
P3320 Slides for EWG telecon 
Alisdair Meredith 
ameredith1@bloomberg.net
May 15, 2024

Delete if incomplete?
Addressing a needless undefined behavior

mailto:ameredith1@bloomberg.net

Overview

• State the problem

• Provide examples

• Explore design directions

• Propose Solution

What is the Problem?
Gratuitous Undefined Behavior!

• The C++ standard states that it is undefined behavior to call delete on a
pointer to an incomplete class type, unless it satisfies some very specific
properties when the type is completed in the whole program

• These properties are impossible to diagnose in a single translation unit

What is the Problem?
Gratuitous Undefined Behavior!

• The C++ standard states that it is undefined behavior to call delete on a
pointer to an incomplete class type, unless it satisfies some very specific
properties when the type is completed in the whole program

• These properties are impossible to diagnose in a single translation unit

7.6.2.9 [expr.delete] Delete
“If the object being deleted has incomplete class type at the point of deletion
and the complete class has a non-trivial destructor or a deallocation function,
the behavior is undefined.”

Preferred Solution
A path towards a complete solution
• Do not immediately break valid C++23 code

• Deprecate even the valid C++23 cases for consistent compile-time diagnostics

• Intend to make ill-formed in a future standard

• Ill-formed future will also remove the remaining UB

• Use Erroneous Behavior to address destructor issues

• All usage is erroneous, including valid C++23 cases

• Retain UB if complete class overloads operator delete

• Resolved when future standard makes the call ill-formed

Example 1a
Well defined

namespace xyz {
 struct Widget; // forward declaration
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of incomplete class type
}

namespace xyz {

struct Widget {
 const char *d_name;
 int d_data;

 ~Widget() = default; // trivial destructor
};

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Example 1b
Undefined behavior

namespace xyz {
 struct Widget; // forward declaration
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of incomplete class type
}

namespace xyz {

struct Widget {
 const char *d_name;
 int d_data;

 ~Widget() {} // non-trivial destructor
};

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Example 2a
Well defined

namespace xyz {
 struct Widget; // forward declaration
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of incomplete class type
}

namespace xyz {

struct Widget {
 const char *d_name;
 int d_data;

 ~Widget() = default; // trivial destructor

};

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Example 2b
Undefined behavior

namespace xyz {
 struct Widget; // forward declaration
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of incomplete class type
}

namespace xyz {

struct Widget {
 const char *d_name;
 int d_data;

 ~Widget() = default; // trivial destructor

 void operator delete(void *) {} // class-specific deleter
};

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Observations
Part 1

• Does not apply to incomplete types other than class types. e.g., enumerations or
arrays of unknown bound

• The well-defined cases match the behavior of not calling a destructor, and
immediately calling global operator delete

• As it’s impossible to diagnose well-defined case from UB, the expectation is that
UB will do the same

• UB of not calling the destructor has a different impact of calling the wrong deleter

• However it is not UB to end the lifetime of an object without running its destructor

Example 3a
Well defined: wording has not been touched since 1998

namespace xyz {
 class Widget; // forward declaration
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of incomplete class type
}

namespace xyz {

class Widget {
 ~Widget() = default; // trivial destructor
};

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Example 3b
Ill formed, diagnostic required

namespace xyz {
 class Widget { ~Widget() = default; }; // class definition
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of complete type with private destructor
}

namespace xyz {

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Example 3a revisited
Well defined

namespace xyz {
 struct Widget; // forward declaration
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of incomplete class type
}

namespace xyz {

struct Widget {
 ~Widget() = default; // trivial destructor
};

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Example 3c
Broken!

namespace xyz {
 struct Widget; // forward declaration
 Widget* new_widget(); // factory function
} // close xyz

int main() {
 xyz::Widget *p = xyz::new_widget();
 delete p; // delete of incomplete class type
}

namespace xyz {

struct Widget {
 ~Widget() = delete; // deleted trivial destructor must be called!
};

Widget* new_widget() {
 return new Widget(); // needs the complete type or diagnosed error
}

} // close xyz

Observations
Part 2

• Wording has not been touched since 1998

• C++11 introduces deleted and defaulted destructors

• Current wording demands we call the trivial destructors

• Classes can now have private defaulted destructors that are trivial

• Calling inaccessible (trivial) destructor violates access control

• Deleted destructors are trivial

• Not clear what it means to call a deleted destructor

• Open a core issue?

Example 4: Templates introduce a grey zone
Must define Widget before first call to the template, rather than its definition

#include <iostream>
#include <new>

namespace xyz {
 struct Widget; // forward type decl.
 void report(); // forward function decl.

 auto new_widget() -> Widget*; // factory

 template <typename T>
 void reclaim(T *p) {
 delete p;
 }

 reclaim(p); // Sees complete class
 xyz::report(); // Prints 0
}

// Implementation details

void xyz::report() {
 using namespace std;
 cout << Widget::s_count << '\n';
}

auto xyz::new_widget() -> Widget* {
 return new Widget();
}

int xyz::Widget::s_count = 0;

 struct Widget {
 static int s_count; // # active
 const char *d_name;
 int d_data;
 Widget() { ++s_count; }
 ~Widget() { --s_count; } // non-trivial
 };
} // close xyz

int main() {
 xyz::Widget* p = xyz::new_widget();
 xyz::report(); // Prints 1

Explore Design Directions

• Make ill-formed

• Deprecate first

• Breaks valid C++23 code

• Define behavior

• Do The Right Thing

• Leak and reclaim memory

• Unspecified if destructor is called; behavior is erroneous

Do The Right Thing: Implementation A
Store a pointer to deleter with every new expression

• Similar to how delete[] works

• Similar to how shared_ptr works

• Handles delete through base class with non-virtual destructor

• Type must be complete before call to call new

• Well defined even if the class overloads operator delete

• Valid deleter guaranteed to be stored for delete to call

• UB to call delete on a pointer that was not a result of new

• Breaks ABI

• Adds access check for destructor when invoking new

Do The Right Thing: Implementation B
Delete looks for an implementation defined trampoline function

• Defers error detection to the linker

• Was the class ever completed?

• Must perform both destructor and memory reclaim to get the correct overload
of operator delete

• Trampoline emitted in TU with class definition

• Can be safely defined in multiple TUs as identical inline definition

• May selectively ignore access check if type is incomplete, as trampoline is
effectively a class member or friend?

Leak and Reclaim

• In other contexts, it is well defined to end an object’s lifetime without running its
destructor, c.f., ending lifetime by re-using or releasing storage

• Memory is reclaimed only for types that use the global operator new and
global operator delete for memory management

• Common belief that this is the overwhelming majority of cases

• UB remains for classes overloading operator delete

• Consistent with many implementations today

• Undiagnosed object leaks are still not a great solution

Erroneous Behavior
Unspecified whether destructor is called

• Erroneous behavior is the runtime analog of deprecation

• Behavior is minimally specified in order to remove undefined behavior

• Erroneous is specifically unreliable, as implementations are encouraged to provide
instrumentation and reporting at runtime

• Reporting may include program termination

• Does erroneous cover the existing well-defined sliver?

• Easier to instrument and diagnose if it does

• May break currently valid programs

Observations

• We cannot solve the class-specific delete without breaking either API or ABI

• We can define the destructor behavior without breaking either API or ABI

• UB regarding destructor is the overwhelmingly common case

• Preferred long term direction may dictate a different transitional solution

• We should accept that transitional may also be final if we remain committed
to no breakage in a future standard

Possible Directions

• Long term:

• Remove all potential for UB

• Option A: ill-formed — API break

• Option B: do it right — ABI break

• Transitional

• Address only the destructor concerns

• UB to delete if complete type overloads operator delete

• Option A: deprecate all usage; specify as Erroneous Behaviour when called; unspecified whether destructor is called

• Option B: defer destructor to link time; IFNDR if type is never completed

Comparing solutions across examples

Ex 1a
trivial

Ex 1b
Non-trivial

Ex 3
priv non-triv

Ex 3
deleted

Ex 3
private trivial

Ex 2
overload op

Ex 5
template

C++23 Cleans up UB UB UB1 Break access
control UB IFNDR

Do not destroy Cleans up Leak object Leak object Leak object Cleans up UB IFNDR

Erroneous
behavior Cleans up Deprecated Deprecated Deprecated Deprecated2 UB IFNDR

Ill-formed API break API break API break API break API break API break API break

Call destructor Cleans up Cleans up Break access
control IFNDR Break access

control UB Cleans up

Get it “right”
Break ABI Cleans up ABI break Break access

control IFNDR Break access
control ABI break ABI break

Footnote 1: C++23 specification suggests UB as long as we assume that deleted destructors are never trivial

Footnote 2: The erroneous behavior cleans up correctly, as it is specified to not call the (inaccessible trivial) destructor

Color Key Perfect clean-up Inconsistent specification Unbounded bad behavior

Comparing solutions across examples

Ex 1a
trivial

Ex 1b
Non-trivial

Ex 3
priv non-triv

Ex 3
deleted

Ex 3
private trivial

Ex 2
overload op

Ex 5
template

C++23 Cleans up UB UB UB1 Break access
control UB IFNDR

Do not destroy Cleans up Leak object Leak object Leak object Cleans up UB IFNDR

Erroneous
behavior Cleans up Deprecated Deprecated Deprecated Deprecated2 UB IFNDR

Ill-formed API break API break API break API break API break API break API break

Call destructor Cleans up Cleans up Break access
control IFNDR Break access

control UB Cleans up

Get it “right”
Break ABI Cleans up ABI break Break access

control IFNDR Break access
control ABI break ABI break

Footnote 1: C++23 specification suggests UB as long as we assume that deleted destructors are never trivial

Footnote 2: The erroneous behavior cleans up correctly, as it is specified to not call the (inaccessible trivial) destructor

Color Key Perfect clean-up Inconsistent specification Unbounded bad behavior

Preferred Solution
We know how to migrate an API break, but not an ABI break
• Do not immediately break valid C++23 code

• Deprecate even the valid C++23 cases for consistent compile-time diagnostics

• Intend to make ill-formed in a future standard

• Ill-formed future will also remove the remaining UB

• Use Erroneous Behavior to address destructor issues

• All usage is erroneous, including valid C++23 cases

• Retain UB if complete class overloads operator delete

• Resolved when future standard makes the call ill-formed

