Skeleton template for use in proposing vulnerabilities

	8.<x> Improperly Verified Signature

8.<x>.1 Description of application vulnerability

Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of primitive data types. Common consequences are of integer coercion are undefined states of execution resulting in infinite loops or crashes, or exploitable buffer overflow conditions, resulting in the execution of arbitrary code.

8.<x>.2 Cross reference

CWE: 

347. Improperly Verified Signature

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

Several flaws fall under the category of integer coercion errors. For the most part, these errors in and of themselves result only in availability and data integrity issues. However, in some circumstances, they may result in other, more complicated security related flaws, such as buffer overflow conditions.

Integer coercion often leads to undefined states of execution resulting in infinite loops or crashes.  In some cases, integer coercion errors can lead to exploitable buffer overflow conditions, resulting in the execution of arbitrary code. Integer coercion errors result in an incorrect value being stored for the variable in question.

8.<x>.5 Possible ways to avoid the vulnerability

Integer values used in any of the following ways must be guaranteed correct:

· as an array index

· in any pointer arithmetic

· as a length or size of an object

· as the bound of an array (for example, a loop counter)

· in security critical code

The first line of defense against integer vulnerabilities should be range checking, either explicitly or through strong typing. However, it is difficult to guarantee that multiple input variables cannot be manipulated to cause an error to occur in some operation somewhere in a program.

An alternative or ancillary approach is to protect each operation. However, because of the large number of integer operations that are susceptible to these problems and the number of checks required to prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to implement.

A language which throws exceptions on ambiguous data casts might be chosen.  Design objects and program flow such that multiple or complex casts are unnecessary.  Ensure that any data type casting that you must used is entirely understood in order to reduce the plausibility of error in use.

Type conversions occur explicitly as the result of a cast or implicitly as required by an operation. While conversions are generally required for the correct execution of a program, they can also lead to lost or misinterpreted data.

Do not assume that a right shift operation is implemented as either an arithmetic (signed) shift or a logical (unsigned) shift. If E1 in the expression E1 >> E2 has a signed type and a negative value, the resulting value is implementation defined and may be either an arithmetic shift or a logical shift. Also, be careful to avoid undefined behavior while performing a bitwise shift.

Integer conversions, including implicit and explicit (using a cast), must be guaranteed not to result in lost or misinterpreted data. The only integer type conversions that are guaranteed to be safe for all data values and all possible conforming implementations are conversions of an integral value to a wider type of the same signedness.  Typically, converting an integer to a smaller type results in truncation of the high-order bits.

Bitwise shifts include left shift operations of the form shift-expression << additive-expression and right shift operations of the form shift-expression >> additive-expression. The integer promotions are performed on the operands, each of which has integer type. The type of the result is that of the promoted left operand. If the value of the right operand is negative or is greater than or equal to the width of the promoted left operand, the behavior is undefined.

If an integer expression is compared to, or assigned to, a larger integer size, then that integer expression should be evaluated in that larger size by explicitly casting one of the operands.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

	


