
Document Number: P3319R2

Date: 2024-11-19

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: SG9, LEWG

Target: C++26

Add an iota object for simd (and
more)

ABSTRACT

There is one important constant in SIMD programming: 0, 1, 2, 3, In the standard library

we have an algorithm called iota that can initialize a range with such values. For simd we want to
have simple to spell constants that scale with the SIMDwidth. This paper proposes a simple facility

that can be generalized.

CONTENTS

1 Changelog 1
1.1 Changes from revision 0 . 1
1.2 Changes from revision 1 . 1

2 Straw Polls 1
2.1 SG9 at Wrocław 2024 . 1

3 Motivation 2
4 Generalization 3
5 Alternative: reuse existing iota 4
6 Naming: Is reuse of the term “iota” confusing or helpful? 6
7 Relation to list-initialization of simd 6
8 Proposed polls 6
9 Wording 7
A Bibliography 7

P3319R2 1 Changelog

1 CHANGELOG

(placeholder)

1.1 changes from revision 0

Previous revision: P3319R0

• Add a simple example to the motivation section.

• Expand the “Generalization” section to clearly define the feature rather than just sketching

it. Also add a discussion of initial value and step.

• Discuss why reusing the existing iota algorithm/view does not work/suffice for the simd use
case.

• Discuss why iota_v is the right name.

1.2 changes from revision 1

Previous revision: P3319R1

• Add SG9 poll results.

• Add wording for std::simd_iota.

2 STRAW POLLS

2.1 sg9 at wrocław 2024

Poll:Wewant the variable template that creates an iota sequence described in the paper for basic_-
simd and arithmetic scalars.

SF F N A SA

6 1 1 0 0

Poll: The iota facility should be generalized to any sequence of static extent.

SF F N A SA

0 0 4 3 1

Poll: Assuming the author provides wording and a wording expert verifies that it matches design

intent, forward P3319R1 to LEWG for inclusion in C++26.

SF F N A SA

6 1 1 0 0

1

https://wg21.link/P3319R0
https://wg21.link/P3319R1

P3319R2 3 Motivation

3 MOTIVATION

The 90%1 use case for simd generator constructors is a simd with values 0, 1, 2, 3, … potentially

with scaling and offset applied. However, often it would be easier and more readable to use an

“iota” simd object instead.
generator ctor iota

std::simd <int > a([](int i) { return i; };

std::simd <int > b([](int i) { return 2 + 3 * i; };

auto a = std::iota_v <std::simd <int >>;

auto b = 2 + 3 * std::iota_v <std::simd <int >>;

1 Sorry, that number is completely made up.

2

P3319R2 4 Generalization

An example where an iota_v<simd> comes up is the calculation of the Mandelbrot set. The

program needs to iterate over all visible pixels and calculate the corresponding value in the complex

plane. Thus a loop like

for (int x = 0; x < 1024; ++x) {
float real = float(x) * scale + offset;

turns into

using floatv = simd <float >;
using intv = rebind_simd_t <int , floatv >;
for (intv x = iota_v <intv >; any_of(x < 1024); x += intv :: size ()) {

floatv real = floatv(x) * scale + offset;

The minimal definition I propose for basic_simd can look like this:

namespace std {
template <class T>

requires std:: is_arithmetic_v <T> or detail :: simd_type <T>
inline constexpr T
simd_iota_v = T();

template <detail :: simd_type T>
inline constexpr T
simd_iota_v <T> = T([](auto i) { return static_cast < typename T:: value_type >(i); });

}

If [P3287R0] is adopted to introduce a std::simd namespace, it would be called std::simd::
iota_v (and std::simd_generic::iota_v) instead.

4 GENERALIZATION

By defining a variable template std::simd_iota_v<T> where T must be a basic_simd type, we’re

simply initializing a sequence of values at compile time. We can create such an object for more

types. This is especially interesting for the degenerate case in SIMD-generic programming, where

T could e. g. be an int. An std::iota_v<int> is nothing other than an object int with value 0.
We can easily generalize to iota_v<std::array<T, N>> and iota_v<T[N]>. And the next step

then is to allow any type that

• has a static extent,

• has a value_type member type,

• can be list-initialized with N numbers of type value_type, where N equals the static extent of
the type, and

• where value_type() + 1 is an constant expression and convertible to value_type.

3

P3319R2 5 Alternative: reuse existing iota

But there are more types (in the standard library and beyond)wherewe can create such an object.

All we need is a type

1. with valid ranges::range_value_t<T> type (this could be weakened to also allow std::
tuple<int, int>),

2. with static extent (T::size(), T::extent, std::extent_v<T>, or std::tuple_size_v<T>),

3. and that can be list-initialized from a sequence of N integers (cast to range_value_t<T>),
where N equals the static extent of the type.

For the scalar case, a very general constraint requires T to be

• a regular type

• that can be list-initialized from a single value

• and that compares equal to that value after construction.

Consequently you could write

auto x = std::iota_v <float [5] >;
auto y = std::iota_v <std::array < my_fixed_point , 8>>;
// ...

A second generalization could allow different sequences other than only 0, 1, 2, 3, 4, …. std
::iota and std::ranges::iota take a value argument to define the first value in the sequence.

They do not allow any different step other than applying the pre-increment operator.

For simd, I would typically just write e. g.

constexpr auto vec = std::iota_v <std::simd <int >> * 3 + 5; // 5, 8, 11, ...

To construct the same sequence for an array, iota_v would require a “first” and a “step” argument:

constexpr auto arr = std::iota_v <std::array <int , 4>, 5, 3>; // 5, 8, 11, 14

Providing a (defaulted) “step” argument is simple and more general. The only reason, that I can

think of, for not adding it is that std::iota / std::ranges::iota don’t have it.

5 ALTERNATIVE: REUSE EXISTING IOTA

We already have std::iota and std::ranges::iota. Why isn’t that sufficient to create a solution

that composes?

One motivation for iota_v<simd<int>> instead of simd<int>::iota is that iota_v<int> works
while int::iota cannot work. The same is true for simd<int>(views::iota(0)) vs. int(views::
iota(0)). Supporting the degenerate case is very helpful for SIMD-generic programming.

4

P3319R2 5 Alternative: reuse existing iota

// scalar loop:
for (int i = 0; i < 1024; ++i) {

...
}

// simd loop:
for (auto i = iota_v <simd <int >>; all_of(i < 1024); i += simd <int >:: size) {

...
}

// simd - generic loop:
for (auto i = iota_v <T>; all_of(i < 1024); i += simd_size_v <T>) {

...
}

// alternative :
for (int ii = 0; ii < 1024; ii += simd_size_v <T>) {

T i = ii + iota_v <T>;
...

}

In addition, what simd(range) does depends on the outcome of P3299 “range ctors”. In any

case we are requiring contiguous_range. So simd(random_access_range) needs another paper

altogether (while convenient, this is rarely what the user wanted; making non-contiguous loads

ill-formed helps against “performance errors”). So we could overload for specific non-contiguous

ranges, where we know that we can restore good performance. But that’s going to be a closed set,

rather than a general concept.Why thenwould simd(std::views:iota(0))work but simd(boost::
views::iota(0)) is ill-formed?

Our desired outcome of P3299 is that simd(range) requires a statically sized contiguous range

with exactlymatching size. Thuswewould need to call std::simd::load<simd<int>>(std::views::
iota(0)) instead. This is now even more verbose than the current solution simd<int>([](int i)
return i;). It completely fails at the goal to make the code more readable.

Then what about std::views::iota(0) | std::ranges::to<basic_simd>()? It’s still too long

for a rather basic constant. And why should this work if both

• std::views::iota(0) | std::ranges::to<std::array>(); and

• std::views::iota(0) | std::ranges::to<std::array<int, 4>();

don’t work?

6 NAMING: IS REUSE OF THE TERM “IOTA” CONFUSING OR HELPFUL?

5

P3319R2 6 Naming: Is reuse of the term “iota” confusing or helpful?

In the Vc library, the library behind the initial proposal back in 2013, there’s a Vc::Vector<T>::
IndexesFromZero() constant. Back then SG1/WG21 wanted to reduce the scope for the TS to

a minimum and the constant was never considered any further. In any case, IndexesFromZero is a
fairly descriptive/elaborate name. But in the standard librarywe already have a term for a sequence

like this. And it’s “iota”. Using a different term for something that isn’t different (concept) is confusing

and incoherent.

std::iota has an existing meaning, as an algorithm that initializes a given existing range. What

this paper proposes is still sufficiently different that we don’t want to overload that exact name.

Instead, since we’re defining an “iota value”, we propose the name iota_v.
If we don’t move simd into a std::simd subnamespace and if we don’t want to generalize the

“iota value” beyond simd, then we should be considering std::simd_iota_v over std::iota_v.

7 RELATION TO LIST-INITIALIZATION OF SIMD

If we add a constructor to basic_simd that enables list-initialization, then many users might use

that in place of a generator constructor. This leads to code that doesn’t scale with the vector width

anymore. Therefore we should provide a simple facility that is concise and portable2.

8 PROPOSED POLLS

Poll: We want an iota facility for basic_simd

SF F N A SA

Poll: The iota facility should be generalized to scalars (for SIMD-generic programming)

SF F N A SA

Poll: The iota facility should be generalized to any sequence of static extent

SF F N A SA

Poll: The iota facility should be generalized to allow a different first value

SF F N A SA

2 in terms of SIMD width

6

P3319R2 9 Wording

Poll: The iota facility should be generalized to allow a different step value

SF F N A SA

9 WORDING

Add the following to [simd.syn], after the declaration of simd_cat:
[simd.syn]

template<size_t Bs, class... Abis>
constexpr basic_simd_mask<Bs, deduce-t<integer-from<Bs>,

(basic_simd_mask<Bs, Abis>::size() + ...)>>
simd_cat(const basic_simd_mask<Bs, Abis>&...) noexcept;

template<class T> inline constexpr T simd_iota = see below;

// [simd.mask.reductions], basic_simd_mask reductions

Add the following at the end of [simd.creation]:

[simd.creation]

5 Returns: A data-parallel object initialized with the concatenated values in the xs pack of data-parallel
objects: The 𝑖th basic_simd/basic_simd_mask element of the 𝑗th parameter in the xs pack is copied to
the return value’s element with index 𝑖 + the sum of the width of the first 𝑗 parameters in the xs pack.

template<class T> inline constexpr T simd_iota = see below;

6 Constraints: is_arithmetic_v<T> is true or T is an enabled specialization of basic_simd.

7 Effects: If is_arithmetic_v<T> is true the value of simd_iota<T> is equal to T(). Otherwise, the value
of simd_iota<T> is equal to T([](typename T::value_type i) { return i; }).

(9.0.0.1) 29.10.7.7 Algorithms [simd.alg]

A BIBLIOGRAPHY

[P3287R0] Matthias Kretz. P3287R0: Exploration of namespaces for std::simd. ISO/IEC C++ Stan-

dards Committee Paper. 2024. url: https://wg21.link/p3287r0.

7

https://wg21.link/p3287r0

	1 Changelog
	1.1 Changes from revision 0
	1.2 Changes from revision 1

	2 Straw Polls
	2.1 SG9 at Wrocław 2024

	3 Motivation
	4 Generalization
	5 Alternative: reuse existing iota
	6 Naming: Is reuse of the term “iota” confusing or helpful?
	7 Relation to list-initialization of simd
	8 Proposed polls
	9 Wording
	29.10.7.7 Algorithms [simd.alg] (9.0.0.1.0)

	A Bibliography

