
constexpr type ordering
(P2830R4)

WHY C++26
- std::execution-style code really needs typesets for efficient (code-size)

implementations

We know this because there are pretty_function based implementations in
most implementations I know of.

- Ordering is more fundamental than sets.

Syntax (EWG already confirmed this)

Desired properties
Stability

Order should not change between compilation units (crucial for API compatibility)

Free-standing

Type ordering should not rely on non-free-standing features

Self-consistency

type_order_v<T, U> == type_order_v<some_template<T>, some_template<U>>.

Reflection compatibility

Any operator<=>(std::meta::info, std::meta::info) should be consistent with this one.

- Can’t have this syntax because this operator⇔ would need to return a partial order (it reflects more than types)

non-goals

Consistency with type_info::before()

- Impossible: some implementations don’t have consistent type_info::before()
even between runs of the same application

- type_info ignores cv-ref qualifiers

SG7 recommendation

Main question

Implementation-defined or fully specified by the standard?

- Implementation defined:
- Pro: ABIs already did all the work
- Cons:

- ABIs don’t agree
- Frontend doesn’t know ABI for static analysis tools
- Layering violation
- Compilers need to agree to have compatible ABI
- Not self-consistent (name mangling uses compression)

- Fully specified:
- Pros:

- Fully portable, including static analysis tools
- Faster than mangling during constexpr evaluation

- (comparison does not require stringifying long symbol names, it short-circuits quickly)
- Does not require the frontend to know the ABI (helps IDEs)

- Cons:
- Lots of work
- Anonymous entities require a completely new-to-standard notion of a “declaration scope” with all the template arguments of

all enclosing scopes
- We need to continue to specify ordering for every change to language entities

