
Document Number: P3488R0

Date: 2024-11-14

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: SG6, EWG

Target: C++26

Floating-Point Excess Precision

ABSTRACT

CWG2752 asks whether a conforming implementation can represent a floating-point literal with

excess precision. This issue was opened after GCC implemented excess precision for C++. Notably,

GCC also uses excess precision for evaluation at compile-time as shown in this paper. For a holistic

answer this paper considers excess precision of constants and in evaluation. Therefore, the main

question we need answered is whether literals must be rounded or can be stored with excess

precision. The secondary question is the use of excess precision in constant expressions and in

compile-time evaluation of floating-point operations. The goal is to find a consensus on what the

design intent should be, without breaking performance or correctness requirements of C++ users.

This paper lists possible design intent and discusses their implications on potential optimizations.

CONTENTS

1 Changelog 1
2 Straw Polls 1
3 Introduction 1
4 A plan on how to reach a conclusion 5
5 Choose a design intent 5
6 Discussion 7
7 Floating-point contraction 8
8 Wording 10

P3488R0 1 Changelog

1 CHANGELOG

(placeholder)

2 STRAW POLLS

(placeholder)

3 INTRODUCTION

This paper tries to take a holistic approach at the questions around excess precision in C++. As such

it is not constrained to resolving only the issue described in CWG2752.

The following issues are considered:

• CWG2752: can the value of a floating-point literal be stored with excess precision?

• A library clause, especially a macro inherited from C, should not add constraints to the core

language. We need to ensure that the library wording simply allows reflecting on implemen-

tation choices of the core wording.

• Can floating-point expressions use higher intermediate precision (and range) at compile-

time? Or, in other words, does FLT_EVAL_METHOD apply only to runtime evaluation?

• The language allows greater intermediate precision and range without constraints, but FLT_-
EVAL_METHOD constrains it to double and long double. This makes evaluating std::float16_t
and std::bfloat16_t in intermediate precision of std::float32_t impossible. An implemen-

tation would have to use double and then evaluate float in double precision and range.

(This is an extended/modified copy of CWG2752.)

Consider:

int main ()
{

constexpr auto x = 3.14f;
assert(x == 3.14f); // can fail?
static_assert (x == 3.14f); // can fail?

}

Can a conforming implementation represent a floating-point literal with excess precision, causing

the comparisons to fail?

Subclause 5.13.4 [lex.fcon] paragraph 3 specifies:

1

P3488R0 3 Introduction

C++ [lex.fcon]
3 If the scaled value is not in the range of representable values for its type, the program is ill-formed. Otherwise,

the value of a floating-point-literal is the scaled value if representable, else the larger or smaller representable
value nearest the scaled value, chosen in an implementation-defined manner.

This phrasing leaves little leeway for excess precision. In contrast, C23 specifies:

ISO/IEC 9899:2024 6.4.4.3 Floating constants
6 The values of floating constants may be represented in greater range and precision than that required by the

type (determined by the suffix); the types are not changed thereby. See 5.2.5.3.3 regarding evaluation formats.1

Subclause 7.1 [expr.pre] paragraph 6 uses very similar wording to allow excess precision for

floating-point computations (including their operands):

C++ [expr.pre]
6 The values of the floating-point operands and the results of floating-point expressions may be represented in

greater precision and range than that required by the type; the types are not changed thereby.2

Taken together, that means that 314.f / 100.f can be computed and representedmore precisely

than 3.14f, which is hard to justify. The footnote appears to imply that (float)3.14f is required to
yield a value with float precision, but that conversion (eventually) ends up at 9.4.1 [dcl.init.general]
bullet 16.9:

C++ [dcl.init.general]

[…] Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initializer
expression. […]

1 Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the

evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and may raise

the inexact floating-point exception.

2 The cast and assignment operators must still perform their specific conversions as described in 7.6.1.4 [expr.type.conv],

7.6.3 [expr.cast], 7.6.1.9 [expr.static.cast] and 7.6.19 [expr.ass].

2

P3488R0 3 Introduction

If values produced from literals were permitted to carry excess precision, this phrasing does not

seem to convery permission to discard excess precision when converting from a float value to

type float (”[…] is the value […]”), apparently requiring that the target object’s value also carry the

excess precision.

However, if initialization is intended to drop excess precision, then an overloaded operator re-

turning float can never behave like a built-in operation with excess precision, because returning a

value means initializing the return value.

The C++ standard library inherits the FLT_EVAL_METHOD macro from the C standard library. C23

specifies it as follows:

ISO/IEC 9899:2024 5.2.5.3.3 Characteristics of floating types <float.h>

26 The values of floating type yielded by operators subject to the usual arithmetic conversions, including the values
yielded by the implicit conversion of operands, and the values of floating constants are evaluated to a format
whose range and precision may be greater than required by the type. Such a format is called an evaluation
format. In all cases, assignment and cast operators yield values in the format of the type. The extent to which
evaluation formats are used is characterized by the value of FLT_EVAL_METHOD:

-1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and double to the range and precision of the double
type, evaluate long double operations and constants to the range and precision of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The value of FLT_-
EVAL_METHOD does not characterize values returned by function calls (see 6.8.7.5, F.6).

Taken together, a conforming C++ implementation cannot define FLT_EVAL_METHOD to 1 or 2, be-

cause literals (= ”constants”) cannot be represented with excess precision in C++.

3.1 annex h of c23

Annex H of C23 “specifies extension types for programming language C that have the arithmetic

interchange and extended floating-point formats specified in ISO/IEC 60559”.

This annex modifies FLT_EVAL_METHOD and is relevant with regard to discussion around evaluation
of e.g. std::float16_t operations:

ISO/IEC 9899:2024 H.3 Characteristics in <float.h>

2 If FLT_RADIX is 2, the value of FLT_EVAL_METHOD (5.2.5.3.3) characterizes the use of evaluation formats for standard
floating types and for binary floating types:

-1 indeterminable;

3

P3488R0 3 Introduction

0 evaluate all operations and constants, whose semantic type comprises a set of values that is a strict
subset of the values of float, to the range and precision of float; evaluate all other operations and
constants to the range and precision of the semantic type;

1 evaluate operations and constants, whose semantic type comprises a set of values that is a strict subset
of the values of double, to the range and precision of double; evaluate all other operations and constants
to the range and precision of the semantic type;

2 evaluate operations and constants, whose semantic type comprises a set of values that is a strict subset
of the values of long double, to the range and precision of long double; evaluate all other operations
and constants to the range and precision of the semantic type;

𝑁 where _Float𝑁 is a supported interchange floating type, evaluate operations and constants, whose
semantic type comprises a set of values that is a strict subset of the values of _Float𝑁, to the range
and precision of _Float𝑁; evaluate all other operations and constants to the range and precision of the
semantic type;

𝑁 + 1 where _Float𝑁x is a supported extended floating type, evaluate operations and constants, whose se-
mantic type comprises a set of values that is a strict subset of the values of _Float𝑁x, to the range
and precision of _Float𝑁x; evaluate all other operations and constants to the range and precision of the
semantic type.

3.2 relevance of this issue

This issue should be irrelevant for all environments where FLT_EVAL_METHOD is 0. An example en-

vironment where FLT_EVAL_METHOD is non-zero is GCC compiling with -m32 or -mfpmath=387. With

GCC 13 or later and one of the mentioned compiler flags and e.g. -std=c++23 the above code

example fails both the static_assert and the runtime assert3.
An example that exhibits different behavior for constant propagation / expressions can also be

constructed4:

constexpr float a = 0x1 .000003 p0f; // this rounds to nearest
static_assert (a == 0x1 .000004 p0f); // as expected

constexpr float b = 0x2 .000005 p0f; // this rounds to nearest
static_assert (b == 0x2 .000004 p0f); // as expected

constexpr float b0 = 0x1 .000002 p0f + 0x1 .000003 p0f;
// -> without intermediate rounding : 0x2 .000005 p0f
// -> subsequent rounding : 0x2 .000004 p0f (A)
// -> with intermediate rounding : 0x2 .000006 p0f (B ')
// -> subsequent rounding : 0x2 .000008 p0f (B)

3 https://compiler-explorer.com/z/vrYoT5cer
4 https://compiler-explorer.com/z/5KGoebo75

4

https://compiler-explorer.com/z/vrYoT5cer
https://compiler-explorer.com/z/5KGoebo75

P3488R0 4 A plan on how to reach a conclusion

static_assert (b0 != 0x2 .000004 p0f); // (A)
static_assert (b0 == 0x2 .000006 p0f); // (B ')
static_assert (b0 == 0x2 .000008 p0f); // (B)

constexpr float b1 = 0x1 .000002 p0f + a;
// same constants as 'b0' except rounding for 'a' is required
// -> 0x2 .000006 p0f -> subsequent rounding : 0x2 .000008 p0f
static_assert (b1 == 0x2 .000008 p0f);

constexpr float b2 = 0x1 .000002 p0f + a - 1.f;
// 0x2 .000006 p0f - 1 -> 0x1 .000006 p0f (C)
// 0x2 .000006 p0f rounds to 0x2 .000008 p0f -> subtract 1 -> 0x1 .000008 p0f (D)

static_assert (b2 != 0x1 .000006 p0f); // (C)
static_assert (b2 == 0x1 .000008 p0f); // (D)

constexpr float third = 1 / 3.f;
constexpr float five_third = 5 * third;
constexpr float five_third_ = 5 * (1 / 3.f);
static_assert (five_third == five_third_); // (E)

All of these static assertions hold on GCC, Clang, and MSVC as far as I tested them, except when

compiling with GCC 13 (and up) and the -m32 flag (targeting 32-bit x86). There, the assertions

marked (A), (B') (B), (C), (D), and (E) fail. This is due to FLT_EVAL_METHOD == 2 which GCC

interprets as allowing / requesting constants in long double precision.

4 A PLAN ON HOW TO REACH A CONCLUSION

Three steps:

1. SG6 documents possible design intent and their implications. The group then makes a rec-

ommendation on how the issue should be resolved. Irrespective of whether a consensus is

reached, the paper then progresses to EWG.

2. EWG does what it does. Most importantly EWG is the group that has the final say in how

this issue is resolved.

3. CWG.

5 CHOOSE A DESIGN INTENT

This section only explains the options. In other words, we want to be able to choose one of these

and say “this is the design intent”. A discussion of the options follows in the next section.

5

P3488R0 5 Choose a design intent

5.1 strictest: disallow all excess precision

• FLT_EVAL_METHOD must always be 0.

expr.pre must disallow greater precision / range in floating-point expressions.

• Any evaluation of a floating-point expression applies a single rounding to the precision of

the floating-point type after each operation.

→ Discussion

5.2 compatible: do exactly the same as c

lex.fcon must allow representing floating-point constants in greater range and precision.

• Evaluation of constant expressions and compile-time evaluation of expressions may use ex-

cess precision.

• Intermediate rounding in runtime and compile-time evaluation is reflected by FLT_EVAL_-
METHOD.

→ Discussion

5.3 like c but only for runtime evaluation

• The value of a floating-point literal is always rounded to the precision of its type (status quo

of [lex.fcon]).

• Evaluation of floating-point expressions at compile-time is not allowed to use excess preci-

sion.

• FLT_EVAL_METHOD only reflects on runtime evaluation of floating-point expressions.

• Floating-point evaluation at runtime can use (arbitrary) greater precision and range and is

only required to round to the precision and range of the floating-point type on cast and

assignment. The intermediate precision is exposed to the program via FLT_EVAL_METHOD.

• We should consider adding a note to [expr.pre] saying that while excess precision in evalua-

tion is allowed, it is only allowed for performance reasons and it is preferred that intermediate

precision and range match the floating-point type.

→ Discussion

6

P3488R0 6 Discussion

6 DISCUSSION

A general observation: A simplification where the implementation were free to use excess precision

at runtime as it deems best would lead to suprising results: Consider two floating-point values a
and b where std::isfinite(b) is statically known to be true. With arbitrary excess precision the

optimizer would then be allowed to replace a + b - b with a.
A general consequence of excess precision is that floating-point evaluation leads to double

rounding and thus potentially worse errors. Where the second rounding occurs is not fully re-

producible and can potentially change via unrelated code changes in the translation unit5.

Without excess precision std::float16_t and std::bfloat16_t can either use a soft-float im-

plementation or dedicated hardware is required. Using float (binary32) instructions is impossible

with the current possible values for FLT_EVAL_METHOD. An implementation that wants to evaluate

std::float16_t / std::bfloat16_t in higher intermediate precision needs to set FLT_EVAL_METHOD
to 1 or 2 (or 32?).

6.1 strictest: disallow all excess precision

I believe [expr.pre] p6 is fairly clear that it was never the design intent to exclude all excess precision.

Implications of disallowing all excess precision:

• Floating-point contraction into FMAs is non-conforming.

• The x87 FPU cannot be usedwith a single “precision control” value, because double rounding

is not correct (e.g. FPU configured to 80-bit with subsequent rounding to 64/32-bit). This

implies that the compiler would have to set the x87 floating-point control word (FPCW)

using the FLDCW instruction whenever it needs to execute floating-point operations (with

different precision).

• This is likely an ABI break and unnacceptable for existing implementations.

6.2 compatible: do exactly the same as c

It might have been the original intent to do the same as C, but [lex.fcon] p3 suggests otherwise.

Implications of adopting this as resolution:

• float x = 3.14f; can require 8, 12, 16, or even more bytes to be stored in the resulting

binary. (This is the status quo of GCC since version 13.)

• float x = 3.14f; assert(x == 3.14f); is allowed to fail depending on implementation,

target, and compiler flags. (This is the status quo of GCC since version 13.)

5 e.g. because of register allocation

7

P3488R0 7 Floating-point contraction

6.3 like c but only for runtime evaluation

• The intent here appears to be that wewant to prescribe reproducible floating-point behavior.

• However, since that has potentially dramatic consequences on runtime performance, this re-

striction is only a recomendation for runtime evaluation.We thus acknowledge the existence

of hardwarewhere reproducible floating-point behavior comes at unreasonable performance

cost. Because of these cases — and only for these — [expr.pre] allows excess precision in

evaluation, which should be reflected by non-zero FLT_EVAL_METHOD.

• We should consider a new type trait along the lines of

template <floating -point T>
struct evaluation_type {

using type = see below ;
};

template <floating -point T>
using evaluation_type_t = typename evaluation_type <T >:: type;

Where e.g. evaluation_type_t<float16_t> could be float. This would supersede the use

of the FLT_EVAL_METHOD. Implementations could then reasonably set FLT_EVAL_METHOD to -1
and rely solely on the traits for reflection of floating-point evaluation behavior.

7 FLOATING-POINT CONTRACTION

Floating-point contraction is the transformation of a * b + c into std::fma(a, b, c). This effec-
tively increases the intermediate precision and range of the multiplication result. Thus, floating-

point contraction is related to this discussion. [expr.pre] p6 appears to allow floating-point contrac-

tion.

ISO/IEC 60559:2020 specifies

ISO/IEC 60559:2020 10.4 Literal meaning and value-changing optimizations

A language standard should also define, and require implementations to provide, attributes that allow and
disallow value-changing optimizations, separately or collectively, for a block. These optimizations might include,
but are not limited to:

• Applying the associative or distributive laws.

• Synthesis of a fusedMultiplyAdd operation from a multiplication and an addition.

• Synthesis of a formatOf operation from an operation and a conversion of the result of the operation.

• Use of wider intermediate results in expression evaluation.

8

P3488R0 7 Floating-point contraction

The fourth item is what this paper has been discussing so far.

The second item is considered a different optimization in the 60559 standard. Therefore, we

should also consider floating-point contraction separately from FLT_EVAL_METHOD. It is unclear what
the original intent for floating-point contraction for C++ had been. Existing practice is to default to

floating-point contraction as an optimization independent of FLT_EVAL_METHOD. Therefore, I suggest
we ensure the wording matches existing practice.

Note that the 60559 wording talks about “attributes that allow and disallow value-changing opti-

mizations”. C++ does not provide such attributes. However, implementations typically provide them

(e.g. as compiler flags treating one complete translation unit as a “block”, but also as vendor at-

tributes that can be applied to functions). This appears to follow the guidance in 60559 which says

that if a language standard doesn’t define something it is implementation defined.

Consequently, I’d be wary of making floating-point contraction non-conforming. Rather we want

to keep it as a conforming optimization and (for now) continue to trust the implementations to

provide the necessary “attributes” to control floating-point contraction. Adding such an “attribute”

to C++ itself (and possibly adding a trait to determine whether floating-point contraction should be

expected) is material for another paper.

7.1 guaranteed opt-out of floating-point contraction

It appears that accoding to the footnote of [expr.pre] p6 the expression a * b + c can be transformed

into an FMA, whereas auto(a * b) + c cannot. Likewise auto ab = a * b; ab + c would not lead to

floating-point contraction.

It is unclear whether a simple floating-point wrapper class would inhibit floating-point contrac-

tion:

class Float
{

float x;

public:
Float(float xx) : x(xx) {}

friend Float operator +(Float a, Float b) { return a.x. + b.x; }
friend Float operator *(Float a, Float b) { return a.x. * b.x; }

};

Float test(Float a, Float b, Float c)
{ return a * b + c; } // is contraction allowed or not?

The copy constructor of Float implicitly assigns to the data member x. But there is no assignment

or cast expression. The return statements in the binary operators of Float call the Float(float)
constructor which copies the float into xx and subsequently into x. Both copies are neither using

9

P3488R0 8 Wording

a cast not assignment expression. Consequently this wrapper class would still allow floating-point

contraction, correct?

With a minor change to the Float(float) constructor to

Float(float xx) : x(float(xx)) {}

floating-point contractions would be inhibited.

I believe we need to clarifywhether this matches the intent and at least add a note in thewording

to explain this subtlety.

8 WORDING

TBD. But here’s at least a sketch if we agree on adopting 5.3:

1. Clarify [expr.pre] that it only provides this freedom for runtime evaluation.

2. Clarify [expr.pre] that floating-point contraction is a conforming transformation for runtime

evaluation (but not required)

3. Add the above Float class example to [expr.pre]?

4. Stop inheriting FLT_EVAL_METHOD verbatim from C. We need to write our own wording that

clarifies FLT_EVAL_METHOD only applies to runtime evaluation and not to constants. Also we

need to consider adopting and adjusting the wording from Annex H, which is important for

std::float16_t and std::bfloat16_t.

10

	1 Changelog
	2 Straw Polls
	3 Introduction
	3.1 Annex H of C23
	3.2 Relevance of this issue

	4 A plan on how to reach a conclusion
	5 Choose a design intent
	5.1 strictest: Disallow all excess precision
	5.2 compatible: Do exactly the same as C
	5.3 like C but only for runtime evaluation

	6 Discussion
	6.1 strictest: Disallow all excess precision
	6.2 compatible: Do exactly the same as C
	6.3 like C but only for runtime evaluation

	7 Floating-point contraction
	7.1 Guaranteed opt-out of floating-point contraction

	8 Wording

