
Remarks on Basis Statistics, P1708R9

Document: P3495R0
Date: November 13, 2024
Project: Programming Language C++, Library Working Group
Audience: SG19 & LEWG & LWG
Reply to: Oliver J. Rosten oliver.rosten@gmail.com

Mark Hoemmen, NVIDIA, mhoemmen@nvidia.com

Abstract

P1708R9, “Basic Statistics” proposes adding library functionality to compute various elementary
statistics. While the proposal is very welcome, it is underspecified and offers inadequate exploration
of the design space. This paper seeks to highlight the areas in need of refinement, with a view to
improving the chances of a future iteration of P1708R9 making it into the standard.

CONTENTS

I. Introduction 1

II. Unspecified Values 1

III. Inadequate State of the Art 2

IV. The Design Space 2

V. API Concerns 3

VI. Conclusion 3

References 3

I. INTRODUCTION

The importance of statistical techniques can hardly be
overstated, and the absence of any support for comput-
ing even elementary properties within the C++ standard
library is notable. There are two active papers propos-
ing to address this: [P1708R9],“Basic Statistics” and its
companion [P2681R1], “More Basic Statistics”. The goal
of this paper is to identify shortcomings in the first of
these, as it is further along the standardization process.
However, many of the considerations are relevant to both.

The purpose of this paper is not to provide a counter-
proposal. Rather, it seeks to help tighten up the design
in areas where there appears to be an obvious defect, or
to encourage a broader discussion where there are more
subtle decisions to be made.

[P1708R9] proposes two mechanisms for computing
statistics. First, there are free functions, designed to
efficiently compute single statistics. To facilitate effi-
cient computation of multiple statistics in a single pass,
Accumulators are proposed. These are stateful objects
to which data can be added, and multiple statistics ex-
tracted.

II. UNSPECIFIED VALUES

[P1708R9] presents a large surface area of unspeci-
fied behaviour. There are several sources, which will be
grouped below according to whether they relate to iden-
tified properties of the inputs or the calculation itself.
It is most likely undesirable to have so many sources of
unspecified behaviour. This is not only potentially prob-
lematic at runtime, but begs a serious question as to what
should happen during constant evaluation. The paper is
silent on this matter, but there is precedent [P0533R9]:

A call to a C standard library func-
tion is a non-constant library call
([defns.nonconst.libcall]) if it raises a floating-
point exception other than FE INEXACT.

First, it needs to be decided if this behaviour carries
over to statistical functions/accumulators. Secondly, it
needs to be specified whether particular floating-point
exception flags are raised (and/or errno is set) in cir-
cumstances such as encountering infinities or NaNs.

According to [P1708R9], a statistic is unspecified if the
ranges consumed by statistical functions / accumulators

1. Contain NaNs or infinities;

2. Have insufficient elements for a meaningful calcu-
lation. For example, the mean requires at least one
element, and the sample variance at least two.

During the calculation, the result is unspecified if

1. Underflow or overflow occurs.

These will be dealt with in turn.

A. NaNs and Infinities

The paper provides no justification for why input of
this form should yield an unspecified result. A first point
of comparison is the <cmath> functions, which are pre-
cisely specified in such situations—see Annex F of the
C standard [N2176]. Furthermore, WG21 has recently



2

expressed a preference to make behaviour with infini-
ties and NaNs well-defined, for example in [P3008R2]
“Atomic floating-point min/max”. In the latter, users
are even given a choice between “propagate NaNs”
and“treat NaNs as missing values.”

An important question that [P1708R9] needs to an-
swer is whether, when an infinity or NaN is encountered,
FE INVALID is raised. (Not forgetting the specific case
of at least one positive infinity and at least one negative
infinity which are added.)

B. Insufficient Elements

How to deal with this scenario is not so clearcut and so
will not be discussed further in this section, but deferred
to section IV which talks about the design space.

C. Underflow or Overflow

It is not obvious why the result should be unspecified
in the case of underflow. For both underflow and over-
flow, specifying what happens during constant evaluation
could be easily done by following [P0533R9]: raising any
floating-point exception flag other than FE INEXACT pro-
hibits an expression from being a constant expression.

III. INADEQUATE STATE OF THE ART

The discussion on accumulators cites Boost Accumu-
lators, providing no more details besides a broken link.
Beyond fixing the link, it would be helpful for the reader
to have some detail in [P1708R9] itself. Furthermore,
the charts quantifying the performance of accumulators
versus functions could be improved. There are no error
bars, which has a certain irony for a paper on statistics.
Moreover, lack of error bars notwithstanding, it appears
that a merged accumulator is markedly inferior for com-
puting the mean and variance. Why is this the case?
Furthermore, how do these charts change when parallel
execution is taken into account?

IV. THE DESIGN SPACE

A. Ranges of Insufficient Size

All of the statistics considered in [P1708R9] consume
ranges which must have a non-zero number of elements.
For example, the mean and variance require at least one
element, and the sample variance at least two. The ques-
tion as to what should happen if an insufficiently large
range is presented is not trivial. However, [P1708R9]
barely discusses the matter: dismissing std::expected
in a rather cursory manner without any discussion of the

broader design space and the pros and cons of different
approaches.

It is certainly plausible that providing so many ways
for clients to end up with unspecified values may produce
a design which is rather user-hostile. At the very least,
a detailed justification needs to be provided for why this
isn’t expected to be the case. Beyond this, there remains
the question of what should happen during constant eval-
uation.

B. Accuracy

Given a data set, consider computing the mean. If
these data are represented by floating-point numbers
then, in general, the result will depend on the order in
which the reduction is performed. In particular, clients
may wish to prioritize accuracy over speed and so accu-
mulate starting from values with the smallest magnitude
to those of the largest. For the mean, the natural way to
do this would be to presort the range before feeding it to
one of the statistical functions. However, as things stand,
there is no guarantee of any ordering of operations in the
statistical functions and so pre-sorting in this way may
be futile. Furthermore, if guarantees are provided for the
free functions, how would these guarantees be replicated
for accumulators?

There is also the question of whether free functions
and accumulators should give the same result if they
consume the same range. The implementation provided
by [6] does not satisfy this property. Does this matter?
Indeed, there are interesting questions about how an ac-
cumulator should work, not least when one considers its
interaction with parallel acceleration (see below). Again,
there is a design space here with tradeoffs which need to
be properly discussed.

Finally, for statistics that involve floating-point
operations, users may specify a result type with
higher precision than the range’s elements. In such
cases the proposal should guarantee that computa-
tions happen in at least the precision of the re-
sult type, as has been done for linear algebra,
https://eel.is/c++draft/linalg#algs.blas1.dot-7.

C. Parallelization

The free functions in [P1708R9] have overloads accept-
ing execution policies, which is entirely reasonable. How-
ever, the paper is silent as to if/how accumulator objects
might be amenable to parallel acceleration. One could
imagine (recursively) dividing up the reduction of a range
between workers which would call for a way to

1. Create a separate copy of the (stateful) reducer for
each thread;

2. Initialize the reducer’s state to the identity for the
reduction operation;

https://eel.is/c++draft/linalg#algs.blas1.dot-7


3

3. Combine intermediate reduction results.

[P1708R9] does not try to define a reducer concept
for user-defined reducers. However, it may be helpful to
consider how it might be defined. Parallel programming
models such as [7] may offer inspiration.

V. API CONCERNS

A. Defaulted Booleans

The presence of defaulted booleans could lead to client
code which is cryptic. For example,

kurtosis(r, true, false)

is rather mystifying to the uninitiated. It may be prefer-
able for each algorithms’s input parameters to be carried
by a struct. For example:

struct kurtosis_parameters {
bool sample = true;
bool excess = true;

};

template<class T, ranges::input_range R>
constexpr T kurtosis(

R&& r, kurtosis_parameters params = {});

B. Expressive Return Types

As things stand, functions such as mean variance re-
turn a std::pair. It may be preferable to instead re-
turn a named struct, whose fields express what is being
returned.

C. Constructing Accumulators

Is there any good reason for accumulators not to sup-
port construction with a range of elements?

D. Return value of accumulators’ operator()

Currently, this operator returns void. Has any con-
sideration been given to returning a reference to the ac-
cumulator itself? Given an accumulator acc and data,
this could support patterns such as:

if(auto mean = acc(data).mean(); mean > 0)
...

E. Explicit Template Parameters

Overloads for the statistical functions exist in which
clients can explicitly specify the return type, for instances
where this is different from the input range’s value type,
viz.

template<class T, ranges::input_range R>
constexpr auto mean(R&& r) -> T;

A better alternative may be to imitate std::reduce
by taking an initial value as an input parameter, for ex-
ample:

template<class T, ranges::input_range R>
constexpr auto mean(R&& r, T init) -> T;

This has the following advantages:

1. Users would not need to give an explicit template
parameter T for the result; they could just pass in
a number like 0.0.

2. It would support use cases like computing statistics
over part of a range, then continuing the computa-
tion on the rest of the range.

3. It would help distinguish overloads. The Standard
Algorithms generally don’t have overloads with the
same number of arguments but different numbers
of template parameters.

4. The Standard Algorithms don’t generally permit
explicit template arguments.

VI. CONCLUSION

A suite of statistical functions would be a benefi-
cial addition to the C++ Standard Library. However,
significant extra work is required to bring the design
of [P1708R9] up to the required level of rigour. It is
hoped that this paper will help the endeavour.

REFERENCES

[P1708R9] Richard Dosselmann, Basic Statistics https://isocpp.org/files/papers/P1708R9.pdf
[P2681R1] Richard Dosselmann, More Basic Statistics https://isocpp.org/files/papers/P2681R1.pdf
[N2176] ISO/IEC 9899:2018 Standard for Programming Languages — C

https://isocpp.org/files/papers/P1708R9.pdf
https://isocpp.org/files/papers/P2681R1.pdf


4

[P3008R2] Gonzalo Brio Gadeschi and David Sankel, Atomic floating-point min/max
https://isocpp.org/files/papers/P3008R2.html

[P0533R9] Edward J. Rosten and Oliver J. Rosten, constexpr for <cmath> and
<cstdlib>https://isocpp.org/files/papers/P0533R9.pdf

[6] Richard Dosselmann, Reference Implementation https://github.com/dosselmann/statistics/blob/main/statistics.hpp
[7] https://kokkos.org/kokkos-core-wiki/API/core/builtinreducers/ReducerConcept.html

https://isocpp.org/files/papers/P3008R2.html
https://isocpp.org/files/papers/P0533R9.pdf
https://github.com/dosselmann/statistics/blob/main/statistics.hpp
https://kokkos.org/kokkos-core-wiki/API/core/builtinreducers/ReducerConcept.html

	Remarks on Basis Statistics, P1708R9
	Contents
	Introduction
	Unspecified Values
	NaNs and Infinities
	Insufficient Elements
	Underflow or Overflow

	Inadequate State of the Art
	The Design Space
	Ranges of Insufficient Size
	Accuracy
	Parallelization

	API Concerns
	Defaulted Booleans
	Expressive Return Types
	Constructing Accumulators
	Return value of accumulators' operator()
	Explicit Template Parameters

	Conclusion
	References


