
Document Number: P3430R1

Date: 2024-11-22

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Target: C++26

simd issues: explicit, unsequenced,
identity-element position, and members

of disabled simd

ABSTRACT

This paper collects all issues that came up in LWG review of P1928 (merge std::simd), which
require LEWG approval.

CONTENTS

1 Changelog 1
1.1 Changes from revision 0 . 1

2 Straw Polls 1
2.1 LEWG at Wrocław 2024 . 1

3 Issue 1: explicit 2
3.1 Broadcast constructor . 2
3.2 Conversion from/to intrinsic . 3
3.3 Suggested Polls . 4

4 Issue 2: drop “unsequenced” from generator ctor 5
4.1 Suggested Poll . 6

5 Issue 3: reorder identity_element and binary_op on reduce 6
5.1 Suggested Poll . 8

6 Issue 4: Undo removal of members of disabled basic_simd 8
7 Issue 5: Hidden friend compound assignment operators 9

7.1 Suggested Poll . 9

P3430R1 1 Changelog

1 CHANGELOG

1.1 changes from revision 0

Previous revision: P3430R0

• Add Wrocław LEWG on Mon poll results.

• Ask for making hidden friend compound assignment operators members instead.

. Add motivating example to Issue 4. How would anyone ever use constexpr-if branching on

disabled simd?

2 STRAW POLLS

2.1 lewg at wrocław 2024

Poll: Removewording that unconditionally allows calls to gen from the generator constructors to be

unsequencedwith respect to each other. At the same time, remove noexcept from the constructors.

(P3430R0 Section 4)

SF F N A SA

2 9 0 0 0

Poll:Reorder binary_op and identity_element as suggested by LWGand implemented in P1928R12.

SF F N A SA

3 11 0 0 0

1

https://wg21.link/P3430R0

P3430R1 3 Issue 1: explicit

3 ISSUE 1: EXPLICIT

simd has 7 constructors and one conversion operator:

default constructor not explicit

copy constructor not explicit

broadcast constructor not explicit, ill-formed when not

value-preserving

← reconsider!

conversion constructor conditionally explicit: depends on

participating value types

generator construtor explicit

load constructors explicit

Recommended practice: conversion

constructor from implementation-

defined set of types (intrinsics / vector

builtin)

explicit ← reconsider!

Recommended practice: conversion

operator to implementation-defined

set of types (intrinsics / vector builtin)

explicit ← reconsider!

3.1 broadcast constructor

The authors do not recall that moving the constraint of the broadcast constructor to a conditional

explicit was considered in LEWG. The behavior of broadcast and basic_simd conversion con-

structors is currently inconsistent. One allows conversions that are not value-preserving, via explicit

constructor / static_cast. The other does not. We recommend that the broadcast constructor is

changed to be conditionally explicit:

template<class U>
constexpr explicit(see below) basic_simd(U&& x) noexcept;

1 Let From denote the type remove_cvref_t<U>.

2 Constraints: value_type satisfies constructible_from<U>. From satisfies convertible_to<value_type>,
and either

• From is an arithmetic type and the conversion from From to value_type is value-preserving
([simd.general]), or

2

P3430R1 3 Issue 1: explicit

• From is not an arithmetic type and does not satisfy constexpr-wrapper-like, or

• From satisfies constexpr-wrapper-like ([simd.syn]) remove_const_t<decltype(From::value)> is
an arithmetic type, and From::value is representable by value_type.

3 Effects: Initializes each element to the value of the argument after conversion to value_typevalue_-
type(forward<U>(x)).

4 Remarks: The expression inside explicit evaluates to false if and only if From satisfies convertible_-
to<value_type>, and either

• From is an arithmetic type and the conversion from From to value_type is value-preserving
([simd.general]), or

• From is not an arithmetic type and does not satisfy constexpr-wrapper-like, or

• From satisfies constexpr-wrapper-like ([simd.syn]), remove_const_t<decltype(From::value)> is
an arithmetic type, and From::value is representable by value_type.

before with P3430R1

using floatv = std::simd <float >;

void f(floatv x)
{

x + 2; // ill - formed
x + float (2); // OK
x + floatv (2); // ill - formed

x = 2 // ill - formed
x = float (2) // OK
x = floatv (2) // ill - formed

}

using floatv = std::simd <float >;

void f(floatv x)
{

x + 2; // ill - formed
x + float (2); // OK
x + floatv (2); // OK

x = 2 // ill - formed
x = float (2) // OK
x = floatv (2) // OK

}

TonyBefore/After Table 1:Make explicit conversions more consistent

3.2 conversion from/to intrinsic

The policy draft on explicit says “Implicit conversions should exist only between types that are

fundamentally the same”. The intrinsic types and vector builtin types implemented as extensions

in basically every compiler are “fundamentally the same” as the simd types of equal value type and

width. Consequently, we should consider implicit conversions. The reason for the current wording

to say explicit still stems from the TS design which deliberately wanted to err on the “too strict”

side1. This choice was never reconsidered while merging the TS wording to the IS.

1 that wasn’t my preference, but guidance from WG21 at the time

3

P3430R1 3 Issue 1: explicit

3 Recommended practice: Implementations should enable explicitimplicit conversion from and to implementation-
defined types. This adds one or more of the following declarations to class basic_simd:

constexpr explicit operator implementation-defined() const;
constexpr explicit basic_simd(const implementation-defined& init);
[Example: Consider an implementation that supports the type __vec4f and the function __vec4f _vec4f_-

addsub(__vec4f, __vec4f) for the architecture of the execution environment. A user may require the use of
_vec4f_addsub for maximum performance and thus writes:

using V = basic_simd<float, simd_abi::__simd128>;
V addsub(V a, V b) {

return static_cast<V>(_vec4f_addsub(static_cast<__vec4f>(a), static_cast<__vec4f>(b)));
}

— end example]

before with P3430R1

void f(std::simd <int , 4> x)
{

x = static_cast <std::simd <int , 4>>(
_mm_add_epi32 (static_cast <__m128i >(x),

static_cast <__m128i >(x)));
}

void f(std::simd <int , 4> x)
{

x = _mm_add_epi32 (x, x);

}

TonyBefore/After Table 2: Calling an SSE intrinsic

3.3 suggested polls

Poll: Make the broadcast constructor conditionally explicit (P3430R1 Section 3.1)

SF F N A SA

Poll:Make conversions to/from implementation-definedvector types implicit (strike explicit) (P3430R1
Section 3.2)

SF F N A SA

4

P3430R1 4 Issue 2: drop “unsequenced” from generator ctor

4 ISSUE 2: DROP “UNSEQUENCED” FROM GENERATOR CTOR

The current wording for the generator constructors (basic_simd and basic_simd_mask) says:

The calls to gen are unsequenced with respect to each other. Vectorization-unsafe ([algorithms.parallel.defns])
standard library functions may not be invoked by gen.

To the authors knowledge this has never been explicitly implemented. Yes, compilers can rela-

tively easily vectorize generator constructor calls, but that doesn’t require this wording. In other

words, there is no need to restrict user code for the cases where we expect vectorization.

On the other hand, this requirement on user code is likely to be violated in practice. However, as

long as implementations implement the broadcast constructor as an unrolled loop over all calls, the

UB will never materialize. Unless, at some point in the future an implementation can annotate its

unrolled loop with the necessary “unsequenced” property. Suddenly latent bugs would materialize.

Furthermore, the current restriction disallows legitimate use cases, such as calling a random num-

ber generator/distribution, performing potentially blocking/synchronizing calls, throwing an excep-

tion, or std::print debugging.

Therefore, we propose to remove the requirement on the user code and at the same time drop

noexcept (because throwing from the callable is a valid strategy for error handling).

If we ever find the need for a function that generates simd objects from unsequenced calls to

scalar functions we can add a named function to do so. The name of such a function could help to

indicate unsequenced execution, which helps in code reviews to catch potential issues.

[simd.ctor]

template<class G> constexpr explicit basic_simd(G&& gen) noexcept;

7 Let From𝑖 denote the type decltype(gen(integral_constant<simd-size-type, 𝑖>())).

8 Constraints: From𝑖 satisfies convertible_to<value_type> for all 𝑖 in the range of [0, size()). In ad-
dition, for all 𝑖 in the range of [0, size()), if From𝑖 is an arithmetic type, conversion from From𝑖 to
value_type is value-preserving.

9 Effects: Initializes the 𝑖th element with static_cast<value_type>(gen(integral_constant<simd-size-
type, i>())) for all 𝑖 in the range of [0, size()).

10 The calls to gen are unsequenced with respect to each other. Vectorization-unsafe ([algorithms.parallel.defns])
standard library functions may not be invoked by gen. gen is invoked exactly once for each 𝑖.

[simd.mask.ctor]

template<class G> constexpr explicit basic_simd_mask(G&& gen) noexcept;

5

P3430R1 5 Issue 3: reorder identity_element and binary_op on reduce

4 Constraints: static_cast<bool>(gen(integral_constant<simd-size-type, i>())) is well-formed for all
𝑖 in the range of [0, size()).

5 Effects: Initializes the 𝑖th element with gen(integral_constant<simd-size-type, i>()) for all 𝑖 in the
range of [0, size()).

6 The calls to gen are unsequenced with respect to each other. Vectorization-unsafe ([algorithms.parallel.defns])
standard library functions may not be invoked by gen. gen is invoked exactly once for each 𝑖.

4.1 suggested poll

Poll: Removewording that unconditionally allows calls to gen from the generator constructors to be

unsequencedwith respect to each other. At the same time, remove noexcept from the constructors.

(P3430R1 Section 4)

SF F N A SA

5 ISSUE 3: REORDER IDENTITY_ELEMENT AND BINARY_OP ON REDUCE

The masked std::reduce overloads for simd require an identity element (for efficient implementa-

tion2). The value of the identity element is know for all vectorizable types and if the BinaryOperation
is one of std::plus<>, std::multiplies<>, std::bit_and<>, std::bit_or<>, or std::bit_xor<>.
For every other user-defined binary operation, the caller must provide a value for the identity ele-

ment:

P1928R11

template<class T, class Abi, class BinaryOperation = plus<>>
constexpr T reduce(

const basic_simd<T, Abi>& x, const typename basic_simd<T, Abi>::mask_type& mask,
type_identity_t<T> identity_element, BinaryOperation binary_op)

2 The basic idea is to fill all masked elements of the given simd object with the identity element and then perform a tree

reduction over all elements of the simd.

6

P3430R1 5 Issue 3: reorder identity_element and binary_op on reduce

The original reduce overload for the TS was modeled after the overloads that provide an ini-

tial value: reduce(InputIt first, InputIt last, T init, BinaryOp op). For these functions the
init parameter precedes the BinaryOp parameter.

However, the initial value is a very different parameter: It provides an additional value that is

included in the reduction together with the given range. This is not the case for the simd overload,

where the identity element is included 0–simd::size() times in the reduction. More importantly,

the value must be such that it doesn’t influence the result, otherwise it violates a precondition of

reduce.
Because of this different nature of the parameter, and because we can provide a default for

known binary operations, the identity_element parameter can and should be after the BinaryOp.
Then the 6 overloads for masked reductions are reduced to a single overload of the form:

P1928R12

template<class T, class Abi, class BinaryOperation = plus<>>
constexpr T reduce(

const basic_simd<T, Abi>& x, const typename basic_simd<T, Abi>::mask_type& mask,
BinaryOperation binary_op = {}, type_identity_t<T> identity_element = see below);

6 Constraints:

• BinaryOperation models reduction-binary-operation<T>.

• An argument for identity_element is provided for the invocation, unless BinaryOperation is one
of plus<>, multiplies<>, bit_and<>, bit_or<>, or bit_xor<>.

7 Preconditions:

• binary_op does not modify x.

• For all finite values y representable by T, the results of y == binary_op(simd<T, 1>(identity_-
element), simd<T, 1>(y))[0] and y == binary_op(simd<T, 1>(y), simd<T, 1>(identity_ele-
ment))[0] are true.

8 Returns: If none_of(mask) is true, returns identity_element. Otherwise, returns GENERALIZED_SUM(bi-
nary_op, simd<T, 1>(x[𝑘0]), …, simd<T, 1>(x[𝑘𝑛]))[0] where 𝑘0, … , 𝑘𝑛 are the selected indices
of mask.

9 Throws: Any exception thrown from binary_op.

10 Remarks: The default argument for identity_element is equal to

• T() if BinaryOperation is plus<>,

• T(1) if BinaryOperation is multiplies<>,

• T(~T()) if BinaryOperation is bit_and<>,

• T() if BinaryOperation is bit_or<>, or

• T() if BinaryOperation is bit_xor<>.

7

P3430R1 6 Issue 4: Undo removal of members of disabled basic_simd

Note that the latest revision of P1928, already contains this new signature / wording, as this was

preferred by LWG. LEWG still needs to re-confirm that change, otherwise I will have to roll it back.

5.1 suggested poll

Poll:Reorder binary_op and identity_element as suggested by LWGand implemented in P1928R12.

SF F N A SA

6 ISSUE 4: UNDO REMOVAL OF MEMBERS OF DISABLED basic_simd

(postponed)

8

P3430R1 7 Issue 5: Hidden friend compound assignment operators

7 ISSUE 5: HIDDEN FRIEND COMPOUND ASSIGNMENT OPERATORS
std::simd <int , 4> s1 , s2;
auto r = std::ref(s1); // r is a std :: reference_wrapper

r += s2; // modifies s1: apply += to element wise to s1 ,sw3
r = s2; // rebinds r to point to s2
r += s2; // modifies s2

This is due to r being convertible to basic_simd& and thus binding to:

template < class T, class Abi > class basic_simd {
// …
friend constexpr basic_simd & operator +=(basic_simd &, const basic_simd &) noexcept ;

};

However, if compound assignment is specified as a member then name lookup doesn’t find the

operator (no member function lookup via ADL) and the example above becomes ill-formed:

template < class T, class Abi > class basic_simd {
// …
constexpr basic_simd & operator +=(const basic_simd &) noexcept ;

};

Note, however, that the following is alreadywell-formed for scalars with the exact same behavior

as for simd with hidden friend compound assignment:

int s1 , s2;
auto r = std::ref(s1); // r is a std :: reference_wrapper

r += s2; // modifies s1: apply += to element wise to s1 ,sw3
r = s2; // rebinds r to point to s2
r += s2; // modifies s2

Consequently, changing compound assignment for simd to member operators creates an incon-

sistency between simd<T> and T. Also, consider that not every reference_wrapper-like type imple-

ments operator= as rebind. Other typeswith a conversion operator to lvalue-referencemight imple-

ment it as assign-through. (e.g., proxy reference types similar to what we had for simd::operator[])
After discussing the above in LWG, LWG does not feel a need for changing this. But LWGwould

still like LEWG to sign off on the status quo.

7.1 suggested poll

Poll: Turn [simd.cassign] and [simd.mask.cassign] in P1928R12 into members, as implemented in

P1928R13.

SF F N A SA

9

	1 Changelog
	1.1 Changes from revision 0

	2 Straw Polls
	2.1 LEWG at Wrocław 2024

	3 Issue 1: explicit
	3.1 Broadcast constructor
	3.2 Conversion from/to intrinsic
	3.3 Suggested Polls

	4 Issue 2: drop “unsequenced” from generator ctor
	4.1 Suggested Poll

	5 Issue 3: reorder identity_element and binary_op on reduce
	5.1 Suggested Poll

	6 Issue 4: Undo removal of members of disabled
	7 Issue 5: Hidden friend compound assignment operators
	7.1 Suggested Poll

