ISO/IEC JTC 1/SC 22/WG 23 N 0171

Report of Progress of
ISO/IEC 24772, Programming Language Vulnerabilities,
in
ISO/IEC JTC 1/SC 22

John Benito, Convener
Jim Moore, Secretary
ISO/IEC JTC 1/5C 22/WG 23
1 December 2008

This version of the presentation is an update of ISO/IEC JTC 1/SC 22/WG 23 N0140.




The Problem

0 Any programming language has constructs that are
imperfectly defined, implementation dependent or
difficult to use correctly.

Q As a result, software programs sometimes execute
differently than intended by the writer.

Q In some cases, these weaknesses can be exploited by
hostile parties, or can lead to failure in anticipated
environments.

Can compromise safety, security, privacy, dependability or
other critical properties.

A vulnerability in any program can be used as a
springboard to make additional attacks on other programs.




Complicating Factors

Q The choice of programming language for a
project is not solely a technical decision and is
not made solely by software engineers.

0 Some vulnerabilities cannot be mitigated by
better use of the language but require mitigation
by other methods, e.g. review, static analysis.




Planned ISO/IEC 24772

Q A type III Technical Report

A document containing information of a different kind from that which
is normally published as an International Standard

Q The report will not contain normative statements,
but information and suggestions.

Q Project is to work on a set of common mode
failures that occur across a variety of languages

However, not all vulnerabilities are common to all languages. Some are
manifest themselves in different ways in different languages.

0 Annexes to the report will describe how the
vulnerabilities relate to specific languages.




Planned ISO/ IEC 24772 (continued)

A No single programming language or family of
programming languages is to be singled out

As many programming languages as possible should
be involved

Need not be just the languages defined by ISO
Standards




Audience

Saliety: those developing, qualifying, or maintaining a system
where it is critical to prevent behaviour that might lead to loss
of human life or human injury, or damage to the
environment.

Security: those developing, qualifying, or maintaining a
system where it is critical to exhibit security properties of
confidentiality, integrity, and availability.

Mission-Critical: those developing, qualifying, or maintaining
a system where it is critical to prevent behaviour that might
lead to property loss or damage, or economic loss or damage.

Modelin?c: and Simulation: those who are primarily experts in
areas other than programming but need to use computation
as part of their work [and who] require high confidence in the
applications they write and use.




Approach to Identifying Vulnerabilities

Q Empirical approach: Observe the vulnerabilities
that occur in the wild and describe them, e.g.
buffer overrun, execution of unvalidated remote
content

Q Analytical approach: Identity potential
vulnerabilities through analysis of programming
languages

This just might help in identifying tomorrow’s
vulnerabilities.




Desired Outcomes

Q Provide guidance to users of programming languages
that:

Assists them in improving the predictability of the execution of
their software even in the presence of an attacker

Informs their selection of an appropriate programming language
for their job
Q Provide feedback to programming language
standardization groups, resulting in the improvement of
programming language standards.




WG 23 Participants

Q National Bodies Q Language Standards Groups
Canada SC 22/WG 9
Germany SC 22/WG14
Italy SC 22/WG 5, INCITS J3
Japan (Fortran)
France SC 22/WG 4, INCITS J4
United Kingdom (Cobol)
USA MDC (Mumps)

0 Other Groups ECMA (C#, C++CLI)
RT/SC Java
MISRA C/C++

CERT




Q

Q

Q

Q

WG 23 (Vulnerabilities) Progress

Organization:

Project was originally assigned to a temporary group, an “other working group”
Calljed OWGV. 5 Y 5 P Y BIOEP & SIOEP

In September 2008, SC 22 created WG 23 to continue the work
Meetings:
E-Mail reflector, Wiki and Web site are used during and between meetings
Nine meetings have been held, hosted by six national bodies.
Meetings planned through 2009

Progress through standards process:
Working Group Level
v Working Draft (WD) — several of them
Parent (SC 22) Level
v PDTR registration
O PDTR ballot - repeated until consensus is obtained, typically two or three times
Management (JTC 1) Level
O DTR Ballot
Publication by ISO/IEC (Planned in 2009)

More information: http://aitc.aitcnet.org/isai/

10



Outline of Current Draft

Q Scope

Q References

QA Terms and Definitions
Q Vulnerability Issues

Q Programming Language Vulnerabilities
(Currently 48 of them)

Q Application Vulnerabilities

(Currently 18 of them, selected because of
relationship to languages)

11



Vulnerability Template

Q The major portion of Technical Report describes
vulnerabilities in a generic manner, including;:
Brief description of application vulnerability

Cross-reference to enumerations and other classifications, e.g.
CWE

Description of failure mechanism, i.e. how coding problem
relates to application vulnerability

Applicable language characteristics
Avoiding or mitigating the vulnerability
Implications for standardization

0 Annexes will provide language-specific treatments of
each vulnerability.

Q The following slides provide an example.

12



Example Description

6.17 Boundary Beginning Violation [XYX]
6.17.1 Description of application vulnerability

A buffer underwrite condition occurs when an array is

Indexed outside its lower bounds, or pointer arithmetic
results in an access to storage that occurs before the

beginning of the intended object.

6.17.2 Cross reference
[Cross references to CWE, JSF, MISRA, CERT, etc.]

13



Continued...

6.17.3 Mechanism of failure

There are several kinds of failures (in some cases an exception
may be raised if the accessed location Is outside of some
permitted range):

A read access will return a value that has no relationship to the
Intended value, e.g., the value of another variable or uninitialized
storage.

An out-of-bounds read access may be used to obtain information
that is intended to be confidential.

A write access will not result in the intended value being updated
and may result in the value of an unrelated object (that happens to
exist at the given storage location) being modified.

When the array has been allocated storage on the stack an out-of-
bounds write access may modify internal runtime housekeeping
information (e.g., a functions return address) which might change a
programs control flow.

14



Continued...

6

T
a

.17.4 Applicable language characteristics

nis vulnerabllity description is intended to be
nplicable to languages with the following

C

naracteristics:

Languages that do not detect and prevent an array
being accessed outside of its declared bounds.

Languages that do not automatically allocate storage
when accessing an array element for which storage
has not already been allocated.

15



Continued...

6.17.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways..
Use of implementation provided functionality to automatically check array element accesses and
prevent out-of-bounds accesses.

Use of static analysis to verify that all array accesses are within the permitted bounds. Such analysis
may require that source code contain certain kinds of information, e.g., that the bounds of all
declared arrays be explicitly specified, or that pre- and post-conditions be specified.

Sanity checks should be performed on all calculated expressions used as an array index or for

pointer arithmetic.
Some guideline documents recommend only using variables having an unsigned type when
indexing an array, on the basis that an unsigned type can never be negative. This
recommendation simply converts an indexing underflow to an indexing overflow because the
value of the variable will wrap to a large positive value rather than a negative one. Also some
language support arrays whose lower bound is greater than zero, so an index can be positive
and be less than the lower bound.

In the past the implementation of array bound checking has sometimes incurred what has been
considered to be a high runtime overhead (often because unnecessary checks were
performed). It is now practical for translators to perform sophisticated analysis that significantly
reduces the runtime overhead (because runtime checks are only made when it cannot be
shown statically that no bound violations can occur).

16



Continued...

6.17.6 Implications for standardization

e Languages that use pointer types should consider
specifying a standard for a pointer type that would
enable array bounds checking, if such a pointer is not
already in the standard.

6.17.7 Bibliography
[INone]

17



