
Concurrent Queues API
P0260R13

LEWG
December, 2024

Detlef Vollmann
vollmann engineering gmbh

Concurrent Queues are not Containers

• Concurrent queues are concurrent data structures

• A communication mechanism

• A synchronization mechanism

– consumers wait for producers
– producers wait for consumers

• (Temporary) storage is a possible implementation detail

– queues with size 0 sometimes make perfect sense

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 2

Design Space

• The design space for concurrent queues is pretty big

– partly in interface design
– more in semantics

• Single or multiple connections on producer and/or consumer side

• Lock-free vs. locking

– separate for both ends

• Memory allocation

– up-front, per push/pop, external

• Ordering guarantee

– FIFO vs. priorities

• Non-blocking only vs. wait_* interface

• Single push/pop vs. two-phase

• Strongly typed vs. (dynamically sized) byte chunks

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 3

Design Space

• More interface

– timed waits
– asynchronous
– debugging
– single ended interfaces

• Efficiency vs. robust/portable interface

• Error handling (exceptions)

• Concurrency vs. parallelism vs. asynchronicity

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 4

Concepts for Concurrent Queues

• No single queue implementation can cover all design aspects

• Provided concepts are expected to cover most design aspects

• Implementing both async and non-blocking interfaces has
performance costs

• Concept is split into one base concept and two separate concepts for
async and non-blocking

• Many different implementations for these concepts are expected

– some of them may be standardized

• Possible single-ended adapter can use these concepts

• bounded_queue models all concepts

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 5

”Error” Handling

• ”One person’s exception is another person’s expected result.”

• The current proposal is to have no queue based errors.

• LEWG decided in Wroclaw to have optional<T> pop()

– i.e. closed is not an error

• This leads to bool push(T&& x)

• For non-blocking functions (try_*) empty and full (and arguably
busy) are similar

• Now conqueue_error and conqueue_category are not needed
anymore and conqueue_errc should possibly renamed (was
queue_op_status before R5).

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 6

Closing Queues

• The only queues that don’t need close are

– queues that are never closed
– single producer, single consumer with inline close token

• For all other cases synchronization needs access to queue internals

– as detailed in the paper

• So the basic concept contains close

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 7

Example

• ”Find files with string”

• One task/thread collects all the file paths in a directory and pushes
them into a queue and then closes the queue

• Other tasks/threads (one or more) pop file paths from the queue and
search them for a string

• Synchronous version with multiple threads

• Single-threaded Asynchronous version with coroutines

• Single-threaded Asynchronous version with native S/R

• Code available at
https://gitlab.com/cppzs/conqueue/-/tree/wg21-demos/demo

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 8

Synchronous push

• Push interface
bool push(const T& x);
bool push(T&& x);
template <typename... Args> bool emplace(Args &&... as);

• Returns true on success and false on close

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 9

Synchronous pop

• Pop interface
optional<T> pop();

• Returns optional with value on success and empty optional on
close

• This was what LEWG voted for in Wroclaw

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 10

Non-Blocking push

• Push interface
conqueue errc try push(const T& x);
conqueue errc try push(T&& x);
template <typename... Args> conqueue errc try emplace(Args &&... as);

• This is the logical extension to blocking push

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 11

Non-Blocking pop

• Pop interface
optional<T> try pop(conqueue errc &ec);

• Alternative versions would be
expected<T, conqueue errc> queue::try pop();

• or even
expected<optional<T>, conqueue errc> queue::try pop();

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 12

Non-Blocking pop

• Example from P2921R0:
conqueue errc ec;
while (auto val = q.try pop(ec))
println(”got {}”, *val);

if (ec == conqueue errc::closed)
return;

// do something else.

• With expected<T, conqueue_errc>
auto val = q.try pop();
while (val) {
println(”got {}”, *val);
val = q.try pop();

}
if (val.error() == conqueue errc::closed)
return;

// do something else

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 13

Non-Blocking pop

• With expected<optional<T>, conqueue_errc>
auto val = q.try pop();
while (val && *val) {
println(”got {}”, **val);
val = q.try pop();

}
if (val.error() == conqueue errc::closed)
return;

// do something else

• LEWG poll in St. Louis: ”LEWG would like to add a std::expected

interface for concurrent queues”:
|SF|F|N|A|SA| |0|2|5|3|2"

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 14

Asynchronous Interface

• Pop interface
sender auto async pop();

• LEWG voted strongly in favour in Wroclaw for the sender to call
set_value(optional<T>)

• Sender/receiver are used via coroutines or native
• For coroutines, set_value(optional<T>) is probaly the perfect
choice

• For native sender/receiver using two value channels is probably a
much better choice

• Different interfaces for coroutines and native are akward
• Coroutines should provide additional infrastructure to make use of
native interface more handy
– e.g. as_optional
while ((fname = co await (files−>async pop() | as optional())))

• Proposal: calls set_value(T) on success and set_value() when
closed.LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 15

Asynchronous Interface

• Push interface
sender auto async push(const T&); // sends void (success), conqueue errc
sender auto async push(T&&);
template <typename... Args> sender auto async emplace(Args &&... as);

• Analogous to async_pop it calls set_value(true_type) on success
and set_value() when closed.

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 16

Complete proposed API

allocator type get allocator() const noexcept;
void close() noexcept;
bool is closed() const noexcept;

bool push(const T& x);
bool push(T&& x);
template <typename... Args> bool emplace(Args &&... as);
optional<T> pop();

conqueue errc try push(const T& x);
conqueue errc try push(T&& x);
template <typename... Args> conqueue errc try emplace(Args &&... as);
optional<T> try pop(conqueue errc &ec);

sender auto async push(const T&); // sends true type (success), void (closed)
sender auto async push(T&&);
template <typename... Args> sender auto async emplace(Args &&... as);
sender auto async pop(); // sends T (success), void (closed)

LEWG Concurrent Queues API December, 2024 Copyright ©1995-2024, Detlef Vollmann 17

