
Contracts for C++:
Pre-Wrocław technical clarifications

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Document #: P3483R0
Date: 2024-10-31
Project: Programming Language C++
Audience: SG21, EWG

Abstract

After having gained implementation and deployment experience with Contracts for C++ as
proposed in [P2900R10] we identified a few corner cases for which the front matter and wording
in [P2900R10] would benefit from clarifications of the design intent. In this paper, we explain the
affected cases and propose to add the necessary clarifications. Importantly, we do not propose
any design changes to [P2900R10].

1 Proposed clarifications

1.1 Postcondition result name with deduced type is late-parsed

As specified in [P2900R10], Section 3.4.3, if a postcondition names the return value on a non-
templated function with a deduced return type, that postcondition must be attached to the
declaration that is also the definition (and thus there can be no earlier declaration). This is
necessary because the return type must be known in order to fully parse the postcondition predicate.
The first of two clarifications requested in the Implementers Report [P3460R0] concerns one particular
aspect of this property. Consider:

struct A {
template <int N> bool f() const;

};

auto h()
post (v: v.f<6>()) {

return A{};
}

Should the token < in the postcondition predicate be parsed as the smaller-than operator, or as the
opening bracket of a template argument list? This decision cannot be made without knowing the
return type of h.
[P3460R0] considers two option: inside the postcondition predicate of h, its return type could be
either late-parsed (i.e. the predicate expression is properly parsed only after the function body)

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net


or treated as dependent. The former option would mean that the code above is well-formed. The
latter option would mean that the code above is ill-formed unless we explicitly disambiguate the
expression using the template keyword:

auto h()
post (v: v.template f<6>()) {

return A{};
}

[P3460R0] concludes that, in the opinion of the Clang implementers, the return type should be
late-parsed, and the Standard should clarify this.
We come to the same conclusion as the implementers. Making the return type a dependent type would
be strange, as h is not a template, and requiring explicit disambiguation would be unnecessarily
user-hostile. Making the return type late parsed matches the design intent of [P2900R10], is
implementable, and in fact has already been implemented in both Clang and GCC.
We believe that the proposed wording in [P2900R10] already specifies this design correctly, however
to improve clarity we propose to add a note to the proposed wording and to add the above example
to the front matter of [P2900R10].
It should be noted that this particular design aspect of Contracts has already been discussed in detail
in [P1323R2], and the proposed solution approved by EWG. [P1323R2] uses a different example to
make the same point:

template <typename> struct X { enum { Nested }; };
template <> struct X<int> { struct Nested {}; };

auto f()
post (r: sizeof(X<decltype(ret)>::Nested) { // typename needed to disambiguate?

return 42;
}

The paper lists four options:

1. Disallow naming the return value in a postcondition if the function has a deduced return type.

2. Allow such naming, but treat the name of the return value as having a dependent type. This
means requiring template and typename disambiguators; behaviour would be as if the point
of instantiation is wherever the definition of the function occurs.

3. Allow such naming as above for templated functions, and for non-templated functions, allow
such naming only for definitions. Delay the parsing of the postcondition until the return type
is known is a possible implementation strategy for the non-templated function case of this
option.

4. Allow such naming as above, but apply the dependent-type option for non-templated forward
declarations.

The paper summarises the EWG discussion on this topic, which concludes that Option 3 (late-
parsed) is the correct solution, and provides wording for Option 3. This wording has already once
been approved by CWG and merged into the C++ Working Draft (for C++20, before Contracts
were removed). The same wording was adopted for P2900 as well. However, through subsequent
iterations of the wording in P2900, the intent of those particular sections became less clear.
To avoid future requests for clarification, we propose a few wording edits below to be more clear
about what the result name does when used as an expression and that its type is always the deduced
return type (with const qualification added) of the function, even when lexically before the point
where that deduction will happen.

2



1.2 Trivial copies of the result object are in sequence with postconditions

The second of two clarifications requested in the Implementers Report [P3460R0] concerns the case
when the return value of a function does not have an RVO slot, but is passed in a register. In
this case, the result object does not exist in memory at the time the postcondition assertions are
evaluated, and the implementation may instead refer to a temporary object that has the same value.
The implementation may make extra copies of the result object for this purpose. These copies must
be trivial, so this situation can only arise if the return type is trivially copyable.
In this case, evaluating a postcondition assertion that involves the return value requires temporary
materialisation of an object that holds the return value. The question is whether the same
materialised temporary must be used in each postcondition assertion:

int f()
post(r : ++const_cast<int&>(r) == 1)
post(r : ++const_cast<int&>(r) == 2) { // true or false?

return 0;
}

According to the specification in [P2900R10], postcondition assertions are evaluated in sequence. If
the return type is not trivially copyable, r must always refer to the same object — the result object
of the function. If the return type is trivially copyable, the compiler is allowed to make extra copies,
but it needs to do that in sequence with evaluation of the postcondition. In other words, whether
or not extra trivial copies are made cannot affect the result of the evaluation of the postcondition
assertion. Therefore, in the example above, when both postconditions are evaluated once they will
both evaluate to true.
Below, we propose adding a few words to a non-normative note as well as a code example to the
wording to clarify this design intent.

1.3 For a parameter odr-used in post, const can be part of dependent type

Whether or not a function parameter is declared const, and can therefore be odr-used in a
postcondition assertion, is not always immediately visible. Consider:

template <typename T>
void f(T t) post(t > 0);

This function template may be instantiated with a type that is const-qualified, or a type that is
not. However, this is not known when parsing this function template, as the variable t does not
have a visible const specifier on it. It is therefore not immediately obvious when and how the above
example should fail to compile.
The answer is that the parameter t being odr-used in the postcondition assertion has a dependent
type. This situation should be treated just like other situations where dependent types occur. In
particular, the above function template declaration is well-formed in its own; whether or not the
postcondition assertion makes the program ill-formed should be decided at the point where the
template is instantiated:

int main() {
int i = 1;
f<int>(i); // error
f<const int>(i); // OK

}

We believe that the above behaviour is already correctly specified by the wording in [P2900R10]
and no other behaviour makes sense. Nevertheless, below we propose adding a few words to a
non-normative note as well as a code example to the wording for additional clarity.

3



1.4 Lambdas can appear in redeclared pre and post sequences

Usually, when the same lambda expression is repeated token-identically, it denotes a different object
that has a different type:

auto l1 = []{};
auto l2 = []{};
// l1 and l2 have different types

template <typename T = decltype([]{})>
struct X {};

X x1;
X x2;
// x1 and x2 have different types

This raises the question what should happen when a lambda appears in the predicate of a precondition
or postcondition, and the affected function has a redeclaration that repeats its function contract
assertion sequence (as permitted by [P2900R10], Section 3.3.1). Consider:

// f.h
void f() pre([]{ _ = scoped_lock(obj_mtx); return obj.is_valid(); }())

// f.cpp
void f() pre([]{ _ = scoped_lock(obj_mtx); return obj.is_valid(); }()) {

// implementation
}

It seems obvious that the only possible interpretation is that in this case, unlike the previous cases,
the lambda expressions must be treated as the same entity. This is essentially the same situation as
having a lambda expression inside the body of an inline function that appears in multiple translation
units. We should apply the same rules for what is or is not an ODR-violation in this case as well.
Below, we propose adding an example to the wording to clarify this design intent.

2 Proposed wording

The proposed wording changes are relative to [P2900R10]. Note that all proposed changes are either
clarifying minor wording tweaks or clarifying non-normative notes and examples; no design changes
are being proposed.
Modify [expr.prim.id.unqual] paragraph 5 as follows:

[5] Otherwise, If the unqualified-id is the result name ([dcl.contract.res]) in a postcondition
assertion attached to a function whose (possibly deduced, see [dcl.spec.auto]) return type is
T, then the type of the expression is const T.
[6] Otherwise, if the unqualified-id appears in the predicate of a contract assertion C ([ba-
sic.contract]) and the entity is

— the result object of (possibly deduced, see [dcl.spec.auto]) type T of a function call and
the unqualified-id is the result name ([dcl.contract.res]) in a postcondition assertion, or

— a variable declared outside of C, or
— a structured binding of type T whose corresponding variable is declared outside of C,

then the type of the expression is const T.
Modify [dcl.contract.func] as follows:

4



A function-contract-specifier-seq s1 is the same as a function-contract-specifier-seq s2 if s1
and s2 consist of the same function-contract-specifiers in the same order. A function-contract-
specifier c1 on a function declaration d1 is the same as a function-contract-specifier c2 on a
function declaration d2 if their predicates ([basic.contract.general]), p1 and p2, would satisfy
the one-definition rule ([basic.def.odr]) if placed in function definitions on the declarations d1
and d2, respectively, except for renaming of parameters, renaming of template parameters,
and renaming of the result name ([dcl.contract.res]), if any. [ Note: As a result of the above,
all uses and definitions of a function see the equivalent function-contract-specifier-seq for that
function across all translation units. — end note ] [ Example:

bool b1, b2;

void f() pre (b1) pre ([]{ return b2; }());
void f(); // OK, function-contract specifiers omitted
void f() pre (b1) pre ([]{ return b2; }()); // OK, same by ODR
void f() pre (b1); // error: function-contract specifiers only partially repeated
void f() pre (b1) pre (b2); // error: not same by ODR

— end example ]
[...]
If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function type. [ Note: This requirement applies even to declarations that do
not specify the postcondition-specifier. The const qualifier of the parameter can be part of
the dependent type. Arrays and functions are still usable when declared with the equivalent
pointer types ([dcl.fct]). — end note ] [ Example:

int f(const int i)
post (r: r == i);
int g(int i)
post (r: r == i); // error: i is not declared const.
int f(int i) // error: i is not declared const.
{

return i;
}

int g(int i) // error: i is not declared const.
{

return i;
}

template <typename T>
void f(T t) post(t > 0);

int main() {
int i = 1;
f<int>(i); // error
f<const int>(i); // OK

}

— end example ]

Modify [dcl.contract.res] as follows:

If the implementation is permitted to introduce a temporary object for the return value
([class.temporary]), the result name may instead denote that temporary object. [ Note: It
follows that, for objects that can be returned in registers, the address of the object referred
to by the result name might be a temporary materialized to hold the value before it is used

5



to initialize the actual result object. Modifications to that temporary’s value are still in
sequence with the evaluation of the postcondition assertions and expected to be retained for
the eventual result object. — end note ] [ Example:

int f()
post(r : ++const_cast<int&>(r) == 1)
post(r : ++const_cast<int&>(r) == 2) // The postcondition check is guaranteed to succeed.

{
return 0;

}

struct A {}; // trivially copyable

struct B { // not trivially copyable
B() {}
B(const B&) {}

};

template <typename T>
T f(T* ptr)

post(r: &r == ptr)
{

return T{};
}

int main() {
A a = f(&a); // The postcondition check may fail.
B b = f(&b); // The postcondition check is guaranteed to succeed.

}

— end example ]

Bibliography

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. https://wg21.link/p0542r5, 2018-06-08.

[P1323R2] Hubert Tong. Contract postconditions and return type deduction. https://wg21.link/
p1232r2, 2019-02-20.

[P2900R10] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r10, 2024-10-12.

[P3098R0] Timur Doumler, Gašper Ažman, and Joshua Berne. Contracts for C++: Postcondition
captures. https://wg21.link/p3098r0, 2024-10-14.

[P3387R0] Timur Doumler, Joshua Berne, Iain Sandoe, and Peter Bindels. Contract assertions on
coroutines. https://wg21.link/p3387r0, 2024-10-09.

[P3460R0] Eric Fiselier, Nina Ranns, and Iain Sandoe. C++ Contracts Implementers Report.
https://wg21.link/p3460r0, 2024-10-16.

6

https://wg21.link/p0542r5
https://wg21.link/p1232r2
https://wg21.link/p1232r2
https://wg21.link/p2900r10
https://wg21.link/p2900r10
https://wg21.link/p3098r0
https://wg21.link/p3387r0
https://wg21.link/p3460r0

	1 Proposed clarifications
	1.1 Postcondition result name with deduced type is late-parsed
	1.2 Trivial copies of the result object are in sequence with postconditions
	1.3 For a parameter odr-used in post, const can be part of dependent type
	1.4 Lambdas can appear in redeclared pre and post sequences

	2 Proposed wording

