
ISO/IEC JTC 1/SC 22/OWGV N 0218
On Removing Programming Language Bias from the Vulnerabilities Document

Date 15 August 2009

Contributed by J-P Rosen

Original file name AUJ-Vuln-JPR.doc

Notes Drafted for submission to Ada User

2 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

On Removing Programming Language Bias from

the Vulnerabilities Document

J-P Rosen

Adalog, 19-21 rue du 8 mai 1945, 94110 ARCUEIL, France; Tel: +33 1 41 24 31 40; email:rosen@adalog.fr

Abstract

ISO/SC22/WG23 is currently working on a document
that identifies vulnerabilities in programming
languages. The document is structured as a core
report which is supposed to be independent of any
programming language, and annexes related to the
applicability of each vulnerabitlity in specific
languages. Unfortunately, the core exhibits in places
a bias, generally towards the C/C++ family of
languages. This paper identifies those places in the
report where the wording or intent was biased by the
features of certain programming languages, and
suggests improvements to remove them.

Keywords: Ada,C, C++, vulnerabilities.

1 Introduction

ISO/SC22/WG23 is a working group of ISO which has

been formed with the goal of producing a technical report

(TR) that identifies vulnerabilities in programming

languages. The official title of the TR is Guidance to

Avoiding Vulnerabilities in Programming Languages

through Language Selection and Use [1]. Since the goal of

this TR is clearly to provide guidance in selecting a

programming language based on the vulnerabilities that

each language may exhibit, it is structured as a general core

study which does not refer to any programming language in

particular, with language annexes that describe how the

vulnerability applies, or not, to the given language. Since

the document originates from members of the C/C++

community (although there is strong participation from the

Ada community), it is unavoidable that some bias from

these languages has crept in the core document. For the

sake of simplicity, we'll use the name "C*" to designate the

C family of programming languages.

 This paper identifies places where this bias has been

introduced, and suggests improvements to remove them.

2 Typical C-isms

As noted above, it is very hard to keep the core document

totally language agnostic. For example, the description of

vulnerabilities often include examples, such examples are

very useful, but they have to be given with some

programming language. Moreover, vulnerabilities that exist

in only one language have to be addressed in the core

document, since the language annexes are not supposed to

be adding new vulnerabilities.

However, there are cases where the description of the

vulnerability reflects a C* approach (as opposed to C*

syntax). Conversely, there are vulnerabilities in some

languages that do not exist in C* due to the absence of

features that correspond to the vulnerability. Not addressing

these vulnerabilities is another hint of a C* bias.

For example, Pointer Arithmetic [RVG/6.22]
1
 addresses

(rightly) the vulnerabilities caused by arithmetic operations

on pointers. However, the recommendations mention

pointer arithmetic only as a way of indexing arrays.

Although other languages may provide pointer arithmetic,

C is the only language where pointer arithmetic is

connected to the indexing of arrays.

Another arguable statement is found in Argument Passing

to Library Functions [TRJ/6.48]. There is no definition of

what "library functions" are, but it seems that the intent is

to refer to standard libraries provided with the language.

The description states:

Libraries that supply objects or functions are in most

cases not required to check the validity of parameters

passed to them.

Although such a statement might be applicable to some C*

libraries, there is no reason to think that it is a general

principle that applies to all languages. There is a general

vulnerability connected to subprograms that do not check

their arguments, but there is no reason to limit this to

"libraries".

3 Lack of generality

Some vulnerabilities are related to functionalities that exist

in several programming languages, but whose scope and

features vary greatly among languages. For example,

generics/templates exist in Ada, C++, Eiffel... However, the

report describes mainly the C++ view:

"Many languages provide a mechanism that allows objects

and/or functions to be defined parameterized by type, and

then instantiated for specific types" (Templates and

Generics [SYM/ 6.25.1])

1
 Each description of a vulnerability is identified with an

arbitrary three-letter code. This is intended to make them

independent of any renumbering of clauses that may

happen during the preparation of the document, but makes

it harder to retrieve the place where it is defined. We

therefore refer to the vulnerabilities by their code, followed

by the corresponding clause number in the version of the

document [1] that was current as of June 8
th

, 2009.

A N Author 3

This formulation is clearly too restrictive for Ada, where

other entities (such as packages) can be generic, and where

the possible parameter kinds include subprograms,

constants, variables, and even other packages (through

formal instantiations).

Another example can be found in Likely Incorrect

Expression [KOA/6.32]. This vulnerability is mainly

concerned with the unintended use of "=" in place of "=="

in expressions. While it is true that this problem is haunting

every C programmer, it has no equivalent in other

languages. On the other hand, the description only

mentions in passing the confusion between "&" and " &&",

which does have equivalents in other languages ("and" and

"and then" in Ada). Note that this vulnerability should be

kept separate from the issue of order of evaluation, which is

addressed by Side-effects and Order of Evaluation

[SAM/6.31].

4 Left-out features

The introduction of [1] states that, due to the limited

amount of resources, vulnerabilities related to some

subjects were deliberately postponed. These subjects

include:

 Object-oriented language features

 Concurrency

 Numerical analysis

 Scripting languages

 Some issues related to inter-language operability

Although it is understandable that the subject of

vulnerabilities is gigantic, and that it is not possible to

address them all, the choice of left-out feature is another

indication of language bias: all of these features are either

not provided by C (even though some of them, and notably

object orientation, are provided by other languages of the C

family), or related to domains where C is not particularly fit

(like numerical analysis). To Ada users, for example,

addressing concurrency would seem a much more

important topic than syntactic ambiguity!

5 Abstracting the vulnerabilities

It should be understood that the C* bias found in the

description of some vulnerabilities does not invalidate the

value of the vulnerability; the issue is more on separating

the general, high level problem that it addresses (which

belongs to the core document) from how it shows in some

specific language (which belongs to the language annex).

This requires an effort for abstracting the vulnerability.

For example, String Termination [CJM/6.16] describes the

vulnerability caused by forgetting the null character that

terminates a string. The general vulnerability is about using

a sentinel value to mark the end of a data structure; there is

nothing specific to strings, not even to arrays, here.

Strangely enough, the document distinguishes Boundary

Beginning Violation [XYX/6.17], Unchecked Array

Indexing [XYZ/6.18], Unchecked Array Copying

[XYW/6.19], and Buffer Overflow [XZB/6.20]. All these

are variants of a single vulnerability: accessing an array

outside of its bounds. The origin of this distinction is that in

C, it is common practice to allocate arrays in the direction

where the stack is growing; therefore, addressing below the

array may ruin the return address, while addressing above it

does not. This is not even connected to a particular

language, but to a specific (although common)

implementation technic.

Similarly, there are subtle distinctions between Type System

[IHN/6.11], Numeric Conversion Errors [FLC/6.15],

Pointer Casting and Pointer Type Changes [HFC/6.21],

Sign Extension Error [XZI/6.29], and Type-breaking

Reinterpretation of Data [AMV/6.46]. They are all

occurrences of problems with conversions; the only

possible distinction could be between semantic-preserving

conversions (regular conversions in Ada) and non-

semantic-preserving conversions (Unchecked_Conversion

in Ada).

The same phenomenon appears with vulnerabilities related

to bad pointers: Pointer Arithmetic [RVG/6.22], Null

Pointer Dereference [XYH/6.23], Dangling Reference to

Heap [XYK/6.24], and Dangling References to Stack

Frames [DCM/6.40].

In the last two examples, we have clearly single

vulnerabilities that can appear, in the C* languages, in

various forms; the core should contain only the abstract

formulation (incorrect pointer value), leaving the variants

to the language annex.

6 Cross-references clauses

The standard vulnerability template includes a "Cross-

reference" clause to provide links to other documents

addressing the given concerns. All vulnerabilities have

links to C or C++ standards, and only those, although

Ravenscar and Spark (but not the HRG document) are

mentioned in the bibliography.

This is a clear indication that the selection of rules was

made from C* documents; although a good starting point,

documents from other languages should have been

considered right from the start. Otherwise, only C*

vulnerabilities will be addressed, especially considering

that at this point, it could be argued that it is too late to add

new vulnerabilities to the document.

7 Conclusion

There is no doubt that the vulnerabilities identified in the

document are real, and do happen in various programming

languages, including the C* family of languages. However,

the formulation of some of them, and the selection of

vulnerabilities, show a strong C* influence in some cases.

We suggest in this paper some improvements to make the

formulation more general and applicable to other

languages, and identify the parts that should be moved to

language specific annexes; we hope that, by following

4 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

theses advices, the generality and overall quality of the

document could be improved.

8 References

[1] ISO/IEC PDTR 24772.2, as of 2009-05-29

[2] Alan Burns, Brian Dobbing and Tullio Vardanega

(June 2004). "Guide for the use of the Ada Ravenscar

Profile in high integrity systems". ACM SIGAda Ada

Letters XXIV (2): 1–74. Now part of annex D of

ISO/IEC 8652:1995 with cor. 1 and amdt 1

(Programming language Ada).

[3] John Barnes: "High Integrity Software: The SPARK

Approach to Safety and Security"

[4] ISO/IEC TR 15942:2000, Guidance for the Use of Ada

in High Integrity Systems.

