
Postconditions odr-using a parameter
of dependent type

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Document #: P3489R0
Date: 2024-11-07
Project: Programming Language C++
Audience: SG21, EWG

Abstract

This paper considers the case where a non-reference parameter of dependent type is odr-used
in a postcondition assertion. The Contracts MVP [P2900R10] specifies that the program is
ill-formed unless the parameter is declared const on all declarations of the function. However,
the parameter may be of dependent type, and we might not know whether its type is const until
the template is instantiated. [P2900R10] is currently ambiguous about what should happen in
this case; we propose two alternatives for how to resolve the ambiguity.

This paper is the third part of a trilogy of papers dealing with known issues in the Contracts MVP
[P2900R10] regarding postconditions odr-using non-reference function parameters:

— [D3484R1] Postconditions odr-using a parameter modified in an overriding function;

— [D3487R0] Postconditions odr-using a parameter that may be passed in registers;

— [D3489R0] Postconditions odr-using a parameter of dependent type.

These issues should be considered together, and ideally resolved in a consistent way.

1 The problem

The Contracts MVP [P2900R10] specifies that if a non-reference function parameter is odr-used
in the postcondition of a function, it must be declared const on all declarations of that function,
otherwise the program is ill-formed.
However, whether or not a function parameter is indeed const is not immediately visible if the
function in question is a template (a function template, a member function of a class template, etc.)
and the type of the parameter is a dependent type. Consider:

template <typename T>
void f(T t) post(t > 0);

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net

This function template may be instantiated with a type that is const-qualified, or a type that is
not; this may or may not involve type deduction. However, this is not known when parsing this
function template, as the variable t does not have a visible const specifier on it. It is therefore not
immediately obvious whether the above template declaration is ill-formed or not. [P2900R10] does
not explicitly specify this case, i.e., we have a design hole that needs to be fixed.
It is clear that the program should be ill-formed if the template above is instantiated with a type T
that is not const:

int main() {
int i = 1;
f<int>(i); // error

}

However, it is less clear what should happen if the template above is instantiated with a type T
that is const:

int main() {
int i = 1;
f<const int>(i); // OK?

}

2 Possible solutions

We are aware of two possible options for resolving the ambiguity:

D1. Require the parameter declaration to have an explicit const qualifier, i.e., make the above
template declaration ill-formed regardless of whether and how the template is instantiated;

D2. Allow the const qualifier to be part of the dependent type, i.e., do not make the above
template declaration ill-formed, but make it ill-formed to instantiate the template with a type
that is not const.

We enumerated the options with a “D” prefix (for “dependent”), to distinguish them from the
options from [D3484R1] that have a “V” prefix (for “virtual”) and the options from [D3487R0] that
have a “R” prefix (for “registers”).
Below we discuss the tradeoffs of each option.

Option D1

Option D1 is the more conservative option. It forces the user to express their intent directly by
declaring the parameter const explicitly. It also catches a defect due to a missing const sooner, as
the error will be triggered already when the template is declared, and not when it is instantiated,
which may happen much later and in a different component of the program. Finally, it also
prevents the user from writing brittle templates with postcondition assertions that might or might
not compile depending on the template parameter. When deducing a template argument from
a by-value parameter, const is not deduced as part of that type. So the parameter will only be
const when specified explicitly in the template argument list. It does not seem to be useful to
have templates that either do or do not compile depending on whether that const on the template
argument list is there.
The tradeoff is that Option D1 makes programs ill-formed that do not contain a defect, such as
the last example above. The parameter type of f<const int> is actually const, and [P2900R10]
normally allows a parameter of such a type to be odr-used in a postcondition assertion; nevertheless,
this program would be rejected.

2

Option D2

Option D2 is the more permissive option. It only rejects programs where, after the template is
instantiated, the parameter type is actually found to not be const and therefore may be modified
in the function body; the const does not need to be explicit at the point of declaration.
The tradeoffs are the inverse of Option D1: if the user got it wrong, the defect will be caught later
rather than earlier, and this approach can lead to brittle templates with postcondition assertions
that might or might not compile depending on the template parameter. It is not clear whether
being more permissive here actually gains anything significant or useful.

3 Proposal

We believe that both options are worth considering and the tradeoffs of each option are sufficiently
clear. We therefore propose both options, to determine which option has more consensus in SG21.
Note that Choosing Option D1 would leave the door open to adopting Option D2 at some point in
the future, whereas the opposite is not true.
Note further that [D3487R0] — which deals with a different problem regarding parameters in
postconditions — proposes the more extreme options R1 (removing postcondition assertions from
[P2900R10] altogether), R2 (disallowing odr-use of any parameters in postcondition assertions), and
R3 (disallowing odr-use of non-reference parameters in postcondition assertions). Options R1 — R3
from [D3487R0] would remove the issue discussed in this paper and should therefore be considered
alongside Options D1 and D2 as possible solutions.

4 Wording

The proposed wording changes are relative to the wording proposed in [P2900R10].

4.1 Option D1

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const all declarations
of that parameter shall have a const qualifier and shall not have array or function type. [Note:
This requirement applies even to declarations that do not specify the postcondition-specifier.
Arrays and functions are still usable when declared with the equivalent pointer types ([dcl.fct]).

— end note] [Example:
int f(const int i)
post (r: r == i);
int g(int i)
post (r: r == i); // error: i is not declared const.
int f(int i) // error: i is not declared const.
{

return i;
}

int g(int i) // error: i is not declared const.
{

return i;
}

3

template <typename T>
void f(T t) post(t > 0); // error: parameter not declared const but odr-used in postcondition

— end example]

4.2 Option D2

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have the type of that parameter shall be const and shall not be an array or function type.
[Note: This requirement applies even to declarations that do not specify the postcondition-
specifier. The const qualifier of the parameter may be part of a dependent type. Arrays and
functions are still usable when declared with the equivalent pointer types ([dcl.fct]). — end
note] [Example:

int f(const int i)
post (r: r == i);
int g(int i)
post (r: r == i); // error: i is not declared const.
int f(int i) // error: i is not declared const.
{

return i;
}

int g(int i) // error: i is not declared const.
{

return i;
}

template <typename T>
void f(T t) post(t > 0);

int main() {
int i = 1;
f<int>(i); // error: non-const parameter odr-used in postcondition
f<const int>(i); // OK

}

— end example]

Acknowledgements

Thanks to Oliver Rosten for his review of the paper.

Bibliography

[D3484R1] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter modified in
an overriding function. https://wg21.link/d3484r1, 2024-11-01.

[D3487R0] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter that may be
passed in registers. https://wg21.link/d3487r0, 2024-11-01.

[D3489R0] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter of dependent
type. https://wg21.link/d3489r0, 2024-11-01.

4

https://wg21.link/d3484r1
https://wg21.link/d3487r0
https://wg21.link/d3489r0

[P2900R10] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r10, 2024-10-12.

5

https://wg21.link/p2900r10
https://wg21.link/p2900r10

	1 The problem
	2 Possible solutions
	3 Proposal
	4 Wording
	4.1 Option D1
	4.2 Option D2

