
Postconditions odr-using a parameter
that may be passed in registers

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Document #: P3487R0
Date: 2024-11-07
Project: Programming Language C++
Audience: SG21, EWG

Abstract

This paper considers the case where a non-reference parameter is odr-used in the predicate of
a precondition or postcondition assertion and is eligible to be passed via registers. To enable
caller-side checking of preconditions and postconditions, we need to add a provision to the the
Contracts MVP [P2900R10] that allows the check to observe either the caller-side or the callee-
side version of the parameter object. However, for postconditions, this can lead to surprising
behaviour. We propose several alternatives for how to address this problem.

This paper is the second part of a trilogy of papers dealing with known issues in the Contracts
MVP [P2900R10] regarding postconditions odr-using non-reference function parameters:

— [D3484R1] Postconditions odr-using a parameter modified in an overriding function;

— [D3487R0] Postconditions odr-using a parameter that may be passed in registers;

— [D3489R0] Postconditions odr-using a parameter of dependent type.

These issues should be considered together, and ideally resolved in a consistent way.

1 Background

For efficiency reasons, the major ABIs used for implementations of C++ allow objects to be passed
to a function and returned from a function via registers when the type of the object satisfies
certain requirements. The C++ Standard accommodates such passing and returning via registers
in [class.temporary]/3 as follows:

When an object of class type X is passed to or returned from a function, if X has at least one
eligible copy or move constructor ([special]), each such constructor is trivial, and the destructor
of X is either trivial or deleted, implementations are permitted to create a temporary object
to hold the function parameter or result object. The temporary object is constructed from
the function argument or return value, respectively, and the function’s parameter or return
object is initialised as if by using the eligible trivial constructor to copy the temporary (even
if that constructor is inaccessible or would not be selected by overload resolution to perform a
copy or move of the object).

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net
https://timsong-cpp.github.io/cppwp/n4950/class.temporary#3

Effectively, such objects passed and returned via registers do not exist in memory and do not have
an address; their value is instead accessed by materialising a temporary copy. In C++ today, this
specification peculiarity causes no friction, because there is (with one minor exception1) no context
where the pre-temporary copy versions of these objects could be directly observable by the user.
The current wording does not say it explicitly, but there is an assumption within it that, once a
temporary has been created to “hold the function parameter or result object”, that temporary will
be referred to whenever the name that denotes the object is used going forward.
In practice in C++ today, that is always the case. However, the Contracts MVP [P2900R10] adds
function-contract assertions (precondition and postcondition assertions). Depending on how we
specify them, they could create a new context where the pre-temporary copy versions of parameter
objects and/or return objects are not only observable, but usable by name. We therefore must clarify
exactly what semantics we want to allow in those cases, and what that means for implementations
and for users.

2 Discussion

2.1 Caller-side checking

One of the design goals of [P2900R10] is to allow the implementation to perform precondition and
postcondition checks either callee-side or caller-side. A discussion of implementation strategies
can be found in [P3267R0] and [P3321R0]; a discussion of the motivation and use cases for both
caller-side and callee-side checks can be found in [P3228R1], [P3264R1], [P3270R0], [P3321R0], and
references therein. We provide a very brief summary below,.
For callee-side checks, the compiler would emit code to perform the precondition and postcondition
checks when compiling the definition of the function. For caller-side checks, the compiler would
instead emit code around the function call to perform the checks. Note that the precondition and
postcondition assertions are part of the function declaration and thus known at every call site.
Callee-side checks can be emitted in all cases. On the other hand, caller-side checks cannot be
emitted in certain cases. One such case is an indirect call (e.g., through a pointer to function or
pointer to member function), since the compiler does not know at the call site which concrete
function will be called. Another such case is an ABI that requires function parameters to be
destroyed callee-side (e.g., the Microsoft ABI), which means that postconditions cannot be checked
caller-side without an ABI break, as postconditions must be evaluated before destruction of function
parameters.
Even though not all checks can be performed caller-side in all cases, the ability to perform at least
some caller-side checks is important. With this ability, the user can enable contract checks to
diagnose defects when working with a library that has been compiled with contract checks off (it
can often be too costly or outright impossible to recompile the library with contract checks on and
re-link the program). Caller-side checks also enable an implementation of contract checks on virtual
functions as specified in [P2900R10]: the caller-facing contract (that of the statically called function)
can be checked caller-side, while the callee-facing contract (that of the final overrider selected
by virtual dispatch) can be checked callee-side. Note that only the caller knows the caller-facing
contract in this case.2

1An object that meets the requirements to be passed in a register may still have a user-provide constructor that
may observe its address through the use of this, and that address may then differ from the address seen for the
parameter within the function body.

2How one could implement checking the caller-facing contract of a virtual function call on an ABI that requires
function parameters to be destroyed callee-side, without forcing an ABI break, is currently still an open question, but
this problem is only tangentially related to the problem discussed in this paper.

2

2.2 Preconditions and parameters

Precondition checks can only observe objects passed to a function, i.e., the function parameters, not
objects returned from the function. [P2900R10] currently does not contain an explicit provision that
would allow precondition checks to observe the pre-temporary copy parameter objects. It follows
therefore from [class.temporary] that precondition checks must observe the same parameter object
as the function body. This makes caller-side precondition checks unimplementable with the current
specification.
We can fix this problem by adding an explicit provision to [P2900R10] that a precondition check is
implicitly allowed to observe either the pre-temporary parameter object or the temporary copy. If
the precondition check observes the pre-temporary object, it will do so before the copy is made to
pass the object into a function. If it observes the temporary copy, it will observe the same object as
the function body. In either case, there is no problem.

2.3 Postconditions and the return object

Unlike precondition checks, postcondition checks can observe both parameters and the return object.
[P2900R10] contains an explicit provision that allows postcondition checks to observe either the
caller-side or the callee-side version of the return object:

If the implementation is permitted to introduce a temporary object for the return value
([class.temporary]), the result name may instead denote that temporary object.

This provision is directly observable. Consider:
class X { /∗ ... ∗/ };

X f(const X* ptr) post(r: &r == ptr) {
return X{};

}

int main() {
X x = f(&x);

}

In the example above, if X is not a type eligible to be passed via registers, the postcondition check
of f is guaranteed to pass, because r must denote the return object x in main(); however, if X is a
type eligible to be passed via registers, the postcondition check may3 fail, because r may instead
denote a temporary object.
This behaviour may be surprising to a user not familiar with the rules for returning objects via
registers, but there is no actual problem — this behaviour is an exact mirror image of parameters
in postcondition assertions. Postcondition checks that refer to the return object may therefore be
implemented either caller-side or callee-side with the current specification.

2.4 Postconditions and parameters

The third and last case to consider is a postcondition assertion odr-using a non-reference parameter:
X* ptr;

void f(const X x) post (ptr == &x) {
ptr = &x;

}

3In practice, whether this check fails will depend on both optimization levels and whether f is inlined into main().

3

If X is a type eligible to be passed via registers, is this postcondition guaranteed to pass or not?
Just like for precondition assertions, [P2900R10] currently does not contain an explicit provision
that would allow postcondition checks to observe the pre-temporary copy parameter objects. It
follows therefore from [class.temporary] that postcondition checks, like precondition checks, must
observe the same parameter object as the function body; the postcondition assertion above is
guaranteed to pass.
This makes caller-side precondition checks unimplementable with the current specification without
an ABI break that changes the ABI to no longer pass parameters via registers (other reasons why
they might be unimplementable, in particular an ABI that requires function parameters to be
destroyed callee-side, notwithstanding).
Just like for the previous two cases, we could add an explicit provision to [P2900R10] that a
postcondition check is implicitly allowed to observe either the pre-temporary parameter object
or the temporary copy. However, unlike for preconditions, for postconditions the fact that the
addresses of the object that the contract assertion sees and the object that the function body sees
might be different (which in itself is harmless) is no longer the only observable effect of such a
provision. In addition to that, we now also run into the problem that the temporary copy is made
when the function is called, but the postcondition assertion is evaluated when the function returns.
There is a period in between during which arbitrary code could be executed that can change the
state of the parameter object.
[P2900R10] requires every parameter odr-used in a postcondition assertion to be declared const on
all declarations of the function, and requires that function to not be a coroutine, which guarantees
that the parameter object that the function body observes is not modified between the function call
and its return. However, if the parameter is passed in registers, and the postcondition observes the
pre-temporary copy parameter object, these two versions of the parameter object could diverge.
This has surprising consequences and renders the postcondition’s actual meaning significantly more
difficult to reason about.
In particular, even if the parameter object is const, the function body could still modify any mutable
subobjects of that object. If the postcondition assertion is allowed to observe the pre-temporary
copy version of the object, it will not see such modifications.
Now, of course we should not write postconditions that directly depend on such mutable state
anyway, and if we do, we have already shot ourselves in the foot. But the problem at hand is more
subtle: we may have a type whose correctness is connected to that mutable state.
Consider a class RandomInteger holding a random integer value:

class RandomInteger {
int _value = rand();

public:
int value() const {

return _value;
}

};

The value is computed once when an object of type RandomInteger is created and does not change
afterwards. This value is accessible via a public value() member function, which is marked const
because it does not change the observable state of the object — it always returns the same value
throughout its lifetime.
As an implementation detail, we might compute the value lazily when value() is called for the first
time, and cache it afterwards, with no observable change in behaviour:

class RandomInteger {
mutable bool _computed = false;
mutable int _value;

4

public:
int value() const {

if (!_computed) {
_value = rand();
_computed = true;

}
return _value;

}
};

Note that our RandomInteger class, as defined above, has a trivial copy constructor and a trivial
destructor and is therefore eligible to be passed via registers. This leads to a new footgun:

int f(const RandomInteger i)
post(r: r & i.value() == 0) {

return ~i.value();
}

If there is no guarantee that the i in the postcondition assertion refers to the same object as the i
in the function body, this code will break. The postcondition assertion will see a different integer
value returned from i.value() than the body of the function, and thus fail where it should pass
or vice versa, even though for any user reading this code without a deep understanding of objects
being passed in registers will see nothing obviously incorrect with this code.
Such code works in C++ today because after the parameter object has been packed into registers
and passed to the function, the original object will never be touched by anything again (remember
that the type also needs to have a trivial or deleted destructor, not just an eligible trivial copy or
move constructor). However, allowing a postcondition check to observe the original object — which
is required to enable caller-side postcondition checks without an ABI break — changes that, which
creates the footgun above.
We are aware of eight possible options for dealing with this problem. These options are, from most
to least restrictive:

R1. Remove postcondition assertions from [P2900R10] entirely.

R2. Make it ill-formed to odr-use any function parameter in a postcondition predicate.

R3. Make it ill-formed to odr-use any non-reference function parameter in a postcondition predicate.

R4. Add an explicit provision that, when a non-reference function parameter is odr-used in a
postcondition predicate and the type of the parameter satisfies the requirements for being
passed in registers, the corresponding id-expression may refer either to the same object as
it does in the function body or to the temporary which had been created to initialize the
parameter, thereby allowing caller-side checking of a postcondition predicate that odr-uses
a non-reference function parameter without an ABI break. Make it ill-formed to odr-use a
non-reference function parameter in a postcondition predicate unless the parameter is of scalar
type.4

R5. Add the above provision. Make it ill-formed to odr-use a non-reference function parameter
in a postcondition predicate if the type of the parameter satisfies the requirements for being
passed via registers, unless it is of scalar type.

4Scalar types are arithmetic types, enumeration types, pointer types, pointer-to-member types, std::nullptr_t,
and cv-qualified versions of these types. Arithmetic types are integral and floating-point types; integral types include
character types and bool.

5

R6. Add the above provision. Make it ill-formed to odr-use a non-reference function parameter
in a postcondition predicate if the type of the parameter satisfies the requirements for being
passed via registers and has at least one mutable subobject (applies recursively to all member
subobjects, base class subobjects, and array elements).

R7. Add the above provision and do nothing further. A postcondition may odr-use a non-reference
function parameter of any type.

R8. Do not add the above provision. Instead, clarify that when a non-reference function parameter
is odr-used in a postcondition predicate, the corresponding id-expression must refer to the
same object as it does in the function body (status quo in [P2900R10]); caller-side checking of
a postcondition predicate that odr-uses a non-reference function parameter remains impossible
without an ABI break. A postcondition may odr-use a non-reference function parameter of
any type.

We enumerated the options with an “R” prefix (for “registers”), to distinguish them from the options
from [D3484R1] that have a “V” prefix (for “virtual”) and the options from [D3489R0] that have a
“D” prefix (for “dependent”).
Below we discuss the tradeoffs of each option.

Option R1

Option R1 would be a rather drastic measure at this point. However, consider that postcondition
assertions are significantly more difficult to specify than preconditions (see [P1323R2], [P3007R0],
and [P3098R0]), and unlike preconditions, postcondition assertions have so far already generated
several known issues that needed fixing in the specification of [P2900R10] (see [P3387R0], [P3460R0],
[P3483R0], [D3484R1], and [D3489R0]). Option R1 would remove all known and unknown footguns
from postcondition assertions by removing the feature itself.
We believe that [P2900R10] would still be viable and useful without postcondition assertions.
Postcondition assertions have significantly fewer uses than precondition assertions, and their value
can to a certain extent also be achieved with good unit test coverage.
For the record, the option of removing postcondition assertions from the Contracts MVP was once
before polled in SG21:

SG21 Poll, Teleconference 2021-12-14

Postconditions should be in the MVP at this time.
SF F N A SA
1 7 3 4 1

Result: Marginal consensus (if at all).

Option R2

Option R2 is likewise less than ideal in our opinion, because it significantly limits the set of
postconditions we can write, and thus significantly limits the usefulness of the feature, until we can
add postconditions captures [P3098R0] to the Standard.
This option becomes more appealing if we include [P3098R0] in the first version of Contracts that
we ship. Postcondition captures would never be referencing parameters in a place they cannot be
referenced today, so they would not be impacted by this issue at all. However, capturing parameters

6

for use in a postcondition predicate incurs the cost of a copy, which in many cases is not conceptually
necessary, thus violating the “do not pay for what you do not use” design principle of C++ (see
also [D3484R1] Option R1, which suffers from the same issue).

Option R3

Option R3 is similar to Option R2, except that it allows reference parameters, which are not affected
by any of the issues surrounding copies of objects and are not affected by postcondition captures as
proposed in [P3098R0].
However, allowing only reference parameters still significantly limits the set of postconditions we
can write. In addition, it encourages users to pass parameters by-reference instead by-value as
this would be the only way to make the postcondition assertion compile, which can lead to more
error-prone and less efficient code than the normally recommended pass-by-value. We therefore do
not consider Option R3 to be an improvement over Option R2.

Option R4

Option R4 allows by-value parameters of types that are not affected by the footgun and cannot be
changed such that they would be affected by the footgun, i.e., scalar types. This would already
enable many more useful postconditions compared to Options R1 — R3.
However, if we were to change the type of a parameter from a built-in type to a user-defined type, for
example from int to BigInt, or from double to std::complex<double>, the postcondition would
stop compiling, with no workaround available. Additionally, Option R4 would make it significantly
harder to add postconditions to generic code, including any templates designed to work with both
built-in and user-defined types (which includes the entire STL and vast amounts of other generic
libraries).

Option R5

Option R5 is a relaxation of Option R4. It allows by-value parameters of scalar type (disallowing
them would remove the ability to write many simple and useful postcondition assertions), and in
addition, it allows by-value parameters of any type as long as they are not eligible to be passed via
registers and therefore cannot not affected by the footgun.
One downside of this approach is that most users will not be familiar with the rules around types
eligible to be passed in registers, which means that the compiler error they get will likely be very
confusing to them. Worse, the definition of user-defined types can change over time, which makes
this option brittle. That a particular type is not eligible to be passed via registers is not something
that code should guarantee to its clients indefinitely in all cases; conversely, making a type trivially
copyable and/or movable and trivially destructible should not break client code.
We made a similar choice to not discriminate on particular type traits in the postcondition assertions
of a function when we decided that whether a type is trivially movable should not affect whether a
non-reference parameter of that type can be odr-used in the postcondition assertion of a coroutine
(i.e., when we rejected [P3387R0] Option 5b). Choosing Option R5 here would be inconsistent with
that design choice.

Option R6

Option R6 is a further relaxation of Option R5. It carves out the narrowest possible prohibition on
parameter types that can be odr-used in a postcondition predicate — any type is allowed as long

7

as it does not have the exact property that can lead to the footgun: types that are eligible to be
passed in registers and have mutable subobjects.
Option R6 is the least prohibitive option that both avoids the footgun and allows implementing
caller-side postcondition checks without an ABI break. However, it suffers from the same problem as
Option R5: a very specific and seemingly unrelated change to a type can lead to the postcondition
no longer compiling. For Option R6, the error would be even less obvious for Option R5, as it would
occur when the user decides to add a mutable member to a type that happens to be eligible to be
passed in registers, e.g. when the user does a refactoring such as the one we did with RandomInteger
above, which is a relatively common technique. The result is brittle code, a very hard-to-understand
compiler error, and no good workaround.

Option R7

Option R7 makes the behaviour of postconditions with respect to objects passed to a function in
registers consistent with the behaviour for objects returned from a function in registers, as well as
with the behaviour of preconditions as proposed in Section 2.2. Option R7 is therefore arguably the
optimal choice with respect to having a straightforward specification and implementation of the
feature, enabling caller-side checking, avoiding ABI issues, not making any user code unnecessarily
ill-formed, and not imposing any unnecessary run-time cost on the user.
However, the tradeoff of Option R7 is that it adds the above footgun to the C++ language. Note
that the footgun only occurs in rare edge cases, in particular when a const object eligible to
be passed via registers is used as a non-reference parameter and its type relies on mutable state
for its correctness, and a postcondition assertion would break if it happens to observe an earlier
version of that mutable state. Note further that such cases could potentially be mitigated by an
implementation issuing a warning if a type eligible to be passed in registers has mutable subobjects,
is used as the type of a non-reference function parameter, and that parameter is odr-used in a
postcondition assertion of that function or another function that that function overrides.

Option R8

Option R8 is a confirmation of the status quo. It is the only solution that both avoids the above
footgun and is not a breaking change to [P2900R10]: postconditions odr-using a const non-reference
parameter of a non-coroutine function remain well-formed. Option R8 is therefore arguably the
optimal choice with respect to the immediate user experience when dealing with code such as the
above.
However, Option R8 also comes with a high cost: implementing caller-side postcondition checks
remains impossible without an ABI break. The necessary ABI break to enable caller-side postcondi-
tion checks — and by extension, to implement full contract checks on virtual functions as specified
by [P2900R10] — would consist of no longer passing function parameters via registers if they are
odr-used in the postcondition assertion. However, imposing an ABI break on all users who wish to
add postcondition assertions to their functions would arguably do significant harm to the adoption
of Contracts in the C++ ecosystem, which is why one of the fundamental design principles of the
Contracts MVP ([P2900R10] Principle 16) is to avoid such an ABI break.

8

3 Proposal

With regards to parameters odr-used in preconditions, we propose to add a provision to [P2900R10]
that a precondition check is implicitly allowed to observe either the pre-temporary parameter object
or the temporary copy, as discussed in Section 2.2.
With regards to parameters odr-used in postconditions, we believe that Options R1 — R8 are all
worth considering, and propose all of them to determine which option has more consensus in SG21.
A summary of the tradeoffs for each option can be found in Table 1.
Note that there are three requirements that are impossible to satisfy simultaneously — we need to
choose two. These requirements are: allowing a postcondition predicate to odr-use non-reference
parameters of any type; avoiding the footgun created by parameter objects with mutable subobjects;
and allowing caller-side checking of postconditions that odr-use non-reference parameters without
an ABI break that removes passing via registers. If we are willing to abandon the first requirement,
we can choose between Options R1 — R6, which offer a spectrum between most restrictive and
most brittle; if we are willing to abandon the second requirement, the optimal solution is Option R7;
if we are willing to abandon the third requirement, the optimal solution is Option R8.
Options R1 — R3 do not offer any advantage over Options R4 — R6 with regards to the specific
issues discussed in this paper. However, R1 — R3 may still be interesting because they would
remove the source of the issues discussed in the two companion papers [D3484R1] and [D3489R0].
Note further that all options except Option R8 form a chain of successive relaxations of the previous
option. Therefore, choosing Option R1 would leave the door open to adopting Options R2 — R7
without breaking changes at some point in the future; Option R2 could be evolved towards Options
R3 — R7, but not R1, etc. On the other hand, Option R8 is mutually exclusive with any of the
other options: an evolution from any of the other options towards Option R8, or in the other
direction, is impossible without breaking changes.
Note finally that choosing Option R4 would be consistent with a possible relaxation of the rule for
postconditions on coroutines to also accept non-reference parameters of scalar type.

R1 R2 R3 R4 R5 R6 R7 R8
Allows postcondition assertions
in general
Allows odr-using reference pa-
rameters
Allows odr-using non-reference
parameters of at least scalar type
Allows odr-using non-reference
parameters of any type
Avoids brittle discrimination
based on certain type traits
Makes it impossible to shoot
yourself with the footgun
Allows caller-side postcondition
checking without ABI break

Table 1: Main tradeoffs of proposed options R1 — R8. Discriminating on whether the parameter
is of scalar type (R4) is marked with a question mark because it is significantly less brittle than
discriminating based on more complicated and non-obvious type traits (R5 and R6).

9

4 Wording

The proposed wording changes are relative to the wording proposed in [P2900R10].

Preconditions

Modify [dcl.contract.func] as follows:

If the predicate of a precondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, and the implementation is permitted to introduce a
temporary object for the parameter object value ([class.temporary]), it is unspecified whether
the corresponding id-expression in the predicate of the precondition assertion denotes that
temporary object or the original parameter object. If the predicate of a postcondition as-
sertion of a function odr-uses ([basic.def.odr]) a nonreference parameter of that function,
that parameter shall be declared const and shall not have array or function type. [Note:
This requirement applies even to declarations that do not specify the postcondition-specifier.
Arrays and functions are still usable when declared with the equivalent pointer types ([dcl.fct]).

— end note] [Example: [...] — end example]

Postconditions — Option R1

Remove all wording that relates to:

— The post identifier with special meaning;

— The postcondition-specifier and result-name-introducer grammar non-terminals;

— Postcondition assertions and result names;

— The post enumeration value in std::contracts::assertion_kind.

The exact wording diff is not provided here due to its length.

Postconditions — Option R2

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function typethe program is ill-formed. [Note: This requirement applies even
to declarations that do not specify the postcondition-specifier. Arrays and functions are still
usable when declared with the equivalent pointer types ([dcl.fct]). — end note] [Example:
[...] — end example]

Postconditions — Option R3

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function typethe program is ill-formed. [Note: This requirement applies even
to declarations that do not specify the postcondition-specifier. Arrays and functions are still

10

usable when declared with the equivalent pointer types ([dcl.fct]). — end note] [Example:
[...] — end example]

Postconditions — Option R4

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function typehave scalar type ([basic.types.general]). [Note: This requirement
applies even to declarations that do not specify the postcondition-specifier. Arrays and
functions are still usable when declared with the equivalent pointer types ([dcl.fct]). — end
note] [Example: [...] — end example]
If the implementation is permitted to introduce a temporary object for the parameter object
value ([class.temporary]), it is unspecified whether the corresponding id-expression in the
predicate of a postcondition assertion denotes that temporary object or the original parameter
object.

Postconditions — Option R5

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function type. If the parameter has a type for which the implementation is
permitted to create a temporary object to hold the function parameter ([class.temporary]),
it shall have scalar type ([basic.types.general]). [Note: This requirement applies even to
declarations that do not specify the postcondition-specifier. Arrays and functions are still
usable when declared with the equivalent pointer types ([dcl.fct]). — end note] [Example:
[...] — end example]
If the implementation is permitted to introduce a temporary object for the parameter object
value ([class.temporary]), it is unspecified whether the corresponding id-expression in the
predicate of a postcondition assertion denotes that temporary object or the original parameter
object.

Postconditions — Option R6

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function type. If the parameter has a type for which the implementation is
permitted to create a temporary object to hold the function parameter ([class.temporary]),
it shall not have any mutable subobjects ([dcl.stc]). [Note: This requirement applies even to
declarations that do not specify the postcondition-specifier. Arrays and functions are still
usable when declared with the equivalent pointer types ([dcl.fct]). — end note] [Example:
[...] — end example]
If the implementation is permitted to introduce a temporary object for the parameter object
value ([class.temporary]), it is unspecified whether the corresponding id-expression in the
predicate of a postcondition assertion denotes that temporary object or the original parameter
object.

11

Postconditions — Option R7

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function type. [Note: This requirement applies even to declarations that do not
specify the postcondition-specifier. Arrays and functions are still usable when declared with
the equivalent pointer types ([dcl.fct]). — end note] [Example: [...] — end example]
If the implementation is permitted to introduce a temporary object for the parameter object
value ([class.temporary]), it is unspecified whether the corresponding id-expression in the
predicate of a postcondition assertion denotes that temporary object or the original parameter
object. [Note: It follows that, for objects that can be passed in registers, the postcondition
assertion might not see any modifications of mutable subobjects ([dcl.stc]) of the parameter
object performed by the function or a function overriding it. — end note]

Postconditions — Option R8

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function type. [Note: This requirement applies even to declarations that do not
specify the postcondition-specifier. Arrays and functions are still usable when declared with the
equivalent pointer types ([dcl.fct]). An id-expression that denotes a non-reference parameter
in the predicate of a postcondition assertion denotes the same object as in the function body,
even if the implementation is permitted to introduce a temporary object for the parameter
object value ([class.temporary]). — end note] [Example: [...] — end example]

Acknowledgements

Thanks to Alisdair Meredith, John Lakos, Jens Maurer, and Mungo Gill for their helpful remarks
during drafting of this paper. Thanks to Oliver Rosten for his review of the paper.

Bibliography

[D3484R1] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter modified in
an overriding function. https://wg21.link/d3484r1, 2024-11-01.

[D3487R0] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter that may be
passed in registers. https://wg21.link/d3487r0, 2024-11-01.

[D3489R0] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter of dependent
type. https://wg21.link/d3489r0, 2024-11-01.

[P1323R2] Hubert Tong. Contract postconditions and return type deduction. https://wg21.link/
p1232r2, 2019-02-20.

[P2900R10] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r10, 2024-10-12.

12

https://wg21.link/d3484r1
https://wg21.link/d3487r0
https://wg21.link/d3489r0
https://wg21.link/p1232r2
https://wg21.link/p1232r2
https://wg21.link/p2900r10
https://wg21.link/p2900r10

[P3007R0] Timur Doumler, Andrzej Krzemieński, and Joshua Berne. Return object semantics in
postcondition specifiers. https://wg21.link/p3007r0, 2023-12-11.

[P3098R0] Timur Doumler, Gašper Ažman, and Joshua Berne. Contracts for C++: Postcondition
captures. https://wg21.link/p3098r0, 2024-10-14.

[P3228R1] Timur Doumler. Revisiting side effects, elision, and duplication of contract predicate
evaluations. https://wg21.link/p3228r1, 2024-05-21.

[P3264R1] Ville Voutilainen. Double-evaluation of preconditions. https://wg21.link/p3264r1,
2024-05-17.

[P3267R0] Peter Bindels. C++ contracts implementation strategies. https://wg21.link/p3267r0,
2024-05-22.

[P3270R0] Joshua Berne and John Lakos. Repetition, Elision, and const-ification With Regard to
contract_assert: A Principled Analysis. https://wg21.link/p3270r0, 2024-05-22.

[P3321R0] Joshua Berne. Contracts Interaction With Tooling. https://wg21.link/p3321r0,
2024-07-12.

[P3387R0] Timur Doumler, Joshua Berne, Iain Sandoe, and Peter Bindels. Contract assertions on
coroutines. https://wg21.link/p3387r0, 2024-10-09.

[P3460R0] Eric Fiselier, Nina Ranns, and Iain Sandoe. C++ Contracts Implementers Report.
https://wg21.link/p3460r0, 2024-10-16.

[P3483R0] Timur Doumler and Joshua Berne. Contracts in C++: Pre-Wrocław technical clarifica-
tions. https://wg21.link/p3483r0, 2024-10-31.

13

https://wg21.link/p3007r0
https://wg21.link/p3098r0
https://wg21.link/p3228r1
https://wg21.link/p3264r1
https://wg21.link/p3267r0
https://wg21.link/p3270r0
https://wg21.link/p3321r0
https://wg21.link/p3387r0
https://wg21.link/p3460r0
https://wg21.link/p3483r0

	1 Background
	2 Discussion
	2.1 Caller-side checking
	2.2 Preconditions and parameters
	2.3 Postconditions and the return object
	2.4 Postconditions and parameters

	3 Proposal
	4 Wording

