
2 Previous work 2
2.1 Comparison to PO416R1 e 3
2.2 Comparison to PO352R0 3
2.3 Relation to N4035 e 4
2.4 Relation to POTO0RO0 o . o e 4
3 Introductory example 4
4 Overload resolution rule implications 5
4.1 Pointer conversion rules L e e e e e 5
4.2 Returning a base type 6
4.3 Returning a derived type 6
4.4 Qualified name lookup and the scope resolution operator, 7
5 implicit is not a full keyword 7
6 Other aspects to consider 7
6.1 An implicit cast operator can return any typeo e 7
6.2 Finalclasses L e 8
6.3 Overriding virtual methods 8
6.4 Virtual inheritance oL e 8
6.5 Member pointers oL L e e e 8
6.6 Explicitly calling virtual methods in a value class, 10
6.7 Returning incomplete classes L L 10
6.8 Downcasting e e 10
6.9 Using declarations bringing in Value type members oL 11
6.10 Copy/move assignment/construction Lo Lo 11
6.11 sizeof, alignof L e 11
6.12 Protected member access Lo e 11
6.13 ICFs can be virtual e 11
7 Examples 11
7.1 The return type for string interpolation L o o o 11
7.2 A universal lazy argument type 12
7.3 A better reference wrappero 12
7.4 A more intuitive polymorphic/indirect L 12
7.5 Non-nullable smart references e 13

mailto:bengt.gustafsson@beamways.com

8 Syntax alternatives 14

8.1 Explicitly stating inheritance by reference in the base class list, 14

8.2 Just allowing inheritance from references oL 15

8.3 Circling back to operator.() L 15
9 Implementation experience 15
10 Wording 16
11 References 16
1 Abstract

By tagging user-defined conversion functions with an implicit specifier the conversion rules change to match
that its class inherited the unreferenced return type of the implicit user-defined conversion function (ICF).
This allows implementing “smart references” and similar which was the target application for the user-defined
operator. () proposals. The name lookup rules for an ICF is the same as for inheritance so there is little special
semantics not covered by inheritance related rules.

Apart from the use for operator. () the correspondence to inheritance allows the object to be provided as the
argument when the parameter type of a function is constructible from the type returned from the ICF. This
possibility is available in the more recent operator. () proposals too but it is less obvious that this is the case
if the feature is spelled operator. ().

The context specific keyword implicit may be considered confusing as in some texts a conversion function
not marked as explicit is called an implicit conversion function. This proposal regards conversion functions
without explicit as “normal” conversion functions with conversion rules somewhere between implicit and explicit
conversion functions. Bike shedding may be done for the specifier keyword and luckily there is no need to avoid
keywords that may have been used as regular identifiers as it is contextual and only a keyword if followed by
the full keyword operator. However, implicit seems like a good choice as it is intuitively understood as a
conversion that is more eagerly employed than a “normal” conversion function.

2 Previous work

A lot of effort has been put into bringing operator. () into C++. The latest seems to be [P0416R1] from 2016.
An earlier version of this, [N4477] is discussed among other efforts here: background. These papers use the
terms handle and value to refer to the type containing the operator. () and the type returned by operator. (),
respectively. For clarity the same terms are used here.

The idea of modeling the feature after inheritance was presented earlier in 2016 in [P0352R0] and if that paper
had gone forward this proposal would not have been needed. Most of this paper was written without being
aware of [P0352R0] and is published to push this feature forward and as some aspects are different and more
consistent than previous proposals.

The essential features of all three approaches are the same since [P0416R1] removed some exotic aspects of
[N4477] such as sizeof returning the size of the value. The differences are mainly syntactical and pertain to how
the feature is presented and thus mostly relate to teachability:

P0461R1 allows creating user defined operator. () functions, but these are called in places where the built
in operator. is not called, i.e. when the value type is needed as a function argument type. This makes the
formulation as an operator.() less logical.

P0352R0 allows a using keyword before a type in the base class list to indicate what it calls delegate inheritance.
Delegate inheritance requires a user defined conversion function to be declared. This double book-keeping is
rather confusing especially considering that such delegate inheritance is allowed for fundamental types.

https://wg21.link/p0416r1
https://wg21.link/n4477
https://isocpp.org/blog/2016/02/a-bit-of-background-for-the-operator-dot-proposal-bjarne-stroustrup
https://wg21.link/p0352r0
https://wg21.link/p0352r0
https://wg21.link/p0416r1
https://wg21.link/n4477

This proposal uses an implicit specifier on a conversion function to indicate that it can be applied in the same
circumstances as a sub class to base class conversion, and with the same conversion cost. As these circumstances
include when a dot is applied an ICF works the same as a user defined operator. () in this case. Likewise, if an
operator-> returns a handle the value type is considered if the handle type does not have the name specified
on the rhs.

Other situations where value classes are considered includes implicit upcasts when used as function arguments
(including operators) and applying the scope resolution operator to access names in the value type.

2.1 Comparison to P0416R1

[P0416R1] defines operator.() to be called whenever a dot is placed after an object of the handle type, unless the
name after the dot is found in the handle class. More surprisingly it also calls operator. () when an operator
is applied to the handle but is defined only for the value . The operator. () is also called when a handle is used
as argument to a function requiring a value, which may seem even more surprising, although operators are just
functions anyway.

In [PO416R1] (section 4.15) it is explicitly stated that the scope resolution operator can not find names in types
returned by operator. () which seems to hamper using handle classes in lieu of the corresponding value classes.

class Value {
using Type = int;
void £();
static void g();
Value& operator++();

};
Value& operator--(Value&) ;
void f(Value& a);

struct Handle {
Value& operator.();

s

Handle pr;

pr.£0; // Obuiously works as there is a dot there.
++pr; // Works according to P0416R1

--pr; // Works according to P0416R1

f(pr); // Works according to P0416R1

Handle::Type X; // Does not work.

Handle::g(); // Does mot work.

When piggy-backing on inheritance for name lookup as this proposal does all of these operations trivially work
and is understood by inspecting what happens if Handle had inherited from Value.

2.2 Comparison to P0352R0

The main difference is that this proposal uses a specifier on the declaration of the conversion function itself
to indicate its special name lookup rules, while [P0352R0] used a regular conversion function in combination
with a special inheritance declaration class Handle : using public Value. This double book-keeping is an
extra source of inconsistency and opens for questionable rules for what happens if the inheritance and conversion
function have different access control and how overloads of the conversion function with different cvref qualifiers
are motivated.

https://wg21.link/p0416r1
https://wg21.link/p0416r1
https://wg21.link/p0352r0

The artificial limitation of [P0352R0] that a nested class can not be returned from a conversion function which
is caused by the mentioning of the nested class in the base list is not present with this proposal as the return
type is only mentioned in the declaration of the conversion function.

2.3 Relation to N4035

The proposal [N4035] regarding using auto = T as a means of defining what type an object which can be
converted to some other type should deduce to. [P0352R0] uses this to optionally get deduction to the value
type.

This proposal could be combined with [N4035] in the same way if both get standardized. Doing so is sometimes
important to avoid dangling references. See for instance the string interpolation result example below.

2.4 Relation to PO700R0

Hopefully this paper will be more clear than [P0352R0] so that the questions in [P0700R0] can be properly
addressed. The main reason for modeling name lookup from inheritance is that it avoids new rules and leaves
other aspects of the handle class up to the programmer, especially if [N4035] gets adopted.

3 Introductory example

Here is a simple example of a Proxy class that transparently works as its T class when it comes to overload
resolution. As the implicit conversion is applied in the same situations as a base class would be looked up this
effectively works as an operator. (). Proxy<T> objects can for instance be stored in a vector and the vector
elements can be accessed via vec [i] .member despite the fact that the vector elements are actually just pointers
to objects located somewhere else.

template<typename T> class Proxy {
Proxy(T& object) : m_ptr(&object) {}

implicit operator T&() { return *m_ptr; }
implicit operator const T&() const { return *m_ptr; }

private:
T* m_ptr;
s

struct MyClass {
using Type = int;
int x;
void f£(Q);
static void s();

i
void g(MyClass& o) ;

void test()

{
MyClass obj;
Proxy<MyClass> p(obj);
Proxy<MyClass>* pp = &p;

p-£O; // As Prozy<T> does not have an f check its bases and ICF return types
p.x = 43; // As Prozy<T> does not have an = check its bases and ICF return types
g(p); // As g does not take a Prozy<T> check its bases and ICF return types

https://wg21.link/p0352r0
https://wg21.link/n4035
https://wg21.link/p0352r0
https://wg21.link/n4035
https://wg21.link/p0352r0
https://wg21.link/p0700r0
https://wg21.link/n4035

// All name lookup considers mames in bases and ICF return types
Proxy<MyClass>: :Type anInt;

// operator-> constders names in bases and ICF return types
pp—>£0);
pp—>MyClass::£(); // Redundant but allowed and useful i1f Prozy had had its own f.

Proxy<MyClass>::s(); // Call static method of MyClass using name lookup.

Proxy works like std: :reference_wrapper but you can use . instead of =>. and it can be used as an argument
without dereferencing with *. This works exactly as if Proxy<T> had inherited T when it comes to name lookup
and function overload resolution.

Even if there are multiple ICFs in the handle class inheritance name lookup rules apply: This works exactly as
multiple inheritance. Even if the value type has ICFs we’re covered, it works exactly as if the base class has a
base class.

An ICF can be combined with a non-explicit constructor or user defined conversion function as it counts as a
base class conversion for purposes of overload resolution, this makes the following example legal:

class A {
I8

class B {
B(const A&);
I8

void f(B b);

A a;
Proxy<A> pa(a);

f(pa); // This works despite invoking both ICF on pa and constructor of B.

4 Overload resolution rule implications

More formally an ICF has the rank of conversion, just like a derived to base conversion.

An ICF constitutes a standard conversion which means that it can be combined with a user-defined conversion
i.e. a constructor call or non-implicit user-defined conversion function. It can also be combined with derived
to base class conversions or further ICFs just like multi-level derived to base conversions are possible. There
may be an entire sequence of combined ICFs and derived to base conversions in any order before and after a
constructor or non-implicit user defined conversion function.

If the conversion sequence that the ICFs are part of is not distinguishable by rank and the rules for const and
reference binding does not break the tie the rule of fewest combined number of derived to direct base and implicit
conversion steps is used to break the tie. If multiple such paths have the same number of steps the conversions
are equally good and may render the call ambiguous (if other argument conversions don’t break the tie).

4.1 Pointer conversion rules

A pointer to derived can be converted to a pointer to base, which indicates that a pointer to a handle object
should be possible to convert to a pointer to the value type.

This should at least work if the user-defined conversion returns a reference, under the assumption that this
reference will refer to some object with sufficient lifetime. However, unlike inheritance, there is no guarantee
that this is true provided by the language.

If the ICF returns by value the pointer would point to a temporary which likely has shorter lifetime than the
pointer. This should not be allowed as it would invite dangling pointer problems. This is thus proposed to be
illegal.

4.2 Returning a base type

It is not very useful to return a base type from an ICF in a derived type. By the rules of inheritance the names
in the base are always ambiguous in this case (corresponding to the same class inherited twice in the base class
hierarchy). One possible use would be to make a base further up in the hierarchy with protected inheritance
publicly available. But who uses protected inheritance anyway?

class B {
void £(Q);
I8

class S : public B {
implicit operator B&() { return other_b; }

private:
B other_b;
};
S s;
s.£0); // Ambiguous.

To make this somewhat more useful one idea would be to bend the rules so that the base instance returned by
the ICF is preferred, which would allow using an ICF to specify a preferred instance of the base class in cases
where it is currently ambiguous. This does not seem to be an important enough use case to deviate from the
rule that name lookup works as for inheritance, so it is not proposed.

4.3 Returning a derived type

When returning a derived type from an ICF of a base type the names in the base type itself are considered
before names in the ICF’s return type are considered. When the ICF is considered and further derived to base
conversions end up back at the class declaring the ICF compilers must make sure not to try the same ICF again
as it could end up as an infinite recursion or loop during compilation. This can easily be avoided, but it would
also be possible to forbid implicit conversion operators to a derived class. As the compiler logic to avoid the
infinite recursion or issue the error message is the same it is proposed to allow this construct, mandating the
compilers to block the meaningless repeat of the same ICF.

class S;

class B {
implicit operator S&Q); // No error here

};

class S : public B { // No error here
};

S s;
s.£0; // Error: No f found. Compiler is mot allowed to crash or hang.

4.4 Qualified name lookup and the scope resolution operator

To explicitly access a member of a base class you can qualify its name with the base class name. In this case the
compiler finds the base class in the inheritance tree from the declared type of the object or pointer the name is
looked up in. In this case ICF return types are included in this search in the same way as base classes.

When applying the scope resolution operator to a handle type the names in value types returned by its ICFs
are considered in concert with names in base classes of handle. This allows all the uses of such names, including
nested types, enumerators, type aliases, static member functions and static data members.

5 implicit is not a full keyword

implicit is a contextual keyword, you can still use it as an identifier, it only has the special meaning when
followed by the keyword operator. This type of prefix context-sensitive keywords were pioneered by Corentin
Jabot in the universal template keyword combination suggested for universal template parameters. There is
no valid syntax where an identifier can be followed by the keyword operator.

6 Other aspects to consider

The correspondence to inheritance is limited to name lookup rules. Other aspects are not the same as for
inheritance, where implicit conversion operators instead work as their non-implicit counterparts.

Most of these aspects have been covered in previous proposals but the coverage of member pointers, virtual ICFs
etc. here is more detailed, with rationale for why different possibilities are included or excluded.

6.1 An implicit cast operator can return any type

It is possible to return a non-class type from an implicit user-defined conversion function. It would be close
at hand to forbid this as you can’t inherit from fundamental types, pointers or C-arrays. Also, as these types
don’t have members the resulting operator. () functionality would not come to use. There would be other uses
though, for instance we could have a convenience class like this:
template<typename T> class Stringable {
public:

Stringable() = default;

Stringable(const T& src) : m_object(src) {}

Stringable& operator=(const T& src) { m_object = src; return *this; }

implicit operator T&() { return m_object; }
implicit operator const T&() const { return m_object; }

std: :string to_string() const { return std::to_string(m_object); }
[[nodiscard]] bool from_string(std::string_view str);

private:
T m_object;
};

void test()
{
Stringable<int> a = 1, b = 2;

auto str = a.to_string(); // Ok

auto str2 = (a + b).to_string(); // Nope: a + b adds the int "bases" returning an int!

}

Now we must imagine that int is a base class of Stringable<int> and thus we see that as no operator+()
exists for Stringable<int> we can instead call the “base class” operator+(), which is just int addition.

6.2 Final classes

If we model ICFs too closely after inheritance it would be logical to disallow returning final classes. However,
this is probably not a good idea, final is about optimizing virtual calls and other reasons to avoid inheriting
further. These reasons for final don’t apply to value classes returned by ICFs.

6.3 Overriding virtual methods

Allowing overrides of methods of the value type in the handle type is not possible as that would require modifi-
cation of the vtable pointer in the value object, which is potentially not owned by the Handle.

It is allowed to declare what looks like an override of a virtual function of the value class in the handle class.
This is however a new function, so It is prohibited to use the override specifier. This provides some measure
of protection in case programmers think that such overriding is possible.

6.4 Virtual inheritance

A very odd and unusual case would be if both the Handle and the Value inherit the same type virtually.

class Base {
void £(Q);
g

class Sub : public virtual Base {};

class Proxy : public virtual Base { // Error in case 1.
implicit operator Sub&(); // Error in case 2.

};

Proxy p;

p-£O; // Error in case 3, ambiguous call.

This causes the same problem as with virtual functions, that the vtable or other data structure used by the ABI
to find the virtual base would not be possible to change in the value object referred to by the handle object.
The remaining question is whether it should be prohibited to:

1. Inherit anything virtually if the class has an ICF.

2. Declare an ICF with Value type that inherits the same type virtually as the Handle type containing the
ICF.

3. Try to access the virtual base’s members from the type containing the ICF function in this case, i.e. make
the access ambiguous despite that it would be allowed in the corresponding inheritance case.

As this is a very odd case it would be fine with any of these options, but 1 seems like a rather odd restriction.
2 has some logic to it, but 3 is consistent with the underlying reality: There are two different Base sub-objects
and no way to select which one is better except using the scope resolution operator which in this case can only
be used to select the base of Sub, not the base of Proxy.

6.5 Member pointers

Member pointers and applying them to objects with ICFs requires extra handling. Remember that member
pointers follow the contra-variant principle: The member pointer must be for a member of a base class (or

the same class) as the object it is applied to. When the member pointer is created using the &Class: :member
syntax the compiler must check in which base class of Class the member is found. To get from the Class object
reference that is provided at the call site to the object reference of the class where member was found may today
require offset adjustments and/or virtual base class pointer indirections. The only way to implement this is to
pack more information into the member pointer. As explained here thunks can’t be used as it makes casting
to a base class pointer type impossible with multiple and/or virtual inheritance. Compilers have to inspect the
base classes to see if there is any multiple inheritance and/or virtual inheritance, and decide on a suitable layout
of a member pointer type for this class. With ICFs the member pointer type must have room for pointers to as
many ICF functions as maximally needed to get to any class the class can be converted to. In fact unbounded
member pointer size is already an issue if there are multiple levels of virtual inheritance. None of the major
compilers can handle this today (right?).

Note that it is the conversion of an object reference to the class for which the member pointer is created to
the class where the member is found that has to be encoded in the member pointer, the conversion from the
pointer /reference type to the declared class of the member pointer is implemented at the point where the member
pointer is used and is fully known there.

A new variant of function pointer layout can be devised that has an option for calling an ICF instead of doing
an indirection to a virtual base. This is not an ABI breaking change as only classes with ICFs somewhere in the
inheritance hierarchy would need the new member pointer layout, and there are no such classes in old code.

class Value {
void f£(Q);
I8

class Handle {
void gQ;
implicit operator Value&();

};

using HPP = void(Handle::*) ();
HPP pf = Handle::f;

HPP pg = Handle::g;

Handle h;

(h.*xpf) O // ICF must be called
(h.*xpg) O // ICF must not be called.

As seen in this example the function pointer type HPP must contain information about whether the ICF must be
called to convert a Handle reference to a suitable object reference to use when calling the function pointed to
by the HPP. It is also quite obvious that this variety of function pointer layout must be used whenever an ICF
is found anywhere in the inheritance hierarchy of Handle, as it is possible to assign a member pointer type to
a member of any base class. It should also be obvious that no old code compiled before ICFs were a thing can
use a member pointer to a member of a class which has a ICF, or as a corollary, that it is not allowed to add an
ICF in a class hierarchy if any subclass of that class is used by code that is not feasible to recompile. This is no
stranger than the fact that you can’t add a member to class if you can’t recompile code that uses it.

Thus, while there is no ABI break involved there is certainly ABI design. Currently ABIs are designed so that
one virtual inheritance level and one or two non-first inheritances (i.e. object pointer offset additions) can be
represented. With ICFs in the mix it may be appropriate to design a more complete solution which covers all
possibilities. This may make member pointers extremely large but the layout can always be specified knowing
the contents of the inheritance hierarchy of the class of the member pointer type (Handle in the example above).
An ABI designer may also choose to add an indirection level for more complex cases, for instance limiting the
size of the pointer to two regular pointers, and if more is required let the second pointer point at a descriptor
block.

Member pointers that point to non-virtual member functions have to contain the address of the function to call

https://rants.vastheman.com/2021/09/21/msvc/

in addition to any information about how to modify the object reference before doing so. Thus the minimum
size of a member pointer must be two memory pointers, one to the function and one to the ICF. Some low bits
may be used to differentiate different modes, or a conversion function created for the purpose could always be
called. Many options are available to ABI designers and compiler vendors, as they already limit the complexity
of scenarios where member pointers are allowed. Note that if the ICF is virtual it needs a different encoding
where the address of the ICF is replaced by a vtable offset.

Note that if D3312R0 for overload-set-types is adopted taking the address of an overloaded member function
would be allowed. However this is a compiler time facility so it does not change anything regarding member
pointers, except when they can be created. The overload-set-type is created by &Class: :member but if member
is an overloaded function nothing more happens until it is statically cast to a member pointer type, at which
point the same member pointer layout selection is made as if the static_cast was applied to the overloaded
member function name directly.

6.6 Explicitly calling virtual methods in a value class

If both the Handle and the Value have declared the same member name it would be tempting to use
handle.Value: :name as a way to reach the Value’s version of the name. This is proposed. However, if name is
a virtual function we are in a pickle. With inheritance we use Value: :name to call the implementation of the
virtual method as seen from Value. This is usually not what you want in the case of name clashes between the
Handle and the Value, but that’s what the rules say. If we change those rules there would be no way to call
the exact function specified, and it would be confusing if it worked differently than if Value was a base class of
Handle.

To retain virtual dispatch you instead writestatic_cast<Value&>(handle) .name (args) which forces the im-
plicit conversion function to run (just as if it hadn’t been implicit). Then virtual dispatch is performed as any
like-named member function in the Handle is no longer hiding the target function, and no scope resolution
operator was used to pin down which override to call.

This said named members of generic Handle classes should be avoided as there is always a risk of clashes, and
users of the handle class don’t want to static_cast all the time just to make sure the Handle’s members are
not interfering.

6.7 Returning incomplete classes

While it is not possible to inherit from an incomplete class it should be possible to define an ICF that returns
an incomplete type, this is consistent with any other function. Even when returning by value it is possible to
declare an ICF returning an incomplete type, but not defining it.

Using the returned value is restricted as usual, which means that failing name lookup in the handle class is an
error if the return type of any ICF is incomplete. This is true even if the Handle has other ICFs returning
complete types or has base classes, as the incomplete type prevents checking for ambiguous name lookup.

Using static_cast to an incomplete Value type is allowed but the returned type is still incomplete and has the
same restrictions.

6.8 Downcasting

For inheritance you can downcast a reference using static_cast if you know what you're doing and with
dynamic_cast if you don’t. Performing static_cast from a class to an object returning that class from an
ICF is impossible as the address offset between them is not a constant. This is consistent with the fact that
static_cast can not downcast from a virtual base to a subclass for the same reason.

It is possible to downcast to a derived class inheriting the base class virtually using dynamic_cast. However,
dwncasting from value to handle impossible even using dynamic_cast as the value object passed to dynamic_cast
does not know of its handle object and may in fact have any number of handle objects referring to it.

10

https://isocpp.org/files/papers/D3312R0.pdf

6.9 Using declarations bringing in Value type members

With inheritance it is possible to bring otherwise hidden names into scope by a using declarations of the form:

using Base::value_name; // Bring in values from base class, dependent or not.
using typename Base::type_name; // Bring in types from dependent base class.
using Base: :Base; // Bring in base class constructors.

Even disregarding dependent bases this is useful to avoid that subclass member functions hide base class member
functions and to bring the overload sets together. For dependent bases it is a mandatory way to tell the compiler
that the actual base will have these names as values and types respectively. Using declarations for base class
constructors is often convenient when subclasses don’t need to change their signatures.

It is proposed to allow bringing in names except constructor names into the handle type from the value type,
bearing in mind that it is not recommended to declare member names in generic handle classes. Using dec-
larations for constructors are however meaningless as the handle class does not construct the value class in a
foreseeable way.

6.10 Copy/move assignment /construction

The existence of an ICF in a class does not affect how it is copy constructed or assigned. This offers full flexibility
on how to handle these operations, and as this is not inheritance there is no base class construction or assignment
to take care of.

6.11 sizeof, alignof

When applying sizeof and alignof on Handle types the ICFs do not affect the return value. As this is not
inheritance there is nothing strange with the fact that the size of a Handle object can be less than the size of
the return type of the ICF.

6.12 Protected member access

The fact that a class has an ICF returning objects of some class does not allow it to access protected members
of the returned type. This is an arbitrary decision informed by the current use cases, which can be revisited if
some rationale for allowing access to protected value class members can be found.

6.13 ICFs can be virtual

Non-implicit conversion functions may be virtual. This means that one can have a group of handle classes that
return the same Value type and then take a reference or pointer to the handle class base class. Does not seem
particularly useful but also it doesn’t seem to increase complexity much, it’s just that the dispatch to the ICF
can be virtual, it doesn’t change when it is called.

For the member pointer case it will add another complication though, where static or virtual dispatch to an ICF
must be possible to select at runtime.

7 Examples
Here are a few examples of the usefulness of implicit conversion operators. Note that none of these are part of

this proposal, which deals with the core language feature only.

7.1 The return type for string interpolation

A problem with std::format is that it returns std::string which is suboptimal if the intended operation is to stream
the result of performing the formatting to for instance an ostream or into a pre-allocated buffer. Unfortunately
we can’t change the return type of std::format at this time but if we get string interpolation with f-strings there is

11

a new opportunity for optimization lost if we let it produce a std: :string. To counter this the initial proposal
for string interplolation (not yet published) added separate x-literals to serve this purpose. With a new type
with an ICF returning std: :string we don’t need to have different literal prefixes to get optimal performance
in all cases.

struct formatted_string {
using auto = std::string;

formatted_string(std::basic_format_string<char, Args...> fmt, Args&&... args)
m_fmt (fmt), m_args(std::make_format_args(std::forward<Args>(args)...)) {}

implicit operator std::string() { return std::vformat(m_fmt.get(), m_args);

std::basic_format_string<CharT, Args...> m_fmt;
decltype(std: :make_format_args(std::declval<Args>()...)) m_args;
Irg

Now, if an f-literal results in a formatted_string any use that requires a std::string the ICF is implicitly called,
performing the formatting, while a new overload of std: :print and similar functions can use the m_fmt and
m_args members directly to optimize performance.

To avoid dangling references when the m_args member refers to temporary results of expressions inside the
f-string the using auto = std::string; construct is used, but this requires the [N4035] proposal.

7.2 A universal lazy argument type

Any function that conditionally uses an argument with deduced type, such as value_or of the monadic API can
benefit from a lazy evaluation wrapper in case the conditionally used value is costly to compute. Using an IFC
a generic lazy wrapper can be designed so that the costly computation is performed on demand, without the
called function (such as value_or) being aware of the lazy wrapper. This is not possible today.

template<typename F> struct lazy {
lazy(F f) : func(std::move(f)) {}

implicit operator decltype(auto) () { return func(Q; }

F func;

};

7.3 A better reference wrapper

By making the user defined conversion function of std::reference_ wrapper implicit the reference_ wrapper can
be used as the object it wraps in all cases, where today this is limited to when used as a function argument
when the parameter type does not require further user specified conversions. There should be no major break-
ing changes caused by making this conversion function implicit as it only makes illegal code legal. Only the
unavoidable SFINAE related breakages can happen (i.e. when SFINAE or constraints are used to detect that
you can’t do the things that this change enables). It is outside the scope of this proposal to determine if this
is acceptable, but if it is it would increase the usability of reference_wrapper a lot, and if it isn’t maybe a new
parallel class like copyable_reference with this semantic should be added.

7.4 A more intuitive polymorphic/indirect

The new polymorphic/indirect class templates are prime use cases where it would be logical to use dot notation
for access as they are not nullable except by moving from them.

A better approach could be to have a nullable copying ptr and then complement that with a smart reference
copying_ ref as described below. This makes the set of “smart” classes orthogonal between copy semantics and

12

https://wg21.link/n4035

nullability.

7.5 Non-nullable smart references

It would be interesting to get shared_ref and unique_ref classes for the shared and unique semantics apart
from the deep-copy semantics of polymorphic and indirect, but without the nullability of shared_ptr and
unique_ptr. Likewise, a pointer_ref class would be a way to indicate that the pointer shall not be null, but
still allow free copying. This is essentially the same as the better refererence_wrapper discussed above but with
a name consistent with the other new classes described here.

While these types would have the same copy semantics as their smart pointer counterparts deep copying into
the referred object is not as straight-forward as with pointers where you can easily dereference before assigning.
Instead static_cast<value_type&>(ref) can be used, which will call the ICF. Alternatively *&ref can be
used, employing the overloaded operator shown below.

Another thing that may be interesting is to get at the embedded pointer to for instance be able to compare
pointers for equality rather than the referred objects, or to just continue using a shared_ptr without requiring
enable_shared_from_this inheritance on the value_type. To enable this a std: :unwrap friend function can
be defined.

namespace std {

template<typename PTR> class universal_ref {
public:
using value_type = pointer_traits<PTR>::element_type;

universal_ref() = default;

// Construct from the pointer-like, which must not be null.
universal_ref (const PTR& src) pre (src) : m_ptr(src) {}
universal_ref (PTR&& src) pre (src) : m_ptr(std::move(src)) {3}

// These conversions implement the operator. () functionality:

implicit operator value_type&() & { return *m_ptr; 7

implicit operator const value_type&() const & { return *m_ptr; }

implicit operator value_type() && { return std::move(*m_ptr); } // Maybe not: shared_ptr!

// These are needed to hide universal_ref when operatorfy is used. Formulated as &*m_ptr to
// let value_type: :operatort kick in if it is implemented.

decltype(auto) operator&() & { return &*m_ptr; }

decltype(auto) operator&() const & { return &*m_ptr; }

friend const PTR& unwrap(const universal_ref& src) { return src.m_ptr; }
friend PTR unwrap(universal_ref&& src) { return std::move(src.m_ptr); }

private:

PTR m_ptr;
s
// We could include type aliases for different smart and less smart pointers.
template<typename T> using shared_ref = universal_ref<shared_ptr<T>>;
template<typename T> using unique_ref = universal_ref<unique_ptr<T>>;

template<typename T> using pointer_ref = universal_ref<Tx*>; // A more transparent reference_wrapy

} // namespace std

13

— shared_ref and unique_ref requires unwrap to be used to access smart pointer methods such as
shared_ptr: :use_count or unique_ptr: :release which is intuitive.

— shared_ ref and unique_ ref are created using make shared and make_unique as they have constructors
from the corresponding pointers.

— relational operators compare the values returned by the ICF as there is no comparision operators defined.

— The rvalue overload of the ICF returns by value in keeping with the str() && overload of stringstream.
This avoids dangling references in case the returned value is captured by a reference for later use. This
is somewhat problematic for shared_ref as we should only move from the pointee if use_count() == 1,
but it is still logical as when you are moving a value from one handle to a shared value this moving is
visible from all the handles.

Here are some usage examples.

shared_ref<MyClass> a = make_shared<MyClass>(1);
shared_ref<MyClass> b = make_shared<MyClass>(2);

a == b; // compare MyClass objects

std: :unwrap(a) == std::unwrap(b); // Compare pointers

a = b; // Assign between shared pointers

*&a = b; // Assign between MyClass objects. For b the ICF 4s called to convert.
static_cast<MyClass&>(a) = b; // Assign between MyClass objects. For b the ICF is called to convert.

shared_ptr<MyClass> p;
shared_ref<MyClass> c = p; // Assert, tried to construct from a null pointer!

As can be seen the assignment is not consistent with the comparison, but if the operator= was between objects
the properties of sharing and cheap moving would be lost and require std: :unwrap(a) = std::unwrap(b)
which seems counter-intuitive given the class names.

8 Syntax alternatives

Some alternate syntaxes were considered before settling on the main proposal above. These alternatives were
found to be more problematic than putting the intuitively understandable context-sensitive keyword implicit
on a conversion function.

8.1 Explicitly stating inheritance by reference in the base class list

This syntax is a slight variation of the class Sub : using public Base syntax of [P0352R0] and has the same
drawbacks.

The drawback with the proposed syntax in this proposal is that it doesn’t show clearly that we should think of
inheritance, as the value type is not in the base class list. A variation of the syntax is to state that the handle
inherits by reference. Unfortunately this is not enough, we still need to write the code that returns the T&
somewhere. This would reasonably be in a regular conversion function:

template<typename T> class Proxy : public T& {
Proxy(T& object) : m_ptr(&object) {}

operator T&() { return *m_ptr; }
operator const T&() const { return *m_ptr; }

private:

T* m_ptr;
I8

14

https://wg21.link/p0352r0

The drawback of this is that we have to write two things in concert at different places in the class definition. On
the other hand cast operators is already a well known concept.

The advantage of this formulation is that there is no extra keyword and that we can specify private inheritance
if we want, although it is hard to see a use of this as then the outside user would not be able to access the value
anyway.

A drawback is that it would be a harder sell to allow T to be int if T is mentioned in the base class list. Similarly
the non-similarities mentioned above that you can’t override methods but can create ICFs returning final classes
speak against putting the T in the base class list, as does the fact that it blocks the possibility of returning an
instance of a nested class from the ICF.

There are more exotic possibilities like putting the body of the cast operator in the base class list:

template<typename T> class Proxy : public T{ return *m_ptr } {
Proxy(T& object) : m_ptr(&object) {}

private:
T* m_ptr;
s

While this is terse it seems rather odd to have code in the base class list, and it is certainly much bigger change
in the compiler.

8.2 Just allowing inheritance from references

While it may seem tempting to let the T& in the base class list just result in a T& subobject being created
automatically, with the current rule that references must be initialized (in this case in the constructor). However
this severely limits the usability of the feature as it does not allow for replacing the T object, it always refers to
the same object it was initialized to.

Extending this to ability to inherit from anything, for instance unique_ptr<T> is not feasible as this is already
possible with another meaning. Inheriting from unique_ptr<T>& would be possible but then there must be some
rule to prevent this from resulting in a base class subobject of the reference type. This could be feasible and
then the Handle class would inherit T*& which would result in a base class subobject of type T* but then the
language must automatically dereference the subobject to find the names supposed to be made visible by the
indirect inheritance, which makes the feature obscure and less general.

Another try would be to inherit with a leading * which is to be interpreted as the following type being the type
of a base class subobject but where operator* is always applied to it automatically. However, to manipulate the
pointer-like itself requires some other syntax which is not easy to define.

8.3 Circling back to operator.()

The importance of this proposal is not the spelling of the feature, but that its name lookup semantics is defined
in terms of inheritance. There is actually nothing to prevent the spelling from being operator. () as proposed
long ago. This has the advantage of avoiding a new keyword and being intuitive up to a point. The fact that
with this semantics applying a dot does not invoke operator. () if there is a matching name in the Handle is
however less intuitive. Also, while f (a) is natural if it calls a conversion function to convert a from handle to
value calling operator. () to accomplish a type conversion is very strange.

9 Implementation experience

None so far.

15

10

Wording

There is no wording yet, but as this proposal claims to be easier to word than an operator.() proposal here is a
sketch of how the wording changes could be introduced:

11

Define the term ICF and the grammar addition needed to be able to declare one.
Describe the rules for returning derived and base classes from ICFs.
Define a term for base classes and ICF return types together.

Change the use of base class to this new term in sections about name lookup, overload resolution and the
scope resolution operator.

Do not use the new term in the section about implicit upcasting of pointers but add a parallel section
detailing that upcasting of pointers with ICFs requires the returned type to be a reference type.

Change the use of base class to this new term (where possible) or add clauses for ICFs in the sections about
member pointers. Do not change the leeway given to implementations to not allow arbitrarily complex
member pointer types, but maybe recommend that compilers at least allow one ICF call or one virtual
base indirection in addition to multiple-inheritance related offset additions.

Augment the section on using declarations to use the new term except when discussing using declarations
of base class constructors.

It may be needed to mention that name lookup is ambiguous if handle and value inherit the same base
class virtually, but maybe this is somehow covered by existing wording.

References

[N4035] P. Gottschling, J. Falcou, H. Sutter. 2014-05-23. Implicit Evaluation of “auto” Variables and
Arguments.
https://wg21.link/n4035

[N4477] Bjarne Stroustrup, Gabriel Dos Reis. 2015-04-09. Operator Dot (R2).
https://wg21.link /nd477

[P0352R0] Hubert Tong, Faisal Vali. 2016-05-30. Smart References through Delegation: An Alternative to
N4477’s Operator Dot.
https://wg21.link /p0352r0

[PO416R1] Bjarne Stroustrup, Gabriel Dos Reis. 2016-10-16. Operator Dot (R3).
https://wg21.link/p0416r1

[PO700R0] Bjarne Stroustrup. 2017-02-21. Alternatives to operator dot.
https://wg21.link /p0700r0

16

https://wg21.link/n4035
https://wg21.link/n4477
https://wg21.link/p0352r0
https://wg21.link/p0416r1
https://wg21.link/p0700r0

	Abstract
	Previous work
	Comparison to P0416R1
	Comparison to P0352R0
	Relation to N4035
	Relation to P0700R0

	Introductory example
	Overload resolution rule implications
	Pointer conversion rules
	Returning a base type
	Returning a derived type
	Qualified name lookup and the scope resolution operator

	implicit is not a full keyword
	Other aspects to consider
	An implicit cast operator can return any type
	Final classes
	Overriding virtual methods
	Virtual inheritance
	Member pointers
	Explicitly calling virtual methods in a value class
	Returning incomplete classes
	Downcasting
	Using declarations bringing in Value type members
	Copy/move assignment/construction
	sizeof, alignof
	Protected member access
	ICFs can be virtual

	Examples
	The return type for string interpolation
	A universal lazy argument type
	A better reference wrapper
	A more intuitive polymorphic/indirect
	Non-nullable smart references

	Syntax alternatives
	Explicitly stating inheritance by reference in the base class list
	Just allowing inheritance from references
	Circling back to operator.()

	Implementation experience
	Wording
	References

