
Nicolai Josuttis: P3329R0: Healing the Filter View

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P3329R0
Date: 2024-11-13
Reply to: Nicolai Josuttis (nico@josuttis.de)

Co-authors:

Audience: SG9, LEWG, LWG
Issues:

Previous:

Healing	the	Filter	View,	Rev	0	
For filter views, several basic and common use cases cause unexpected compile-time errors and fatal
runtime errors with undefined behavior. Because almost all of these effects are not obvious, ordinary
programmers get confused and frustrated by error messages and behavior they do not understand or,
even worse, are not aware that their code is highly fragile or even broken.

As a consequence, the filter view and the view library as a whole is considered to be unusable and
dangerous for many companies and projects and more and more banned from being used.

Most of the broken use cases are a consequence of the fact that filter views cache begin(). You would
expect that internal caching causes no harm, because it should be transparent for an API. However, this
is not the case for filter views. Instead, the caching of filter views has dramatic consequences for its
behavior. You might assume, then, that there is a compelling reason for non-transparent caching.
However, it turns out that the only reason is to avoid possible bad performance of some special and rare
use cases.

This paper suggests to “heal” the filter view so that it works as expected, is simple to use, even by
ordinary programmers in safety critical environments in natural and obvious ways.

The	Current	Problems	of	the	Filter	View	in	a	Nutshell	
The current design of the filter view leads to the following problems, which are discussed below in detail:

Problem Description Category Effect
Read iterations do not
work with const

Cannot use a filter view
when it is const

Compile-time errors Highly confused and
frustrated
programmers.
Compromises the basic
paradigm of const-
ness.

empty() is not stateless Calling empty() may
change/compromise
behavior

Runtime errors Calling
if (v.empty())
may change program
behavior.

Read iterations are not
stateless

Printing elements may
change/compromise
behavior

Runtime errors Adding a print
statement may change
program behavior.

Concurrent reads are
not thread safe

Concurrent Read
Access may be Broken

Runtime errors Undefined behavior
when two threads read
using a filter view.

Modifications between
iterations are not safe

Broken Use Cases
when Modifying
Elements between
Using the Filter View

Runtime errors Wrong/invalid elements
are processed.

Modifications via filter
iterators are not safe,
when breaking
predicates

Broken Use Cases
when Writing with the
Filter View

Runtime errors

A key use case of
filtering results in
undefined behavior.
Wrong/invalid elements
may be processed or
even abnormal
program termination.

Nicolai Josuttis: P3329R0: Healing the Filter View

 2

Filters cache different
things

Filters on vectors and
lists are not consistent
(and break different use
cases)

Runtime errors

Switching between
vectors and lists and
other subtle changes in
the underlying ranges
and pipelines
change/break behavior.

A copy might have a
different state

Pass-by-value might
change state

Runtime errors

Switching between call-
by-value and call-by-
reference might change
behavior.

What	this	Paper	proposes	
The current filter view design, which causes all these drawbacks and traps, is not necessary. Looking at
the motivation of the current design and possible other options, it turns out that it is surprisingly easy to
heal the filter view. With a different design, all the problems described here would no longer occur.

Of course, there is no fix without any drawbacks. However, the proposed alternative design approach
heals the damage without introducing significant new damage: We propose that the use cases with bad
performance no longer compile instead of breaking useful basic use cases. That means: By changing the
current design we can ensure that all problems described here are gone without creating new runtime
problems. Most code will suddenly simply work and no longer cause surprising or undefined behavior.
This fix is even possible without breaking binary compatibility.

Note that this does not mean that there can no longer be and problem when using the filter view. By
nature, filter views can create trouble for some non-trivial use cases. The goal is to change the design to
ensure that basic and simple use cases just work fine and behave as expected.

Tony	Table	
The following table lists the most important basic use cases broken due to the current design of the filter
view and those that benefit from the current design:

Note:

 The cells marked with “(fast”) benefit from the current design.
 All blue broken entries are unnecessarily broken due to the current design of the filter view.
 Only all red broken entries are naturally broken and cannot be avoided with any useful design.

Nicolai Josuttis: P3329R0: Healing the Filter View

 3

The suggested fix is to disable caching and make filter view iterators forward iterators only.

With this fix, we get the following behavior instead:

So a few use cases get slightly worse performance. However, note that they still have the same
complexity and that there are simple workaround to get back the current performance with caching in use
cases that are affected.

The key message is that several basic use cases that were broken suddenly compile and simply work.

Nicolai Josuttis: P3329R0: Healing the Filter View

 4

The	Current	Design	of	the	Filter	View	

The current design of filter views is driven by the goal to have good performance (at least, never have

really bad (quadratic) performance).

The problem of possible bad performance lies in the nature of the filter view. Common basic member

functions, that are cheap for containers, might be expensive for filter views. And in some situations that

can have dramatic consequences.

Consider we have the basic use case of applying a filter on a simple (maybe sequential collection) of

elements:

To understand how expensive an iteration over all elements is, we have to take the following costs into

account:

The cost of begin()

begin() has to find the first element that matches the filter predicate. However, this first element can be at

the end or even not exist at all. begin() therefore has to iterate from the beginning over all elements

looking at their values until a first match is found or the end is reached.

This means that begin() may have liner complexity in the worst case. With use cases where usually

no matching element is found, doubling the number of elements means that begin() has to iterate over a

doubled number of elements.

Whether this really is a problem depends on details. If usually many elements fit (such as we only look for

elements with odd values which pretty likely always exist sooner or later at the beginning), begin() always

roughly takes the same amount of time independent from the number of elements.

The cost of ++

Once we found the beginning, an iteration iterates to the next element calling ++ for the iterator. This has

the same problem and therefore the same complexity like calling begin(): Internally, we have to call ++

multiple times for the underlying range to find the next matching element. The less likely it is that

elements fit, the more expensive ++ becomes.

Again we have a linear complexity in the worst case.

Note that the position of matching elements cannot be computed without looking at each and every value

in front of it. For this reason, filter view iterators cannot support random access. They can only be

bidirectional iterators or worse.

The cost of end()

We iterate over ranges until an iterator reached the end(), which is the position behind the last matching

element. Now you might assume that end() is also expensive because we have to find the position right

Nicolai Josuttis: P3329R0: Healing the Filter View

 5

behind the last matching element, which means to iterate either from the beginning over all elements or

backward iterate from the end (if the underlying range supports that) to compute the end().

However, there is a trick, the filter view uses: It just takes the underlying end() as its end:

This means that end() is super fast (has constant complexity) provided end() of the underlying range is

super fast.

However, this trick has the consequence that calling ++ for an iterator that refers to the last matching

element might again result into multiple calls of ++ on the underlying range. But that is anyway the case

for ++.

The cost of an iteration on a filter view

Now let’s look how expensive full iterations over all elements of filter views are. We have to take into
account both the costs of calling begin(), end() and ++ as well as how often we call these operations.

In practice, there are two different basic ways to iterate over the elements of a range:

 We can use a range-based for loop:

 v = coll | std::views::filter(every7th);
 for (const auto& elem : v) {
 process(elem);
 }

This code is effectively iterating over all element and iterator using a loop such as the following:

 v = coll | std::views::filter(every7th);
 auto end = v.end();
 for (auto pos = v.begin(); pos != end; ++pos) {
 process(elem);
 }

In this scenario we call:

o begin() once
o end() once
o ++ once for each element of the underlying range

Therefore, the cost of iterating over all elements of the filter is as expensive as iterating
over all elements of the underlying range (combined with a check for each element whether it
fits).

 We can use a manual loop using iterators

Pretty often, code that manually iterates does not call end() only once. Instead, it looks as follows:
 v = coll | std::views::filter(every7th);
 for (auto pos = v.begin(); pos != v.end(); ++pos) {
 process(elem);
 }

Nicolai Josuttis: P3329R0: Healing the Filter View

 6

In this scenario we call:

 begin() once
 end() multiple times
 ++ once for each element of the underlying range

Therefore, the cost of iterating over all elements of the filter is as expensive as iterating
over all elements of the underlying range plus the cost of calling end() on the underlying
range multiple times.

If end() of the underlying range is cheap, there is no problem. And if each end() delegates to a cheap

underlying end() there can’t be a problem.

However, there are use cases where calling end() is not cheap.

And when iterating over the elements of a filter view, we can get into trouble if use cases call begin()

multiple times.

Calling begin() Multiple Times

An simple common use case where we call begin() more than once demonstrates the following code:
 v = coll | std::views::filter(every7th);

 if (v.empty()) return; // skip processing if the range is empty
 …
 for (const auto& elem : v) {
 process(elem);
 }

Before we later process the elements in the range-base for loop, we check whether the range we
process is empty. For filter views, calling empty() is more or less the same as calling begin(): empty() has
to find the begin() and see whether it is the end(). Therefore, in this scenario we call:

 begin() twice
 end() once
 ++ once for each element of the underlying range

In the worst case scenario (the last element is the first matching element) this can double the time it takes

to run this code, because we iterate twice instead of once to the last element. But note that we still have

linear complexity. So this use case is worth looking at but doesn’t kill scalability.

The cost of an reverse iteration on a filter view

The use case that really causes trouble is a reverse iteration over a filter view. Consider we have a use
case like this:

 v = coll | std::views::filter(someElemsAtTheEnd) | std::views::reverse;

where someElemsAtTheEnd for example selects two elements close to the end of the underlying range:

Nicolai Josuttis: P3329R0: Healing the Filter View

 7

Note that a reverse iteration internally maps begin() to end(), end() to begin(), and ++ to –- (with

a small adjustment, because begin() refers directly to the first element but end() refers behind it).

Now, when performing a reverse iteration with an approach that calls end() on the reverse view multiple

times:
for (auto pos = v.begin(); pos != v.end(); ++pos) {
 process(elem);
 }

we effectively call begin() of the underlying filter view multiple times. For the filter view, we get:
 begin() multiple times
 end() once
 -- once for each element of the underlying range

In this case, the cost of a reverse iteration over the elements of the filter view can grow
quadratically provided the first matching element comes late. Calling end() multiple times means we
call begin() multiple times, and each call of begin() calls ++ multiple times to find the first element.

Note that this is not a problem when using the range-based for loop, because it calls begin() only once.
However, having a pipeline with additional views after the reverse view can have the same effect.

The real costs of a naïve implemented filter view

Consider we have a couple naively implemented filters we can apply to a range:

Using the manual loop approach calling end() multiple times, we can measure the following:

In this table we double the number of elements in each column. You can clearly see how the running time
grows by a factor of 4 in the scenarios where we have a reverse view involved. In total, we reach factors
of 100 for 2,000 elements and 10,000 for 250,000 elements, which simply means that a reverse iteration
on a filter view does not scale with multiple calls of end().

Using the range-based for loop approach (calling end() only once), we can measure the following:

Again, we double the number of elements in each column. You can clearly see that when using the
range-based for loop, a reverse iteration over a filter is not a problem at all. However, the running time
grows by a factor of 4 in the scenario, where we have a filter behind the reverse iteration over a filter. In
this case, we reach factors of 10 for 2,000 elements and 1.000 for 250.000 elements, which is not as bad
as before, but again means that a filter on a reverse iteration on a filter view does not scale because it
grows quadratically.

Nicolai Josuttis: P3329R0: Healing the Filter View

 8

Filter views cache begin()

As a consequence of the described problems the design of the standardized C++ filter views requires that
filter views cache begin().

The effect is that only the first call of begin() (or empty(), respectively) is expensive. Calling begin() (or
empty()) multiple times is not a performance problem then.

In fact, for the use cases measures above, we get the following performance:

When calling end() multiple times:

When using the range-based for loop and/or calling end() once:

The bad performance of reverse iterations on filter views is gone.

However, the requirement to cache begin() comes with a price, because the required caching is not
transparent. As a consequence, the current design with caching has an immediate dramatic effect on
several basic use cases for filtering. The most important fatal consequence were already listed above as
the The Current Problems of the Filter View in a Nutshell. The following sections describe these
consequences in detail.

Nicolai Josuttis: P3329R0: Healing the Filter View

 9

Broken	Use	Cases	when	Reading	with	the	Filter	View	
Let us go through various typical basic use cases that are unexpectedly broken by the filter view due to
their current design.

In this section, we start with the fatal consequences when using the filter view only to read elements.

Cannot use a filter view when it is const

Category: Compile-time errors
Effect: Highly confused and frustrated programmers.

Compromises the basic paradigm of const-ness.

Consider the following code(see https://www.godbolt.org/z/PPMjYTsan for the full example):

We first provide a generic print function just performing a read iteration over all elements of a passed
range.

 template<typename CollT>
 void print(const CollT& coll)
 {
 for (const auto& elem : coll) {
 std::cout << elem << ‘\n’; // do something read-only with each element
 }
 }

Now let us use this print() function for some basic use cases with views:

 print(coll | std::views::take(3)); // OK

 print(coll | std::views::drop(3)); // OK

 print(coll | std::views::transform(square)); // OK

 print(coll | std::views::filter(isEven)); // compile-time ERROR

 for (const auto& elem : coll | std::views::filter(isEven)) { // OK !!!
 std::cout << elem << ‘\n’; // do something read-only with each element
 }

While most of the C++ standard views applied to collections can be passed to print() without any problem,
applying the filter view suddenly does not work. The error message is not helpful.

Even more confusing is the fact that in general you can apply the filter to the underlying collection coll (as
the raw call of the range-based for loop at the end demonstrates). It is just the combination of using a
filter view and the call of print() what is broken.

This behavior is in no way intuitive. For programmers, it is obvious that this code should compile and
work. The fact that this is not the case this is a very early experience that brings programmers trying out
views into deep trouble. Their usual conclusion is that there is something wrong with themselves or C++.
They give up, try ugly workarounds or hate C++ even more. I had many trainings and tutorials where a
reaction was “ah, now I understand why this didn’t work”.

The problem is that we pass the filter view to a generic function that makes the view const. But even for
pure read access, filter views do not allow to make the view const, because begin() modifies the view
when caching the found position of the first matching element.

This is such a fatal and unexpected break of the principle of const-ness that nobody understands what is
going on. When I motivate and explain the design, programmers cannot believe that the standard
committee comes up with such a huge break of a basic feature of C++. The standard committee looks like
simply compromising and giving up const, one of key principles of C++.

This would only be acceptable for a very good reason and with obvious warning signs in the resulting
code. But both is not the case. As we saw, the reason for this huge breakage is to get better performance
in some very rare use cases (see The Current Design of the Filter View). Instead of simply stopping these
use cases to compile, we prefer to compromise the basic principle of const.

Nicolai Josuttis: P3329R0: Healing the Filter View

 10

Once, programmers understand this trap, they have to use workarounds if they do not want to give up
using filter views. The possible (proposed) workarounds are as follows:

 Either the caller has to do something special. For example:

 auto collEven = coll | std::views::filter(isEven); // init the filter view

 print(std::ranges::subrange{collEven}); // and pass it as subrange

Note that this code needs multiple statements. The following statements do not compile:

 print(std::ranges::subrange(coll | std::views::filter(isEven))); // ERROR

And the following statements with a created temporary view collEven also don’t compile:

 auto collEven = coll | std::views::filter(isEven); // init the filter view

 print(collEven); // ERROR

 print(std::views::all(collEven)); // ERROR

 Or the generic function for a range has to be rewritten or overloaded. One possible change is to

use universal/forwarding references :

 template<typename CollT>
 void print(CollT&& coll) // note: universal reference !!!
 {
 for (const auto& elem : coll) {
 std::cout << elem << '\n'; // do something read-only with each element value
 }
 }

The consequence of these changes and workarounds are fatal:
First, we can no longer teach the effect of const without saying “when using views the principles of

const are broken”. This raises basic questions of how to teach writing generic code. Should we give up

teaching const T& or const auto& ? The promise so far was that universal references were just for

perfect forwarding (that’s why the standard committee named them forwarding references; it turns out,

now how wrong and bad this change of the established name “universal reference” was).

Even worse, in their frustration, programmers start to use even more ugly workarounds. Here is a

remarkable one:

template<typename CollT>
CollT& makeIterable(const CollT& v)
{
 return *const_cast<std::remove_cvref_t<CollT*>>(&v);
}

template<typename CollT>
void print(const CollT& coll)
{
 for (const auto& elem : makeIterable(coll)) {
 std::cout << elem << '\n'; // do something with each element value
 }
}

Yes, bad design leads to bad code. Let me clearly say that this code is the fault of the C++ standard

committee not the fault of 4 million programmers! We cannot expect that 4 million programmers have to

deal with bad design in a useful way.

Nicolai Josuttis: P3329R0: Healing the Filter View

 11

Concurrent Read Access may be Broken

Category: Runtime errors (undefined behavior)
Effect: Undefined behavior when two threads read

concurrently

Programmers are used to know that for ranges concurrent reads are safe. We have designed all
containers that way and still guarantee that for containers in general. For 20 years, several generic code
for ranges was written with that guarantee in mind.

However, for views, basic read operations such as begin(), empty(), front() of the filter view are no longer
thread safe. The effect is that concurrent read iterations result in undefined behavior.

Consider the following example (full code at https://www.godbolt.org/z/bGE6rvEc5):

 std::vector<int> coll{1, 2, 3, 4, 5};

 …

 auto not0 = [] (const auto& val) { return val != 0; };

 auto rg = coll | std::views::filter(not0);

 // accumulate values in separate thread:

 std::jthread t1{[&]{

 std::cout << std::accumulate(rg.begin(), rg.end(),

 0L) << '\n';

 }};

So far, this code is fine.

However, when adding the following check after the thread was started:

 if (!rg.empty()) { // OOPS: causes undefined behavior

 …

 }

we suddenly get undefined behavior, because we have concurrent calls of begin()/empty() which is data
race for the filter view.

Of course, problems like this can occur way more indirectly. This especially means that a call such as
empty() or a read iteration are suddenly safety-critical for generic code that might be used in multiple
threads.

That means: The current design of the filter view makes concurrent reads and calls of empty() bad
for generic code.

As an alternative consequence, using filter views in code that could (indirectly) run in multiple threads is
highly dangerous and should be avoided.

Again, we start to see silly workarounds for this problem. This is one of the worst I had to discuss with
programmers:

void process(auto&& rg) {

 (void)rg.empty(); // force caching (DO NOT REMOVE)

 // separate thread to read access the elements:
 std::jthread t1{[&] {
 for (const auto& elem : rg) { // OK: concurrent begin() works fine now
 ...
 }
 }};

 if (!rg.empty()) { // OK: concurrent begin() works fine now
 ...
 }
}

Nicolai Josuttis: P3329R0: Healing the Filter View

 12

Yes, the call of empty() forces the initialization of the cache, which is therefore a very subtle way to avoid
that the following code results into undefined behavior.

Again: Bad design forces bad code. This code is the fault of the filter view designers not the fault of any
programmer using it.

Note that this “silly workaround with calling empty()” demonstrates another serious trap caused by the
bad design of the filter view. For filter views, empty() is not stateless, which is a recipe for huge confusion
and runtime errors (see Calling empty() may change/compromise the behavior of a program).

The	filter	view	does	not	cache	end()
There is another a bit of surprising consequence of the current design. However, note that this
consequence is not really a problem we propose to fix. However, it often comes up when teaching the
filter view because caching begin() to heal the issue of a late first matching element raises the
expectation that the filter view also makes an early last element cheap. But this is not the case.

Category: Performance issues
Effect: Use cases with early last match do not have the

expected performance.

While the filter view does cache begin() to make a second begin() cheap, surprisingly, the filter view does
not cache end().

A program such as this demonstrates the effect (for the full program including some numbers, see
https://www.godbolt.org/z/vWqoe8Gqq):

std::vector<int> rg{0, 1, 2, 3, 4, 5, 6,… 99};

// 2 iterations where begin() is the last element:
auto vLast = vec | std::views::filter(equalTo99);

for (const auto& elem : vLast) { // slow (iterates over all elements)
}

for (const auto& elem : vLast) { // fast (iteration starts from last element)
}

// 2 iterations where begin() is the first element and not other elements match:
auto vFirst = rg | std::views::filter(equalTo0);

for (const auto& elem : vFirst) { // slow (iterates over all elements)
}

for (const auto& elem : vFirst) { // slow (iterates again over all elements)
}

We explained in The cost of end() why the filter view does not cache end() as the “position behind the last
element”. Instead, it just uses the end of the underlying range as its end(). For an early last match, this
has the effect that iterating over all elements multiple times does not benefit from caching at all.

This consequence is surprising for programmers, because while begin() is typically only called once,
end() may be called multiple times, when iterations are implemented as follows:

for (auto pos = rg.begin(), pos != rg.end(); ++pos) {

 …

}

So, caching the end() looks like being at least as important as caching begin(), but is not done at all. A
use case where typically only early elements fit does therefore not benefit from caching. Multiple
iterations all have linear complexity.

Nicolai Josuttis: P3329R0: Healing the Filter View

 13

Broken	Use	Cases	when	Writing	with	the	Filter	View	
As second part of the consequences of the current filter view design let us look at the use cases where
filters are used to modify some of the elements in a filter view.

Using views for modifications is in principle allowed and supported (not only for filter views). However, the
current design creates serious traps for the programmers when filter views are used.

Cannot use a filter to „heal“ broken elements

Category: Runtime errors (undefined behavior)
Effect: A key use case of filtering results in undefined

behavior.
Wrong/invalid elements may be processed or
even abnormal program termination.

One key use case to use a filter when iterating over elements of a collection is to “heal” broken elements.
That is, for each element that does not have a valid state, we modify it so that it gets back a valid state.

Consider the following example (thanks to Patrice Roy for this example):

// as a shaman:
for (auto& m : monsters | std::views::filter(isDead)) {

 m.resurrect(); // undefined behavior: because no longer dead
 m.burn(); // OK (provided it is still dead)

}

This code is undefined behavior. You cannot filter for dead monsters to bring them back to live. This code
compiles and might even work, but it is not allowed to do so.

Instead of just making this example work, the standard intentionally places the burden on the programmer
making this a runtime error. According to [range.filter.iterator] the C++ standard states:

Modification of the element a filter_view::iterator denotes is permitted, but results in undefined behavior
if the resulting value does not satisfy the filter predicate.

Why? What are the problems that might break?

Well, we can get into serious trouble if we iterate more than once from begin to end.

Consider the following code (for the full program, see https://www.godbolt.org/z/W7TKGjsYE):

 std::vector<int> coll{1, 2, 3, 4};

 // a simple filter view that ignores odd elements of coll:
 auto isEven = [] (auto&& i) { return i % 2 == 0; };

 auto collEven = coll | std::views::filter(isEven);

 print(coll); // 1 2 3 4

 // increment even elements (works but UB):
 for (int& i : collEven) {

 i += 1; // formally undefined behavior, but works
 }

 print(coll); // OK: 1 3 3 5

 // increment even elements (broken):
 for (int& i : collEven) {

 i += 1; // undefined behavior and broken
 }

Nicolai Josuttis: P3329R0: Healing the Filter View

 14

 print(coll); // OOPS: 1 4 3 5 (yes, initial first odd element was incremented again)

Because filter views cache begin(), a second use of the same filter yields an element a begin() where the
predicate no longer applies to. Yes, the caching implemented for filter views is not transparent. It
compromises several intuitive use cases.

The usual recommendation here is to apply views and pipelines ad-hoc to the underlying range claiming
this would always work:

 // increment even elements (broken):
 auto isEven = [] (auto&& i) { return i % 2 == 0; };

 for (int& i : coll | std::views::filter(isEven)) {

 i += 1; // undefined behavior and broken
 }

However, the recommendation to heal by applying filter views ad-hoc has its limits. Consider the following
simple program (see https://www.godbolt.org/z/PWhYhedYr for the complete example):

 std::vector coll{1, 2, 3, 4, 5, 6, 7, 8};

 // increment even elements (broken):
 auto isEven = [] (auto&& i) { return i % 2 == 0; };

 for (int& i : coll | std::views::filter(isEven) | std::views::reverse) {

 i += 1; // undefined behavior and broken
 }

 print(coll); // OOPS: 1 2 3 5 5 6 7 9

Initializing coll here with one value less even causes an abnormal program termination due to resulting
in an endless loop overwriting memory of other objects (see https://www.godbolt.org/z/nG5nPMje4):

 std::vector coll{1, 2, 3, 4, 5, 6, 7};

 // increment even elements (endless loop resulting in a CORE DUMP):
 auto isEven = [] (auto&& i) { return i % 2 == 0; };

 for (int& i : coll | std::views::filter(isEven) | std::views::reverse) {

 i += 1; // UNDEFINED BEHAVIOR => FATAL RUNTIME ERROR
 }

The fact that a filter cannot be used to modify elements under some condition is bad enough. A key use
case of filters is broken. But a design that creates such fragile code where it sometimes works, and
sometimes not causing severe runtime errors is in no way acceptable. Instead of helping programmers to
detect or avoid such a problem by disabling that this code compiles, we expect that 4 million
programmers just have to know and deal with this trap.
There is no excuse for such a bad design for a library simple to use and provided for the mass.

All programmers, projects, and companies, where I taught this behavior, feel like the C++ standard
committee is shooting ordinary programmers in the foot. This design is in no way acceptable. Especially,
as we start to claim that we want to make C++ safer to use.

What is really painful is that there are other design options that do not pay such a high price. Without
caching, this problem simply would not exist.

Just to be clear: As Barry Revzin points out in [https://brevzin.github.io/c++/2023/04/25/mutating-filter/], in
general, multi-pass processing of elements while mutating elements can always result into severe issues
and undefined behavior. However, trivial modifying use cases such as modifying elements during a
single iteration (i.e. when used like input iterators) or between iterations should just work fine.

Nicolai Josuttis: P3329R0: Healing the Filter View

 15

Broken	Use	Cases	when	Modifying	Elements	between	Using	the	
Filter	View		
The filter view refers to an underlying range. Naturally, this can cause serious trouble such as using he
view when the underlying range is no longer valid. However, the current design with non-transparent
caching also creates highly unexpected runtime errors even when we change data before or between
using a filter view. Let us look into a couple of examples for this.

Calling empty() may change/compromise behavior

Category: Runtime errors (undefined behavior)
Effect: Calling if (v.empty()) may change

program behavior.

One very surprising consequence of the current filter view design is that a just a call of empty() can
change the behavior of a program. This change can result into a state so that the filter view does no
longer work correctly.

Here is a simple example (see https://www.godbolt.org/z/Yv8fcM9d8 for the full example):

std::list coll{2, 3, 4, 5};

// view for all odd elements:

auto odd = [] (auto v) { return v % 2 != 0; };

auto vOdd = coll | std::views::filter(odd);

…

// insert a new element at the front:

coll.push_front(1); // coll is now: 1 2 3 4 5

print(vOdd); // OK: 1 3 5

If we add a call of empty() for the view, the output of the program changes:

std::list coll{2, 3, 4, 5};

// view for all odd elements:

auto even = [] (auto v) { return v%2 == 0; };

auto vEven = coll | std::views::filter(even);

if (vEven.empty()) { // OOPS: may change program state

 return;

}

…

// insert a new element at the front:

coll.push_front(1); // coll is now: 1 2 3 4 5

print(vOdd); // OOPS: 3 5

Nicolai Josuttis: P3329R0: Healing the Filter View

 16

The fact that empty() is not stateless, is in no way intuitive or explainable. It is a real trap, caused by the
current filter view design. Again, the design of the filter view compromises well established intuitive
behavior and design established for decades.

Note that we even standardized with C++17, that empty() should be [[nodiscard]], because it is
obviously stateless. That attribute helped to detect when programmers accidentally assumed that empty()
removes all element (“empty the range”). Now we compromise our own clarification, which demonstrates
how bad this design is.

Printing elements may change/compromise behavior

Category: Runtime errors (undefined behavior)
Effect: Calling if (v.empty()) may change

program behavior.

In similar ways just adding a print statement (or a different read) can change the behavior of a program
and compromise the state of a filter view.

See https://www.godbolt.org/z/v67vMP91r for a corresponding C++23 example:

// view for all even elements:

auto vColl = coll | std::views::filter([] (auto v) { return v%2 == 0; });

…

if (…) {

 std::println("vColl: {}", vColl); // OOPS: println() changes program state

}

…

// insert a new element at the front:

coll.insert(coll.begin(), 0);

…

std::println("vColl: {}\n", vColl); // OOPS: output depends on if println() was called

In this code the conditional call of println() changes what happens later in the program. The reason is that
a print caches begin() and performing a non-transparent caching may have a huge impact on the
behavior of a program.

Just to make clear how bad this design is:

If programmers see a problem and add a print statement to better understand the problem, the
program changes its behavior.

It is an incredible huge surprise when a print statement changes the state and behavior of a program.
Adding a debug output or adding an early check to return on empty() must be transparent for the state of
a program. Any design that violates these basics is a trap and recipe for a severe mess.

This bad design is not only weird. It makes code incredibly fragile because for programmers code works
fine until it doesn’t because a subtle change has unexpected fatal consequences. This makes printing
elements and calling empty() a fragile call !!! Nobody, really nobody expects this. This design
breaks one of the most important rules of good library design: Don’t surprise the programmer.

Nicolai Josuttis: P3329R0: Healing the Filter View

 17

Filters on vectors and lists are not consistent (and break different use cases)

Category: Runtime errors (undefined behavior)
Effect: Switching from vectors to lists and other subtle

changes in the underlying ranges and pipelines
change/break behavior.

Surprisingly, the issue described before might depend on the container category.

Here is a simple example (see https://www.godbolt.org/z/cjxKv8crx for the full example):

std::list coll{2, 3, 4, 5};

// view for all odd elements:
auto odd = [] (auto v) { return v % 2 != 0; };
auto vOdd = coll | std::views::filter(odd);

if (vEven.empty()) return; // OOPS: may change program state
…

// insert a new element at the front:
coll.insert(coll.begin(), 1); // coll is now: 1 2 3 4 5
…

print(vOdd); // OK: 1 3 5

If we switch from a list to a deque or vector, the output of the program changes:

std::vector coll{2, 3, 4, 5};
coll.reserve(100);

// view for all odd elements:
auto odd = [] (auto v) { return v % 2 != 0; };
auto vOdd = coll | std::views::filter(odd);

if (vEven.empty()) return; // OOPS: may change program state
…

// insert a new element at the front:
coll.insert(coll.begin(), 1); // coll is now: 1 2 3 4 5
…

print(vOdd); // OOPS: 0 1 3 5

The reason for this behavior is, that the filter view caches different things depending on the category of
the underlying range:

 The filter view caches an offset for random-access containers (so that for filters a reallocation of
the underlying range does not invalidate the filter).

 The filter view caches an iterator in all other cases.

As the example demonstrates, the effect can be that switching from one container to another has
unexpected functional consequences. Again we cause runtime errors that nobody sees coming. Nobody
expects that a working filter suddenly does no longer work just because a slightly different underlying
range is used

Nicolai Josuttis: P3329R0: Healing the Filter View

 18

Pass-by-value might change state/behavior

Category: Runtime errors (undefined behavior)
Effect: A key use case of results in undefined behavior.

Wrong/invalid elements may be processed.

A view shall be cheap to copy. As a consequence, it is fine to pass it by value. However, it should simply
not matter whether we pass by value or by reference (this is one of the basics of good regular behavior).
But for the filter view this is not the case.

When filters cache iterators (e.g. operating on a list) a copy of the view loses any cached begin(). Only
when a filter on a random-access container is copied, the cached offset is kept alive with the copy.

This leads to the following effect (see https://www.godbolt.org/z/8WfxbsahT for the full example:

void printByVal(auto coll); // just print the elements
void printByVRef(auto&& coll); // just print the elements
…

std::set coll{1, 2, 3, 4};

auto even = [] (auto v) { return v%2 == 0; };

auto collEven = coll | std::views::filter(even);

…

if (!collEven.empty()) {

 coll.insert(0); // coll is: 0 1 2 3 4
}

…

printByVal(collEven); // OK, prints 0 2 4
printByRef(collEven); // OOPS, prints 2 4
printByVal(collEven); // OK, prints 0 2 4
printByRef(collEven); // OOPS, prints 2 4

As this example demonstrates, switching between call-by-value and call-by-reference may change the
behavior of a program when passing a view.

Again, this is an unexpected runtime error. Programmers have to be aware that it might matter for views
whether they are passed by value or by reference.

You could argue that in all these situations the problem is that an underlying range gets modified between
different uses of the view. However, the point is that programmers do not see how fragile their code is as
long as it works. And suddenly with a simple change the code is broken although there is absolutely no
intuitive assumption or awareness that something like this can happen.

Good design protects programmers from doing bad things instead of providing traps only
avoidable with expert knowledge.

And again, if there would be a good reason for this mess, fine. But there isn’t.

	
 	

Nicolai Josuttis: P3329R0: Healing the Filter View

 19

Summary	of	the	Design	and	Its	Consequences	

The Current Situation of Filter Views

For filter views, we currently have the following situation:

 Filter views cache begin() to avoid that you may get bad runtime when performing a reverse
iteration over the elements of a filter view. Note that a couple of additional preconditions have to
be met to get this bad performance (e.g. that there is usually no element that fits a filter early in
the collection).

 The resulting caching of begin() causes several severe problems for basic real-world use cases.
Even simple use cases of filter views cause confusing compile-time errors and severe runtime
errors.

 No doubt, by nature, there are use cases where filter views in principle cannot work correctly.
However, these failures are on non-trivial use cases and more or less intuitive. All problems
described here are not natural for filter views and can easily be avoided by a better design.

Taking into account that the use cases with bad performance for reverse iterations are very rare and the
price is a huge amount of confusion and several runtime errors in very simple standard use cases, the
current design is simply an unnecessary trap the C++ standard committee provides for ordinary
programmers.

Why are these problems so severe?

What make these problems so severe is that almost all of them result in subtle runtime errors. That
means that code that looks like being correct (both because there is no reason to assume that something
is broken and because all test code works fine) might suddenly break when:

 Inserting a filter
 Adding a check on empty()
 Adding a print statement
 Switching from one underlying container type to another
 Switching between call-by-value and call-by-reference
 Using other initial values
 Assigning other values (or using other slightly different modifications)
 Using multiple threads

What are the consequences for using filter views in general?

As a consequence of the current design, programmers have to know about all of these non-obvious
limitations and have to follow important non-intuitive recommendations when using filter views (or know
very exactly what they (can) do):

 Give up using const in generic code for a range even if the code only reads.
 Use universal references in generic code even if is only reads.
 Do never apply a filter view early on an underlying collection. Apply the filter view (and a pipeline

using a filter view) to an underlying range always ad-hoc, right when performing the iteration.
 Iterate only once with an applied filter view.
 Never put a reverse view behind a filter view (unless you only read and elements are never

modified).
 Never use a filter view to select elements to “heal” them or modify them in other ways.
 Never use a filter view in multi-threaded code.

A resulting simple advice is something like this:

Use filter views only ad-hoc in a single threaded environment and let their iterators act as
if they are const input iterators (can only iterate once to read) on elements that never
change.

Companies, projects, and programmers simplify this consequences by not allowing to use filters views
and views at all.

These are dramatical restrictions. And they are simply no necessary. They are a consequence of
an incredible bad design. 	

Nicolai Josuttis: P3329R0: Healing the Filter View

 20

Which	Design	Alternatives	Exist?	
C++ is a language that cares for good performance. We usually try to avoid bad performance. One typical
way is to deal with possible bad performance is to ensure that bad performance results in a compile-time
error. That is why vectors do not have push_front(), lists have no index operator and, yes, filter views
do not provide a size() member function.

However, we cannot disable the basic operations begin() and end() to iterate over a filter view. Thus, we
better do something, when begin() gets quadratic behavior in some use cases. Ideally, we avoid the
resulting quadratic complexity. But if the price for avoiding quadratic complexity is too high, we should
simply disable problematic use cases to compile provided this happens rarely and does not compromise
basic filter use cases.

With that in mind let us look what design options we have for filter views:

Alternative A: Cache begin()

This is the current design.

As a consequence we break several basic patterns of C++ well established over decades:

a) You can read iterate if the range is const
b) A read iteration does not change state
c) empty() doesn't have side effects
d) Concurrent read iterations are safe
e) A copy of a range has the same state
f) Modifications between iterations are safe
g) Modifications via iterations are safe

Only a) results in a compile-time error (the error message is hard to understand and it breaks the key C++
principle of const-ness). All other consequences may cause severe runtime errors with non-intuitive
behavior and more or less fatal undefined behavior.

Breakage g) especially means that you cannot you a filter view for one of its main purpose: Filtering
broken elements to heal them.

If you look at how rare the use cases are that cause this mess, choosing this option is obviously a huge
design mistake (I still struggle to have a compelling answer, when attendees of my C++ trainings ask me
how this design could be standardized).

Alternative B: begin() is initialized during construction

The consequence of this design would be that a declaration of a filter view may have linear complexity. In
addition, you could not modify elements after the declaration.

Both are significant drawbacks, we should avoid.

Alternative C: Cache begin(), but make it transparent and const by using mutable

With this approach each call of begin() still is expensive, but for another reason. To be thread-safe, you
would need a mutex that is locked for each call of begin() and empty(). This again makes both the first
and additional calls of begin() and empty() significant slower.

This is a significant drawback, we should avoid.

Alternative D: Do nothing (i.e.: do not cache begin() at all)

This would heal all of the broken compile-time and runtime errors in the use cases described above.

However, this approach can result in the discussed quadratic complexity. We could argue that
programmers then should do something else, which they always can do. However, we can support this
approach in many ways:

 We can let the reverse view cache end(). In fact, it is not clear why we currently solve the
problem of a reverse iteration inside the filter view with the effect that each many basic use cases
of filtering are compromised.

 We could offer a view that inside a pipeline caches begin() in a way the subrange view does. That
would look similar to the following:

Nicolai Josuttis: P3329R0: Healing the Filter View

 21

v = coll | std::views::cacheBegin
 | std::views::filter(every7th) | std::views::reverse;

As a drawback to the current design, with this approach an empty() check early before we iterate would
double the time to call begin() when we really start to iterate later.

And for reverse iterations, this would put the burden of avoiding quadratic complexity to the programmer.
However, this is definitely way better than to put incredible burden on each and every ordinary
programmers due to the non-intuitive breakage of several trivial and basic use cases, patterns, and key
principles of C++.

Alternative E: Do not cache begin() but let filter iterators only be forward iterators

Again, this would heal all of the broken compile-time and runtime errors in the use cases described above
and also an empty() check early before we iterate would double the time to call begin() when we really
start to iterate later.

However, reverse iterations of filter views would longer compile. This also removes the possibility of bad
performance in this scenario, but you would have to modify your code to make it compile (which is
possible with no big effort).

A drawback of this approach is that code that calling begin() again and again for other reasons than
reverse will still result into quadratic complexity. The question is how likely it is to happen accidentally. If
it is clear that begin() may have linear complexity, a limited number of multiple calls of begin() are linear
but create wors performance. Again simple workarounds are easy.

Alternative F: Do not cache begin() but let filter iterators only be input iterators

Like for alternative E:

 This would heal all of the broken compile-time and runtime errors in the use cases described
above.

 An empty() check early before we iterate would double the time to call begin() when we really
start to iterate later.

 This would cause compile-time errors on reverse iterations.

In addition, this could also create compile-time errors when we iterate multiple times over all elements.
However, it depends whether the iterator category is checked by concepts applied to the passed range
we iterate over in generic code.

However, there are many basic use cases that require forward iterators to support multiple iterations or
having multiple independent iterators into a range at any given time (for example, to support
min_element() as discussed in https://brevzin.github.io/c++/2023/04/25/mutating-filter/).

Comparing the drawbacks with the possible benefits of only supporting input iterators, I see no real
benefit in this alternative compared to providing forward iterators. One reason is that multiple iterations do
still have linear complexity.

Proposed	Fix	
This paper proposes alternative E:

 Remove caching and
 Restrict filter view iterators to be at most forward iterators.

That way, we heal several broken basic use cases causing confusion with unexpected compile-time
errors and bad or undefined runtime errors and make filter views act way more intuitive (empty() is
stateless, read iterations are const and can happen concurrently, modifications work fine and as expected
in all trivial use cases).

The drawback is that reverse iterations are no longer supported. However, code with reverse iterations is
incredible fragile and could cause severe damage with small modifications so that this fix is probably
good.

How about backward compatibility to C++20?

C++ is out now for 4 years and we might already have some code using filter views that benefit from
caching. If we apply alternative E or F. this means:

Nicolai Josuttis: P3329R0: Healing the Filter View

 22

 Code that performs the empty() check at the beginning might become slower in some situations,
but still have linear complexity.

 Code that does reverse iterations on a filter view will no longer compile.

Note that binary backward compatibility is not a problem. Implementations caring for binary
compatibility could simply keep the member for the cached value of begin() without using it.

What	are	the	consequence	of	this	fix?	
The proposed fix has some consequences.

Changing the requirements for begin() of ranges concepts

The most important consequence of this fix is that, because a filter view still is a view, we have to relax
the requirements for range concepts.

begin() should only require to be linear

begin() can no longer require that is has amortized constant complexity. It should only require linear
complexity.

Is this a problem? Note that calling begin() usually is only one single call in a complete iteration having
the same cost as ++. In a loop that iterates from element to element the search for the first element is
nothing different than the search of any other next element. If we use two iterators or perform two
iterations, any call of looking for the next element is doubled. No longer caching begin() means that we
only no longer lose time for the first search of the next element done with begin(). We still have the same
complexity as each ++ has its cost multiple time with multiple iterations.

The special problem was that we call a linear begin() with each and every ++. We only need that when
comparing against the end() after each ++ which is required when performing a reverse iteration on a
filter view. That use cases causing quadratic complexity no longer compile and can therefore no longer
occur.

Relaxing the requirement for begin() therefore in practice seems to fall in the same category as relaxing
the requirements for views a couple of times in the past. We changes the complexity of begin() and
destructors and more in the past.

Also note that it looks like filter view currently violates the requirements of ranges at all because begin() is
required to be non-modifying, which currently is clearly not the case for filter views as it modifies the
member for the cached begin().

Therefore, this fix might also heal the current specification that a filter view is not a range at all.

Yes, we should teach the resulting complexity when teaching filter views, which is nothing new. However,
we not only have to teach all the fatal consequences of caching.

end() should still be amortized constant (or only constant)

Note that this change does not mean that end() relaxes its requirements. In fact, end() should still require
amortized constant complexity.

Well, I see no reason not even to require constant complexity. This would require that end() always
delegates to a cheap underlying end() or is cached, which as we often compare against end() sounds
reasonable.

Consequence for the reverse view

The reverse view might anyway better in general cache its end(), which is the underlying begin(). This,
however, could be a binary break. Or we make it undefined behavior if this is note that case.

We might for this reason stay with amortized constant complexity for end() for ranges in general.

Nicolai Josuttis: P3329R0: Healing the Filter View

 23

Summary	
The current design of the filter view is severely broken. It compromises multiple basic pattern of C++ to
improve the performance of some rare use cases, causes non-intuitive compile-time errors and fatal non-
intuitive runtime errors on several basic use cases.

As a result, C++ looks like giving up the principle of const for read access:

 empty() suddenly might modify
 a read suddenly might modify
 a const suddenly disables a read
 A read suddenly is no longer thread-safe

Such a design kills the credibility of the C++ programming language and the C++ standard committee at
all.

This has the consequence of frustrating programmers, causing fatal runtime errors and that views are
banned from being used by several companies and projects. This compromises any claim of C++ that we
care for safety.

All these consequence are a pity, because views have the power to be a very intuitive first class library for
the mass. But with the current design it is in no way acceptable to be used by any serious C++
programmer unless they know all of the pitfalls and traps, which is simply impossible.

The proposed fix would heal the filter view so that is just works in simple intuitive use-cases without easily
getting into the worst case quadratic complexity.

The proposed fix makes filter views usable in practice.

Nicolai Josuttis: P3329R0: Healing the Filter View

 24

FAQ	

Should we Fix Other Views the Same Way?

This paper concentrates on the filter view because it is a key view (filtering elements is a common use
case when processing elements of ranges) and certainly special.

Other views have the same problem and I am happy if we fix the whole design of the views library to
make it simple and robust for basic use cases and make the design consistent, KISS, and not breaking
several basic established patterns of range processing. However, nothing is as important as healing the
filter view.

However, note that if we do similar fixes on other views, additional consequences might be necessary.
For example, the drop view might no longer be a random access view although the underlying range is.

Is this the only thing we have to fix for filter views?

For filter views const behaves weird in a different sense: const sometimes is propagated to elements and
sometimes it is not. While a const container and array always has const elements, this principle is
sometimes broken for filter views (it depends on the value category of the underlying range). This
behavior has to do with is reference semantics and there are some arguments for this confusing behavior.
No question this could also be healed, the current runtime issues are far more severe.

So, in this document, we propose only healing the obvious bad design that causes real harm on
programmers and the reputation of C++.

Why didn’t you bring this fix up earlier?

I voted the ranges library into the C++20 standard, not being aware of this bad design. I trusted the
experts that they will never come up with a library for the mass that compromises key principles of C++
and I am not aware that this key design decision was brought up to the mass (the way standardization is
currently organized, nobody can follow everything).

When I started to understand what we standardized, I could not believe and said that. I simply wanted to
understand the motivation. It was strange, instead of explaining the possible options and clearly
explaining the design arguments I got comments such as “this design is in the nature of filter views” and
“stop to talk bad about C++ and teach this design right”.

I did and more and more companies and programmers could not believe how bad this design is. And the
better I could explain the motivation (which definitely took a while) the worse that reaction was.

Finally, it took me 4 years to come up with the right examples and the right motivation for this design,
which hopefully now demonstrates fair and precise how severe the problem is as well as how
unnecessary it is (thanks to Berry Revzin and Jonathan Müller, which finally took their time to
explain/discuss details).

I still might be wrong and don’t see the picture as a whole. But there is no doubt that the use cases I
describe here are real and convincing to reveal that there is a severe issue. And these use cases would
all be fixed.

Isn’t it too late to fix it now?

Definitely not. In the past I did fight for fixing std::thread, atomics and the range-based for loop. All of
them were used widely. Filter views are still brand new and the fix does only in rare use cases have
consequences. Some use cases will then result into compile-time errors (which is good because they are
extremely fragile). I some situations the running time will suffer, but not switching from linear to quadratic
complexity. There are easy workarounds for these consequences.

Note also that the fix doesn’t break binary compatibility.

In any case, everything is way better than leaving the door open for a huge mass of confusion,
inconsistencies, and fatal runtime errors.

 	

Nicolai Josuttis: P3329R0: Healing the Filter View

 25

Proposed	Wording	
(All against N????)

In 26.4.2 Ranges [range.range]

Modify concept std::ranges::range as follows:

3 Given an expression t such that decltype((t)) is T&, T models range only if

(3.1) — [ranges::begin(t), ranges::end(t)) denotes a range (25.3.1),

(3.2) — both ranges::begin(t) and ranges::end(t) are amortized constant time is linear and non-modifying,
(3.2) —ranges::end(t) is amortized constant time and non-modifying,
…

In 26.7.8.2 Class template filter_view [range.filter.view]

Modify the definition of class filter_view as follows:
constexpr iterator begin() const;
constexpr auto end() const {
 if constexpr (common_range<V>)
 return iterator {*this, ranges::end(base_)};
 else
 return sentinel {*this};
 }

}

constexpr iterator begin() const;

3 Preconditions: pred_.has_value() is true.
4 Returns: {*this, ranges::find_if(base_, ref(*pred_))}.
5 Remarks: In order to provide the amortized constant time complexity required by the range concept
when filter_view models forward_range, this function caches the result within the filter_view for

use on subsequent calls.

In 26.7.8.3 Class filter_view::iterator [range.filter.iterator]

strike:

1 Modification of the element a filter_view::iterator denotes is permitted, but results in undefined
behavior if the resulting value does not satisfy the filter predicate.

Modify as follows:

2 iterator ::iterator_concept is defined as follows:
(2.1) — If V models bidirectional_range, then iterator_concept denotes bidirectional_iterator_tag.
(2.2) — Otherwise, if If V models forward_range, then iterator_concept denotes forward_iterator_tag.
(2.3) — Otherwise, iterator_concept denotes input_iterator_tag.

In Annex C Compatibility add a section for Clause 26 ranges:

C.1.13 Clause 26: Ranges library [diff.cpp20.range.filter]

Affected subclause: 26.7.8

Change: …

Rationale: …

Effect on original feature: …

Feature	Test	Macro	
…

Nicolai Josuttis: P3329R0: Healing the Filter View

 26

Acknowledgements	
Thanks to a lot of people who helped ad gave support again and again to come to finally get this proposal
done. Special thanks go to Berry Revzin and Jonathan Müller which finally took their time to explain the
motivation and details of the current situation.

Rev0:		
First initial version.

References	
A video about these issues of the filter view is available from my keynote at “using std::cpp 2024” at
https://youtu.be/WOd8h1MB_nc.

https://brevzin.github.io/c++/2023/04/25/mutating-filter/

