
Contracts for C++:
Pre-Wrocław technical clarifications

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Document #: P3483R1
Date: 2024-11-04
Project: Programming Language C++
Audience: SG21, EWG

Abstract

After having gained implementation and deployment experience with Contracts for C++ as
proposed in [P2900R10] we identified a few corner cases for which the front matter and wording
in [P2900R10] would benefit from clarifications of the design intent. In this paper, we explain the
affected cases and propose to add the necessary clarifications. Importantly, we do not propose
any design changes to [P2900R10].

1 Proposed clarifications

1.1 Postcondition result name with deduced type is late-parsed

As specified in [P2900R10], Section 3.4.3, if a postcondition names the return value on a non-
templated function with a deduced return type, that postcondition must be attached to the
declaration that is also the definition (and thus there can be no earlier declaration). This is
necessary because the return type must be known in order to fully parse the postcondition predicate.
The first of two clarifications requested in the Implementers Report [P3460R0] concerns one particular
aspect of this property. Consider:

struct A {
template <int N> bool f() const;

};

auto h()
post (v: v.f<6>()) {

return A{};
}

Should the token < in the postcondition predicate be parsed as the smaller-than operator, or as the
opening bracket of a template argument list? This decision cannot be made without knowing the
return type of h.
[P3460R0] considers two option: inside the postcondition predicate of h, its return type could be
either late-parsed (i.e. the predicate expression is properly parsed only after the function body)

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net

or treated as dependent. The former option would mean that the code above is well-formed. The
latter option would mean that the code above is ill-formed unless we explicitly disambiguate the
expression using the template keyword:

auto h()
post (v: v.template f<6>()) {

return A{};
}

[P3460R0] concludes that, in the opinion of the Clang implementers, the return type should be
late-parsed, and the Standard should clarify this.
We come to the same conclusion as the implementers. Making the return type a dependent type would
be strange, as h is not a template, and requiring explicit disambiguation would be unnecessarily
user-hostile. Making the return type late parsed matches the design intent of [P2900R10], is
implementable, and in fact has already been implemented in both Clang and GCC.
We believe that the proposed wording in [P2900R10] already specifies this design correctly, however
to improve clarity we propose to add a note to the proposed wording and to add the above example
to the front matter of [P2900R10].
It should be noted that this particular design aspect of Contracts has already been discussed in detail
in [P1323R2], and the proposed solution approved by EWG. [P1323R2] uses a different example to
make the same point:

template <typename> struct X { enum { Nested }; };
template <> struct X<int> { struct Nested {}; };

auto f()
post (r: sizeof(X<decltype(ret)>::Nested) { // typename needed to disambiguate?

return 42;
}

The paper lists four options:

1. Disallow naming the return value in a postcondition if the function has a deduced return type.

2. Allow such naming, but treat the name of the return value as having a dependent type. This
means requiring template and typename disambiguators; behaviour would be as if the point
of instantiation is wherever the definition of the function occurs.

3. Allow such naming as above for templated functions, and for non-templated functions, allow
such naming only for definitions. Delay the parsing of the postcondition until the return type
is known is a possible implementation strategy for the non-templated function case of this
option.

4. Allow such naming as above, but apply the dependent-type option for non-templated forward
declarations.

The paper summarises the EWG discussion on this topic, which concludes that Option 3 (late-
parsed) is the correct solution, and provides wording for Option 3. This wording has already once
been approved by CWG and merged into the C++ Working Draft (for C++20, before Contracts
were removed). The same wording was adopted for P2900 as well. However, through subsequent
iterations of the wording in P2900, the intent of those particular sections became less clear.
To avoid future requests for clarification, we propose a few wording edits below to be more clear
about what the result name does when used as an expression and that its type is always the deduced
return type (with const qualification added) of the function, even when lexically before the point
where that deduction will happen.

2

1.2 Trivial copies of the result object are in sequence with postconditions

The second of two clarifications requested in the Implementers Report [P3460R0] concerns the case
when the return value of a function does not have an RVO slot, but is passed in a register. In
this case, the result object does not exist in memory at the time the postcondition assertions are
evaluated, and the implementation may instead refer to a temporary object that has the same value.
The implementation may make extra copies of the result object for this purpose. These copies must
be trivial, so this situation can only arise if the return type is trivially copyable.
In this case, evaluating a postcondition assertion that involves the return value requires temporary
materialisation of an object that holds the return value. The question is whether the same
materialised temporary must be used in each postcondition assertion. Assuming that we have
configured the program such that every contract assertion will be evaluated with a checked semantic
exactly once, is the second postcondition assertion guaranteed to succeed in the following example —
in other words, does the second postcondition assertion see the modification of the return value
performed by the first, or does it operate on a different object?

int f()
post(r : ++const_cast<int&>(r) == 1)
post(r : ++const_cast<int&>(r) == 2) { // true or false?

return 0;
}

According to the specification in [P2900R10], postcondition assertions are evaluated in sequence. If
the return type is not trivially copyable, r must always refer to the same object — the result object
of the function. If the return type is trivially copyable, the compiler is allowed to make extra copies,
but it needs to do that in sequence with evaluation of the postcondition. In other words, whether
or not extra trivial copies are made cannot affect the result of the evaluation of the postcondition
assertion. Therefore, in the example above, assuming that both postconditions are evaluated with a
checked semantic exactly once, they must both evaluate to true.
Below, we propose adding a few words to a non-normative note as well as a code example to the
wording to clarify this design intent.
Note that it is not in general guaranteed that both postconditions are evaluated with a checked
semantic, and if they are, that both will be evaluated exactly once (see [P2900R10] Section 3.5.8).
Writing postcondition assertions such as the above, and expecting them to succeed, is therefore not
a correct use of the proposed Contracts facility; the example above is used only to illustrate the
point about materialised temporaries.

1.3 For a parameter odr-used in post, const can be part of dependent type

(This item was factored out into a separate paper [D3489R0] after discussion of the previous revision
of this paper in SG21 revealed that it is not merely a clarification, but a design decision is required
to resolve the current ambiguity in [P2900R10].)

1.4 Lambdas can appear in redeclared pre and post sequences

Usually, when the same lambda expression is repeated token-identically, it denotes a different object
that has a different type:

auto l1 = []{};
auto l2 = []{};
// l1 and l2 have different types

3

template <typename T = decltype([]{})>
struct X {};

X x1;
X x2;
// x1 and x2 have different types

This raises the question what should happen when a lambda appears in the predicate of a precondition
or postcondition, and the affected function has a redeclaration that repeats its function contract
assertion sequence (as permitted by [P2900R10], Section 3.3.1). Consider:

// f.h
void f() pre([]{ _ = scoped_lock(obj_mtx); return obj.is_valid(); }())

// f.cpp
void f() pre([]{ _ = scoped_lock(obj_mtx); return obj.is_valid(); }()) {

// implementation
}

It seems obvious that the only possible interpretation is that in this case, unlike the previous cases,
the lambda expressions must be treated as the same entity. This is essentially the same situation as
having a lambda expression inside the body of an inline function that appears in multiple translation
units. We should apply the same rules for what is or is not an ODR-violation in this case as well.
Below, we propose adding an example to the wording to clarify this design intent.

2 Proposed wording

The proposed wording changes are relative to [P2900R10]. Note that all proposed changes are either
clarifying minor wording tweaks or clarifying non-normative notes and examples; no design changes
are being proposed.
Modify [expr.prim.id.unqual] paragraph 5 as follows:

[5] Otherwise, if the unqualified-id is the result name ([dcl.contract.res]) in a postcondition
assertion attached to a function whose (possibly deduced, see [dcl.spec.auto]) return type is
T, then the type of the expression is const T.
[6] Otherwise, if the unqualified-id appears in the predicate of a contract assertion C ([ba-
sic.contract]) and the entity is

— the result object of (possibly deduced, see [dcl.spec.auto]) type T of a function call and
the unqualified-id is the result name ([dcl.contract.res]) in a postcondition assertion, or

— a variable declared outside of C, or
— a structured binding of type T whose corresponding variable is declared outside of C,

then the type of the expression is const T.
Modify [dcl.contract.func] as follows:

A function-contract-specifier-seq s1 is the same as a function-contract-specifier-seq s2 if s1
and s2 consist of the same function-contract-specifiers in the same order. A function-contract-
specifier c1 on a function declaration d1 is the same as a function-contract-specifier c2 on a
function declaration d2 if their predicates ([basic.contract.general]), p1 and p2, would satisfy
the one-definition rule ([basic.def.odr]) if placed in function definitions on the declarations d1
and d2, respectively, except for renaming of parameters, renaming of template parameters,
and renaming of the result name ([dcl.contract.res]), if any. [Note: As a result of the above,

4

all uses and definitions of a function see the equivalent function-contract-specifier-seq for that
function across all translation units. — end note] [Example:

bool b1, b2;

void f() pre (b1) pre ([]{ return b2; }());
void f(); // OK, function-contract specifiers omitted
void f() pre (b1) pre ([]{ return b2; }()); // OK, same by ODR
void f() pre (b1); // error: function-contract specifiers only partially repeated
void f() pre (b1) pre (b2); // error: not same by ODR

— end example]

Modify [dcl.contract.res] as follows:

If the implementation is permitted to introduce a temporary object for the return value
([class.temporary]), the result name may instead denote that temporary object. [Note: It
follows that, for objects that can be returned in registers, the address of the object referred
to by the result name might be a temporary materialized to hold the value before it is used
to initialize the actual result object. Modifications to that temporary’s value are still in
sequence with the evaluation of the postcondition assertions and expected to be retained for
the eventual result object. — end note] [Example:

int f()
post(r : ++const_cast<int&>(r) == 1)
post(r : ++const_cast<int&>(r) == 2) // The postcondition check is guaranteed to succeed,

{ // assuming both checks are performed exactly once
return 0;

}

struct A {}; // trivially copyable

struct B { // not trivially copyable
B() {}
B(const B&) {}

};

template <typename T>
T f(T* ptr)

post(r: &r == ptr)
{

return T{};
}

int main() {
A a = f(&a); // The postcondition check may fail.
B b = f(&b); // The postcondition check is guaranteed to succeed.

}

— end example]

Revision history

— R0, 2024-10-31: Initial version presented to SG21

— R1, 2024-11-04: Incorporated SG21 feedback, removed item 1.3

5

Bibliography

[D3489R0] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter of dependent
type. https://wg21.link/d3489r0, 2024-11-01.

[P1323R2] Hubert Tong. Contract postconditions and return type deduction. https://wg21.link/
p1232r2, 2019-02-20.

[P2900R10] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r10, 2024-10-12.

[P3460R0] Eric Fiselier, Nina Ranns, and Iain Sandoe. C++ Contracts Implementers Report.
https://wg21.link/p3460r0, 2024-10-16.

6

https://wg21.link/d3489r0
https://wg21.link/p1232r2
https://wg21.link/p1232r2
https://wg21.link/p2900r10
https://wg21.link/p2900r10
https://wg21.link/p3460r0

	1 Proposed clarifications
	1.1 Postcondition result name with deduced type is late-parsed
	1.2 Trivial copies of the result object are in sequence with postconditions
	1.3 For a parameter odr-used in post, const can be part of dependent type
	1.4 Lambdas can appear in redeclared pre and post sequences

	2 Proposed wording

