
 
 

 
 

ISO/IEC JTC 1/SC 22/OWGV N 0245 1 
Revised draft language-specific annex for C 2 
 3 

Date 23 March 2010 
Contributed by Larry Wagoner 
Original file 
name 

C_language_annex_030810.docx 

Notes Replaces N0233 

 4 
Language Specific Vulnerability Outline 5 
 6 
C. Skeleton template for use in proposing language specific information for 7 
vulnerabilities 8 
Every vulnerability description of Clause 6 of the main document should be addressed in the annex in the same 9 
order even if there is simply a notation that it is not relevant to the language in question. 10 
 11 
C.1 Identification of standards 12 
ISO/IEC. Programming Languages---C, 2nd ed (ISO/IEC 9899:1999). Geneva, Switzerland: 13 
International Organization for Standardization, 1999. 14 
 15 
C.2 General Terminology 16 
 17 
None 18 
 19 
C.3.1 Obscure Language Features [BRS] 20 
 21 
C.3.1.0 Status and history 22 
 23 
C.3.1.1 Terminology and features 24 
 25 
C.3.1.2 Description of vulnerability 26 
C is a relatively small language with a limited syntax set lacking many of the complex features of some other 27 
languages.  Many of the complex features in C are not implemented as part of the language syntax, but rather 28 
implemented as library routines.  As such, most of the available features in C are used relatively frequently. 29 
 30 
Common use across a variety of languages may make some features less obscure.  Because of the unstructured 31 
code that is frequently the result of using goto’s, the goto statement is frequently restricted, or even outright 32 
banned, in some C development environments.  Even though the goto is encountered infrequently and the use of 33 
it considered obscure, because it is fairly obvious as to its purpose and since its use is common to many other 34 
languages, the functionality of it is easily understood by even the most junior of programmers. 35 
 36 
The use of a combination of features adds yet another dimension.  Particular combinations of features in C may be 37 
used rarely together or fraught with issues if not used correctly in combination.  This can cause unexpected results 38 
and potential vulnerabilities.   39 
 40 



 
 

 
 

C.3.1.3 Avoiding the vulnerability or mitigating its effects 41 
 42 

• Organizations should specify coding standards that restrict or ban the use of features or combinations of 43 
features that have been observed to lead to vulnerabilities in the operational environment for which the 44 
software is intended. 45 

 46 
C.3.1.4 Implications for standardization 47 
 48 
Future standardization efforts should consider: 49 
None 50 
 51 
C.3.1.5 Bibliography 52 
 53 
 54 
C.3.2 Unspecified Behaviour [BQF] 55 
 56 
C.3.2.0 Status and history 57 
 58 
C.3.2.1 Terminology and features 59 
 60 
Unspecified behaviour occurs where the C standard provides two or more possibilities but does not dictate which 61 
one is chosen.  Unspecified behaviour also occurs when an unspecified value is used. 62 
 63 
An unspecified value is a value that is valid for its type and where the C standard does not impose a choice on the 64 
value chosen.  Many aspects of the C language result in unspecified behaviour. 65 
 66 
C.3.2.2 Description of vulnerability 67 
 68 
The C standard has documented, in Annex J.1, 54 instances of unspecified behaviour.  Examples of unspecified 69 
behaviour are: 70 
 71 

• The order in which the operands of an assignment operator are evaluated 72 
• The order in which any side effects occur among the initialization list expressions in an initializer 73 
• The layout of storage for function parameters 74 

 75 
Reliance on a particular behaviour that is unspecified leads to portability problems because the expected 76 
behaviour may be different for any given instance.  Many cases of unspecified behaviour have to do with the order 77 
of evaluation of subexpressions and side effects.  For example, in the function call 78 
 79 
 f1(f2(x), f3(x)); 80 
 81 
 the functions f2 and f3 may be called in any order possibly yielding different results depending on the order in 82 
which the functions are called. 83 
 84 
C.3.2.3 Avoiding the vulnerability or mitigating its effects 85 
 86 

• Do not rely on unspecified behaviour because the behaviour can change at each instance.  Thus, any code 87 
that makes assumptions about the behaviour of something that is unspecified should be replaced to make 88 
it less reliant on a particular installation and more portable. 89 

 90 
C.3.2.4 Implications for standardization 91 
 92 



 
 

 
 

Future standardization efforts should consider: 93 
None 94 
 95 
C.3.2.5 Bibliography 96 
 97 
 98 
C.3.3 Undefined Behaviour [EWF] 99 
 100 
C.3.3.0 Status and history 101 
 102 
C.3.3.1 Terminology and features 103 
 104 
Undefined behaviour is behaviour that results from using erroneous constructs and data. 105 
 106 
C.3.3.2 Description of vulnerability 107 
 108 
The C standard does not impose any requirements on undefined behaviour.  Typical undefined behaviours include 109 
doing nothing, producing unexpected results, and terminating the program. 110 
 111 
The C standard has documented, in Annex J.2, 191 instances of undefined behaviour known to exist in C.  One 112 
example of undefined behaviour occurs when the value of the second operand of the / or % operator is zero.  This 113 
is generally not detectable through static analysis of the code, but could easily be prevented by a check for a zero 114 
divisor before the operation is performed.  Leaving this behaviour as undefined lessens the burden on the 115 
implementation of the division and modulo operators. 116 
 117 
Other examples of undefined behaviour are: 118 
 119 

• Referring to an object outside of its lifetime 120 
• The conversion to or from an integer type that produces a value outside of the range that can be 121 

represented 122 
• The use of two identifiers that differ only in non-significant characters 123 

 124 
Relying on undefined behaviour makes a program unstable and non-portable.  While some cases of undefined 125 
behaviour may be consistent across multiple implementations, it is still dangerous to rely on them.  Relying on 126 
undefined behaviour can result in errors that are difficult to locate and only present themselves under special 127 
circumstances.  For example, accessing memory deallocated by free or realloc results in undefined behaviour, but it 128 
may work most of the time. 129 
 130 
C.3.3.3 Avoiding the vulnerability or mitigating its effects 131 

 132 
• Eliminate to the extent possible all cases of undefined behaviour from a program 133 

 134 
C.3.3.4 Implications for standardization 135 
 136 
Future standardization efforts should consider: 137 
Making the declarations of undefined behaviour more definitive.  The collection of undefined behaviour in Annex 138 
J.2 is well done with cross references to sections in the standard.  Most of the entries are well defined, but the few 139 
that use words such as “proper” or “inappropriately” should be better defined. 140 
 141 
C.3.3.5 Bibliography 142 
 143 
 144 



 
 

 
 

C.3.4 Implementation-defined Behaviour [FAB] 145 
 146 
C.3.4.0 Status and history 147 
 148 
C.3.4.1 Terminology and features 149 
 150 
Implementation-defined behaviour is unspecified behaviour where the resulting behaviour is chosen by the 151 
implementation.  Implementation-defined behaviours are typically related to the environment, representation of 152 
types, architecture, locale, and library functions. 153 
 154 
C.3.4.2 Description of vulnerability 155 
 156 
The C standard has documented, in Annex J.3, 112 instances of implementation-defined behaviour.  Examples of 157 
implementation-defined behaviour are: 158 
 159 

• The number of bits in a byte 160 
• The direction of rounding when a floating-point number is converted to a narrower floating-point 161 

number 162 
• The rules for composing valid file names 163 

 164 
Relying on implementation-defined behaviour can make a program less portable across implementations.  165 
However, this is less true than for unspecified and undefined behaviour. 166 
 167 
The following code shows an example of reliance upon implementation-defined behaviour: 168 
 169 
 unsigned int x = 50; 170 
 x += (x << 2) + 1;  // x = 5x + 1 171 
 172 
Since the bitwise representation of integers is implementation-defined, the computation on x will be incorrect for 173 
implementations where integers are not represented in two’s complement form. 174 
 175 
C.3.4.3 Avoiding the vulnerability or mitigating its effects 176 
 177 

• Eliminate to the extent possible any reliance on implementation-defined behaviour from programs in 178 
order to increase portability.  Even programs that are specifically intended for a particular implementation 179 
may in the future be ported to another environment or sections reused for future implementations. 180 

 181 
C.3.4.4 Implications for standardization 182 
 183 
Future standardization efforts should consider: 184 
None 185 
 186 
C.3.4.5 Bibliography 187 
 188 
 189 
C.3.5 Deprecated Language Features [MEM] 190 
 191 
C.3.5.0 Status and history 192 
 193 
C.3.5.1 Terminology and features 194 
 195 
C.3.5.2 Description of vulnerability 196 



 
 

 
 

 197 
C has deprecated one function, the function gets.  The gets function copies a string from standard input into a 198 
fixed-size array.  There is no safe way to use gets because it performs an unbounded copy of user input.  Thus, 199 
every use of gets constitutes a buffer overflow vulnerability. 200 
 201 
C has deprecated several language features primarily by tightening the requirements for the feature: 202 

• Implicit declarations are no longer allowed. 203 
• Functions cannot be implicitly declared.  They must be defined before use or have a prototype. 204 
• The use of the function ungetc at the beginning of a binary file is deprecated. 205 
• The deprecation of aliased array parameters has been removed. 206 
• A return without expression is not permitted in a function that returns a value (and vice versa). 207 

 208 
Violating these new tighter features will generate an error. 209 
 210 
C.3.5.3 Avoiding the vulnerability or mitigating its effects 211 
 212 

• Do not use the function gets as there isn't a safe and secure way to use it. 213 
• Although backward compatibility is sometimes offered as an option for compilers so one can avoid 214 

changes to code to be compliant with current language specifications, updating the legacy software to the 215 
current standard is a better option.  216 

 217 
C.3.5.4 Implications for standardization 218 
 219 
Future standardization efforts should consider: 220 

• Creating an Annex that lists deprecated features. 221 
 222 
C.3.5.5 Bibliography 223 
 224 
 225 
C.3.6 Pre-processor Directives [NMP] 226 
 227 
C.3.6.0 Status and history 228 
 229 
C.3.6.1 Terminology and features 230 
 231 
A preprocessing directive of the form 232 
 233 
 # define identifier lparen identifier-listopt ) replacement-list new-line 234 
 # define identifier lparen ... ) replacement-list new-line 235 
 # define identifier lparen identifier-list , ... ) replacement-list new-line 236 
 237 
defines a function-like macro with parameters, whose use is similar syntactically to a function call.  For example, 238 
the following function-like macro calculates the cube of its argument by replacing all occurrences of the argument 239 
X in the body of the macro. 240 
 241 

#define CUBE(X) ((X) * (X) * (X)) 242 
/* ... */ 243 
int a = CUBE(2); 244 
 245 

The above example expands to: 246 
 247 

int a = ((2) * (2) * (2)); 248 



 
 

 
 

 249 
which evaluates to 8. 250 
 251 
C.3.6.2 Description of vulnerability 252 
 253 
The C pre-processor allows the use of macros that are text-replaced before compilation.   254 
 255 
Function-like macros look similar to functions but have different semantics.  Because the arguments are text-256 
replaced, expressions passed to a function-like macro may be evaluated multiple times.  This can result in 257 
unintended and undefined behaviour if the arguments have side effects or are pre-processor directives as 258 
described by C99 §6.10 [1].  Additionally, the arguments and body of function-like macros should be fully 259 
parenthesized to avoid unintended and undefined behaviour [2]. 260 
 261 
The following code example demonstrates undefined behaviour when a function-like macro is called with 262 
arguments that have side-effects (in this case, the increment operator) [2]: 263 
 264 

#define CUBE(X) ((X) * (X) * (X)) 265 
/* ... */ 266 
int i = 2; 267 
int a = 81 / CUBE(++i); 268 
 269 

The above example expands into: 270 
 271 
 int a = 81 / ((++i) * (++i) * (++i)); 272 
 273 
which is undefined behaviour and is probably not the intended result. 274 
 275 
Another mechanism of failure can occur when the arguments within the body of a function-like macro are not fully 276 
parenthesized.  The following example shows the CUBE macro without parenthesized arguments [2]: 277 
 278 

#define CUBE(X) (X * X * X) 279 
/* ... */ 280 
int a = CUBE(2 + 1); 281 

 282 
This example expands to: 283 
 284 

int a = (2 + 1 * 2 + 1 * 2 + 1) 285 
 286 

which evaluates to 7 instead of the intended 27. 287 
 288 
C.3.6.3 Avoiding the vulnerability or mitigating its effects 289 
 290 
This vulnerability can be avoided or mitigated in C in the following ways: 291 

• Replace macro-like functions with inline functions where possible.  Although making a function inline only 292 
suggests to the compiler that the calls to the function be as fast as possible, the extent to which this is 293 
done is implementation-defined.  Inline functions do offer consistent semantics and allow for better 294 
analysis by static analysis tools. 295 

• Ensure that if a function-like macro must be used, that its arguments and body are parenthesized. 296 
• Do not embed pre-processor directives or side-effects such as an assignment, increment/decrement, 297 

volatile access, or function call in a function-like macro. 298 
 299 
C.3.6.4 Implications for standardization 300 
 301 



 
 

 
 

Future standardization efforts should consider: 302 
None 303 
 304 
C.3.6.5 Bibliography 305 
 306 
[1] Seacord, Robert C. The CERT C Secure Coding Standard. Boston: Addison-Wesley, 2008. 307 
[2] GNU Project.  GCC Bugs “Non-bugs” http://gcc.gnu.org/bugs.html#nonbugs_c  (2009). 308 
 309 
 310 
C.3.7 Choice of Clear Names [NAI] 311 
 312 
C.3.7.0 Status and history 313 
 314 
C.3.7.1 Terminology and features 315 
 316 
C.3.7.2 Description of vulnerability 317 
 318 
C is somewhat susceptible to errors resulting from the use of similarly appearing names.  C does require the 319 
declaration of variables before they are used.  However, C does allow scoping so that a variable which is not 320 
declared locally may be resolved to some outer block and that resolution may not be noticed by a human reviewer.    321 
Variable name length is implementation specific and so one implementation may resolve names to one length 322 
whereas another implementation may resolve names to another length resulting in unintended behaviour. 323 
 324 
As with the general case, calls to the wrong subprogram or references to the wrong data element (when missed by 325 
human review) can result in unintended behaviour. 326 
 327 
C.3.7.3 Avoiding the vulnerability or mitigating its effects 328 
 329 

• Use names which are clear and non-confusing. 330 
• Use consistency in choosing names. 331 
• Keep names short and consise in order to make the code easier to understand. 332 
• Choose names that are rich in meaning. 333 
• Keep in mind that code will be reused and combined in ways that the original developers never imagined. 334 
• Make names distinguishable within the first few characters due to scoping in C.  This will also assist in 335 

averting problems with compilers resolving to a shorter name than was intended. 336 
• Do not differentiate names through only a mixture of case or the presence/absence of an underscore 337 

character. 338 
• Avoid differentiating through characters that are commonly confused visually such as ‘O’ and ‘0’, ‘I’ (lower 339 

case ‘L’), ‘l’ (capital ‘I’)  and ‘1’, ‘S’ and ‘5’, ‘Z’ and ‘2’, and ‘n’ and ‘h’. 340 
• Coding guidelines should be developed to define a common coding style and to avoid the above 341 

dangerous practices. 342 
 343 
C.3.7.4 Implications for standardization 344 
 345 
Future standardization efforts should consider: 346 
None 347 
 348 
C.3.7.5 Bibliography 349 
 350 
 351 
C.3.8 Choice of Filenames and other External Identifiers [AJN] 352 

http://gcc.gnu.org/bugs.html�


 
 

 
 

 353 
C.3.8.0 Status and history 354 
 355 
C.3.8.1 Terminology and features 356 
 357 
C.3.8.2 Description of vulnerability 358 
 359 
 360 
C allows filenames and external identifiers to contain what could be unsafe characters or characters in unsafe 361 
positions.  For example, in C, a string can be used to name a file by calling fopen() or rename().  Control 362 
characters, spaces, and leading dashes can be used in filenames which can cause unintended results when these 363 
characters are processed by the operating system.  The letters “A” through “Z” and “a” through “z”, digits “0” 364 
through “9”, period, hyphen and underscore are considered portable. 365 
 366 
Filenames may be interpreted unexpectedly if certain sequences of characters are used.  For example, the 367 
filename: 368 
 369 
 char *file_name ="&#xBB;&#xA3;???&#xAB;"; 370 
 371 
will result in the file name “??????” when used on a Red Hat Linux distribution. 372 
 373 
C.3.8.3 Avoiding the vulnerability or mitigating its effects 374 
 375 

• Restrict filenames and external identifier names to the portable set mentioned in the previous section. 376 
 377 
C.3.8.4 Implications for standardization 378 
 379 
Future standardization efforts should consider: 380 

• Language APIs for interfacing with external identifiers should be compliant with ISO/IEC 9945:2003 (IEEE 381 
Std 1003.1-2001). 382 

 383 
C.3.8.5 Bibliography 384 
 385 
 386 
C.3.9 Unused Variable [XYR] 387 
 388 
C.3.9.0 Status and history 389 
 390 
C.3.9.1 Terminology and features 391 
 392 
C.3.9.2 Description of vulnerability 393 
Variables may be declared, but never used when writing code or the need for a variable may be eliminated in the 394 
code, but the declaration may remain.  Most compilers will report this as a warning and the warning can be easily 395 
resolved by removing the unused variable. 396 
 397 
C.3.9.3 Avoiding the vulnerability or mitigating its effects 398 

 399 
• Resolve all compiler warnings for unused variables.  This is trivial in C as one simply needs to remove the 400 

declaration of the variable.  Having an unused variable in code indicates that either warnings were turned 401 
off during compilation or were ignored by the developer.  The compiler gcc allows the use of an attribute 402 
“((unused))” to indicate that a variable is intentionally left in the code and unused: 403 

 404 



 
 

 
 

  int var1 __attribute__ ((unused)); 405 
 406 

This will signify to the compiler not to flag a warning for this variable being unused.  However, this is not 407 
part of the C standard and thus is not portable. 408 

 409 
C.3.9.4 Implications for standardization 410 
 411 
Future standardization efforts should consider: 412 

• Defining a standard way of declaring an attribute such as “__attribute__ ((unused))” to indicate 413 
that a variable is intentionally unused. 414 

 415 
C.3.9.5 Bibliography 416 
 417 
 418 
C.3.10 Identifier Name Reuse [YOW] 419 
 420 
C.3.10.0 Status and history 421 
  422 
C.3.10.1 Terminology and features 423 
 424 
C.3.10.2 Description of vulnerability 425 
C allows scoping so that a variable which is not declared locally may be resolved to some outer block and that 426 
resolution may cause the variable to operate on an entity other than the one intended. 427 
 428 
Because the variable name var1 was reused in the following example, the printed value of var1 may be 429 
unexpected. 430 
 431 

int var1;    /* declaration in outer scope */ 432 
var1 = 10; 433 
{ 434 

int var2; 435 
int var1;   /* declaration in nested (inner) scope */ 436 
var2 = 5; 437 
var1 = 1;   /* var1 in inner scope is 1*/ 438 

} 439 
print (“var1=%d\n”, var1); /* will print “var1=10” as var1 refers */ 440 

/* to  var1 in the outer scope */ 441 
 442 
Removing the declaration of var2 will result in a compiler error of an undeclared variable.  However, removing the 443 
declaration of var1 in the inner block will not result in an error as var1 will be resolved to the declaration in the 444 
outer block.  That resolution will result in the printing of “var1=1” instead of “var1=10”. 445 
 446 
C.3.10.3 Avoiding the vulnerability or mitigating its effects 447 
 448 

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same 449 
name is accessible and can be used in the same context. A language-specific project coding convention can 450 
be used to ensure that such errors are detectable with static analysis. 451 

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same 452 
name is accessible and has a type that permits it to occur in at least one context where the first entity can 453 
occur. 454 

• Ensure that all identifiers differ within the number of characters considered to be significant by the 455 
implementations that are likely to be used, and document all assumptions. 456 

 457 



 
 

 
 

C.3.10.4 Implications for standardization 458 
 459 
Future standardization efforts should consider: 460 

• A common warning in Annex I should be added for variables with the same name in nested scopes. 461 
 462 
C.3.10.5 Bibliography 463 
 464 
 465 
C.3.11 Type System [IHN] 466 
 467 
C.3.11.0 Status and history 468 
 469 
C.3.11.1 Terminology and features 470 
 471 
C.3.11.2 Description of vulnerability 472 
 473 
C is a statically typed language.  In some ways C is both strongly and weakly typed as it requires all variables to be 474 
typed, but sometimes allows implicit or automatic conversion between types.  For example, C will implicitly convert 475 
a long int to an int and potentially discard many significant digits.  Note that integer sizes are 476 
implementation defined so that in some implementations, the conversion from a long int to an int cannot 477 
discard any digits since they are the same size.  In some implementations, all integer types could be implemented 478 
as the same size. 479 
 480 
C allows implicit conversions as in the following example: 481 
 482 
 short a = 1023; 483 
 int b; 484 
 b = a; 485 
 486 
If an implicit conversion could result in a loss of precision such as in a conversion from a 16 bit int to an 8 bit 487 
short int: 488 
 489 
 int a = 1023; 490 
 short b; 491 
 a = b; 492 
 493 
most compilers will issue a warning. 494 
 495 
C has a set of rules to determine how conversion between data types will occur.  In C, for instance, every integer 496 
type has an integer conversion rank that determines how conversions are performed. The ranking is based on the 497 
concept that each integer type contains at least as many bits as the types ranked below it. The following rules for 498 
determining integer conversion rank are defined in C99: 499 
 500 

• No two different signed integer types have the same rank, even if they have the same representation. 501 
• The rank of a signed integer type is greater than the rank of any signed integer type with less precision. 502 
• The rank of long long int is greater than the rank of long int, which is greater than the rank of 503 

int, which is greater than the rank of short int, which is greater than the rank of signed char. 504 
• The rank of any unsigned integer type is equal to the rank of the corresponding signed integer type, if any. 505 
• The rank of any standard integer type is greater than the rank of any extended integer type with the same 506 

width. 507 
• The rank of char is equal to the rank of signed char and unsigned char. 508 
• The rank of any extended signed integer type relative to another extended signed integer type with the 509 



 
 

 
 

same precision is implementation defined but still subject to the other rules for determining the integer 510 
conversion rank. 511 

• The rank of _Bool shall be less than the rank of all other standard integer types. 512 
• The rank of any enumerated type shall equal the rank of the compatible integer type 513 
• The rank of any extended signed integer type relative to another extended signed integer type with the 514 

same precision is implementation-defined, but still subject to the other rules for determining the integer 515 
conversion rank. 516 

• For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3, 517 
then T1 has greater rank than T3. 518 

The integer conversion rank is used in the usual arithmetic conversions to determine what conversions need to take 519 
place to support an operation on mixed integer types. 520 
 521 

• If both operands have the same type, no further conversion is needed. 522 
• If both operands are of the same integer type (signed or unsigned), the operand with the type of lesser 523 

integer conversion rank is converted to the type of the operand with greater rank. 524 
• If the operand that has unsigned integer type has rank greater than or equal to the rank of the type of the 525 

other operand, the operand with signed integer type is converted to the type of the operand with 526 
unsigned integer type. 527 

• If the type of the operand with signed integer type can represent all of the values of the type of the 528 
operand with unsigned integer type, the operand with unsigned integer type is converted to the type of 529 
the operand with signed integer type. 530 

• Otherwise, both operands are converted to the unsigned integer type corresponding to the type of the 531 
operand with signed integer type. Specific operations can add to or modify the semantics of the usual 532 
arithmetic operations. 533 

 534 
Other conversion rules exist for other data type conversions.  So even though there are rules in place and the rules 535 
are rather straightforward, the variety and complexity of the rules can cause unexpected results and potential 536 
vulnerabilities.  For example, though there is a prescribed order which conversions will take place, determining how 537 
the conversions will affect the final result can be difficult as in the following example: 538 
 539 
 long foo (short a, int b, int c, long d, long e, long f) { 540 
  return (((b + f) * d – a + e) / c); 541 
   } 542 
 543 
The implicit conversions performed in the return statement can be nontrivial to discern, but can greatly impact 544 
whether any of the variables wrap around during the computation. 545 
 546 
C.3.11.3 Avoiding the vulnerability or mitigating its effects 547 
 548 

• Consideration of the rules for typing and conversions will assist in avoiding vulnerabilities.  However, a lack 549 
of full understanding by the programmer of the implications of the rules may cause unexpected results 550 
even though the rules may be clear.  Complex expressions and intricacies of the rules can cause a 551 
difference between what a programmer expects and what actually happens. 552 

• Make casts explicit to give the programmer a clearer vision and expectations of conversions. 553 
 554 
C.3.11.4 Implications for standardization 555 
 556 
Future standardization efforts should consider: 557 

• Moving in the direction over time to being a more strongly typed language.  Much of the use of weak 558 
typing is simply convenience to the developer in not having to fully consider the types and uses of 559 
variables.  Stronger typing forces good programming discipline and clarity about variables while at the 560 
same time removing many unexpected run time errors due to implicit conversions.  This is not to say that 561 



 
 

 
 

C should be strictly a strongly typed language – some advantages of C are due to the flexibility that weaker 562 
typing provides.  It is suggested that when enforcement of strong typing does not detract from the good 563 
flexibility that C offers (e.g. adding an integer to a character to step through a sequence of characters) and 564 
is only a convenience for programmers (e.g. adding an integer to a floating-point), then the standard 565 
should specify the stronger typed solution. 566 

 567 
C.3.11.5 Bibliography 568 
 569 
 570 
C.3.12 Bit Representations [STR] 571 
 572 
C.3.12.0 Status and history 573 
 574 
C.3.12.1 Terminology and features 575 
 576 
C.3.12.2 Description of vulnerability 577 
 578 
C supports a variety of sizes for integers such as short int, int, long int and long long int.  Each may 579 
either be signed or unsigned.  C also supports a variety of bitwise operators that make bit manipulations easy such 580 
as left and right shifts and bitwise operators.  These bit manipulations can cause unexpected results or 581 
vulnerabilities through miscalculated shifts or platform dependent variations. 582 
 583 
Bit manipulations are necessary for some applications and may be one of the reasons that a particular application 584 
was written in C.  Although many bit manipulations can be rather simple in C, such as masking off the bottom three 585 
bits in an integer, more complex manipulations can cause unexpected results.  For instance, right shifting a signed 586 
integer is implementation defined in C, as is shifting by an amount greater than or equal to the size of the data 587 
type.  For instance, on a host where an int is of size 32 bits, 588 
 589 
    unsigned int foo(const int k) { 590 
   unsigned int i = 1; 591 
     return i << k; 592 
  } 593 
 594 
is undefined for values of k greater than or equal to 32. 595 
 596 
The storage representation for interfacing with external constructs can cause unexpected results.  Byte orders may 597 
be in little endian or big endian format and unknowingly switching between the two can unexpectedly alter values. 598 
 599 
C.3.12.3 Avoiding the vulnerability or mitigating its effects 600 
 601 

• Only use bitwise operators on unsigned integer operators as the results of some bitwise operations on 602 
signed integers are implementation defined. 603 

• Use commonly available functions such as htonl(), htons(), ntohl() and ntohs()to convert 604 
from host byte order to network byte order and vice versa.  This would be needed to interface between an 605 
i80x86 architecture where the Least Significant Byte is first with the network byte order, as used on the 606 
Internet, where the Most Significant Byte is first.  Note: functions such as these are not part of the C 607 
standard and can vary somewhat among different platforms. 608 

• In cases where there is a possibility that the shift is greater than the size of the variable, perform a check 609 
or, as the following example shows, a modulo reduction before the shift: 610 

 611 
unsigned int i; 612 
unsigned int k; 613 



 
 

 
 

unsigned int shifted_i 614 
… 615 

  if (k < sizeof(unsigned int)*CHAR_BIT) 616 
  shifted_i = i << k; 617 
else 618 
  // handle error condition 619 

      … 620 
 621 
C.3.12.4 Implications for standardization 622 
 623 
Future standardization efforts should consider: 624 
None 625 
 626 
C.3.12.5 Bibliography 627 
 628 
 629 
C.3.13 Floating-point Arithmetic [PLF] 630 
 631 
C.3.13.0 Status and history 632 
 633 
C.3.13.1 Terminology and features 634 
 635 
C.3.13.2 Description of vulnerability 636 
 637 
C permits the floating-point data types float, double and long double.  Due to the approximate nature of floating-638 
point representations, the use of float and double data types in situations where equality is needed or where 639 
rounding could accumulate over multiple iterations could lead to unexpected results and potential vulnerabilities in 640 
some situations. 641 
 642 
As with most data types, C is very flexible in how float, double and long double can be used.  For instance, 643 
C allows the use of floating-point types to be used as loop counters and in equality statements.  Even though a loop 644 
may be expected to only iterate a fixed number of times, depending on the values contained in the floating-point 645 
type and on the loop counter and termination condition, the loop could execute forever.  For instance iterating a 646 
time sequence using 10 nanoseconds as the increment: 647 
 648 
 float f; 649 
 for (f=0.0; f!=1.0; f+=0.00000001) 650 
 … 651 
 652 
may or may not terminate after 10,000,000 iterations.  The representations used for f and the accumulated effect 653 
of many iterations may cause f to not be identical to 1.0 causing the loop to continue to iterate forever. 654 
 655 
Similarly, the Boolean test 656 
 657 
 float f=1.336; 658 

float g=2.672; 659 
 if (f == (g/2)) 660 
 … 661 
 662 
may or may not evaluate to true.  Given that f and g are constant values, it is expected that consistent results will 663 
be achieved on the same platform.  However, it is questionable whether the logic performs as expected when a 664 
float that is twice that of another is tested for equality when divided by 2 as above.  This can depend on the values 665 
selected due to the quirks of floating-point arithmetic. 666 



 
 

 
 

 667 
C.3.13.3 Avoiding the vulnerability or mitigating its effects 668 
 669 

• Do not use a floating-point expression in a Boolean test for equality.  In C, implicit casts may make an 670 
expression floating-point even though the programmer did not expect it. 671 

• Check for an acceptable closeness in value instead of a test for equality when using floats and doubles to 672 
avoid rounding and truncation problems. 673 

• Do not convert a floating-point number to an integer unless the conversion is a specified algorithmic 674 
requirement or is required for a hardware interface. 675 

 676 
C.3.13.4 Implications for standardization 677 
 678 
Future standardization efforts should consider: 679 

• A common warning in Annex I should be added for floating-point expressions being used in a Boolean test 680 
for equality. 681 

 682 
C.3.13.5 Bibliography 683 
 684 
 685 
C.3.14 Enumerator Issues [CCB] 686 
 687 
C.3.14.0 Status and history 688 
  689 
C.3.14.1 Terminology and features 690 
 691 
C.3.14.2 Description of vulnerability 692 
 693 
The enum type in C comprises a set of named integer constant values as in the example: 694 
 695 
 enum abc {A,B,C,D,E,F,G,H} var_abc; 696 
 697 
The values of the contents of abc would be A=0, B=1, C=2, etc.  C allows values to be assigned to the enumerated 698 
type as follows: 699 
 700 
 enum abc {A,B,C=6,D,E,F=7,G,H} var_abc; 701 
 702 
This would result in: 703 
 704 
 A=0, B=1, C=6, D=7, E=8, F=7, G=8, H=9 705 
 706 
yielding both gaps in the sequence of values and repeated values. 707 
 708 
If a poorly constructed enum type is used in loops, problems can arise.  Consider the enumerated type var_abc 709 
defined above used in a loop: 710 
 711 
 int x[8]; 712 
 … 713 

for (i=A; i<=H; i++) 714 
{ 715 
  t = x[i]; 716 
… 717 
} 718 



 
 

 
 

 719 
Because the enumerated type abc has been renumbered and because some numbers have been skipped, the 720 
array will go out of bounds and there is potential for unintentional gaps in the use of x. 721 
 722 
C.3.14.3 Avoiding the vulnerability or mitigating its effects 723 
 724 

• Use enumerated types in the default form starting at 0 and incrementing by 1 for each member if possible.  725 
The use of an enumerated type is not a problem if it is well understood what values are assigned to the 726 
members.  727 

• Use an enumerated type to select from a limited set of choices to make possible the use of tools to detect 728 
omissions of possible values such as in switch statements. 729 

• Use the following format if the need is to start from a value other than 0 and have the rest of the values 730 
be sequential: 731 

 732 
  enum abc {A=5,B,C,D,E,F,G,H} var_abc; 733 

 734 
• Use the following format if gaps are needed or repeated values are desired and so as to be explicit as to 735 

the values in the enum, then: 736 
 737 

  enum abc { 738 
A=0, 739 
B=1, 740 
C=6, 741 
D=7, 742 
E=8, 743 
F=7, 744 
G=8, 745 
H=9 746 

} var_abc; 747 
 748 
C.3.14.4 Implications for standardization 749 
 750 
Future standardization efforts should consider: 751 
None 752 
 753 
C.3.14.5 Bibliography 754 
 755 
 756 
C.3.15 Numeric Conversion Errors [FLC] 757 
 758 
C.3.15.0 Status and history 759 
  760 
C.3.15.1 Terminology and features 761 
 762 
C.3.15.2 Description of vulnerability 763 
 764 
C permits implicit conversions.  That is, C will automatically perform a conversion without an explicit cast.  For 765 
instance, C allows 766 
 767 
 int i; 768 
 float f=1.25; 769 
 i = f; 770 
 771 



 
 

 
 

This implicit conversion will discard the fractional part of f and set i to 1.  If the value of f is greater than 772 
INT_MAX, then the assignment of f to i would be undefined. 773 
 774 
The rules for implicit conversions in C are defined in the C standard.  For instance, integer types smaller than int 775 
are promoted when an operation is performed on them. If all values of Boolean, character or integer type can be 776 
represented as an int, the value of the smaller type is converted to an int; otherwise, it is converted to an 777 
unsigned int. 778 
 779 
Integer promotions are applied as part of the usual arithmetic conversions to certain argument expressions; 780 
operands of the unary +, -, and ~ operators, and operands of the shift operators. The following code fragment 781 
shows the application of integer promotions: 782 
 783 
 char c1, c2; 784 
 c1 = c1 + c2; 785 
 786 
Integer promotions require the promotion of each variable (c1 and c2) to int size. The two int values are added 787 
and the sum is truncated to fit into the char type. 788 
 789 
Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate values. 790 
For example: 791 
 792 
 signed char cresult, c1, c2, c3; 793 
 c1 = 100; 794 
 c2 = 3; 795 
 c3 = 4; 796 
 cresult = c1 * c2 / c3; 797 
 798 
In this example, the value of c1 is multiplied by c2. The product of these values is then divided by the value of c3 799 
(according to operator precedence rules). Assuming that signed char is represented as an 8-bit value, the product 800 
of c1 and c2 (300) cannot be represented. Because of integer promotions, however, c1, c2, and c3 are each 801 
converted to int, and the overall expression is successfully evaluated. The resulting value is truncated and stored 802 
in cresult. Because the final result (75) is in the range of the signed char type, the conversion from int back 803 
to signed char does not result in lost data.  It is possible that the conversion could result in a loss of data 804 
should the data be larger than the storage location. 805 
 806 
A loss of data (truncation) can occur when converting from a signed type to a signed type with less precision. For 807 
example, the following code can result in truncation: 808 
 809 
 signed long int sl = LONG_MAX; 810 
 signed char sc = (signed char)sl; 811 
 812 
The C standard defines rules for integer promotions, integer conversion rank, and the usual arithmetic conversions. 813 
The intent of the rules is to ensure that the conversions result in the same numerical values, and that these values 814 
minimize surprises in the rest of the computation.  815 
 816 
C.3.15.3 Avoiding the vulnerability or mitigating its effects 817 
 818 

• Check the value of a larger type before converting it to a smaller type to see if the value in the larger type 819 
is within the range of the smaller type.  Any conversion from a type with larger precision to a smaller 820 
precision type could potentially result in a loss of data.  In some instances, this loss of precision is desired.  821 
Such cases should be explicitly acknowledged in comments.  For example, the following code could be 822 
used to check whether a conversion from an unsigned integer to an unsigned character will result in a loss 823 
of precision: 824 



 
 

 
 

 825 
  unsigned int i; 826 
  unsigned char c; 827 
  … 828 
  if  (i <= UCHAR_MAX) {  // check against the maximum value for an 829 

object of type unsigned char 830 
    c = (unsigned char) i; 831 
   } 832 
  else 833 
   { 834 
     // handle error condition 835 
    } 836 
  … 837 
 838 
• Close attention should be given to all warning messages issued by the compiler regarding multiple casts. 839 

Making a cast in C explicit will both remove the warning and acknowledge that the change in precision is 840 
on purpose. 841 

 842 
C.3.15.4 Implications for standardization 843 
 844 
Future standardization efforts should consider: 845 
None 846 
 847 
C.3.15.5 Bibliography 848 
 849 
 850 
C.3.16 String Termination [CJM] 851 
 852 
C.3.16.0 Status and history 853 
  854 
C.3.16.1 Terminology and features 855 
 856 
C.3.16.2 Description of vulnerability 857 
 858 
A string in C is composed of a contiguous sequence of characters terminated by and including a null character (a 859 
byte with all bits set to 0).  Therefore strings in C cannot contain the null character except as the terminating 860 
character.  Inserting a null character in a string either through a bug or through malicious action can truncate a 861 
string unexpectedly.  Alternatively, not putting a null character terminator in a string can cause actions such as 862 
string copies to continue well beyond the end of the expected string.  Overflowing a string buffer through the 863 
intentional lack of a null terminating character can be used to expose information or to execute malicious code. 864 
 865 
C.3.16.3 Avoiding the vulnerability or mitigating its effects 866 
 867 

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C 868 
library–- Part 1: Bounds-checking interfaces.  These are alternative string handling library functions to the 869 
existing Standard C Library.  The functions verify that receiving buffers are large enough for the resulting 870 
strings being placed in them and ensure that resulting strings are null terminated.   One implementation of 871 
these functions has been released as the Safe C Library. 872 

 873 
C.3.16.4 Implications for standardization 874 
 875 
Future standardization efforts should consider: 876 

• Adopting the two TRs on safer C library functions, Extensions to the C Library (TR 24731-1: Part I: Bounds-877 



 
 

 
 

checking interfaces and TR 24731-2: Part II: Dynamic allocation functions, that are currently under 878 
consideration by ISO SC22 WG14). 879 

• Modifying or deprecating  many of the C standard library functions that make assumptions about the 880 
occurrence of a string termination character. 881 

• Define a string construct that does not rely on the null termination character. 882 
 883 
C.3.16.5 Bibliography 884 
 885 
 886 
C.3.17 Boundary Beginning Violation [XYX] 887 
 888 
C.3.17.0 Status and history 889 
  890 
C.3.17.1 Terminology and features 891 
 892 
C.3.17.2 Description of vulnerability 893 
 894 
A buffer underwrite condition occurs when an array is indexed outside its lower bounds, or pointer arithmetic 895 
results in an access to storage that occurs before the beginning of the intended object. 896 
 897 
In C, the subscript operator [] is defined such that E1[E2] is identical to (*((E1)+(E2))), so that in either 898 
representation, the value in location (E1+E2) is returned.  Because C does not perform bounds checking on 899 
arrays, the following code: 900 
 901 
    int foo(const int i) { 902 
   int x[] = {0,0,0,0,0,0,0,0,0,0}; 903 
     return x[i]; 904 
  } 905 
 906 
would return whatever is in location x[i] even if, say, i were equal to -5 (assuming that x[-5] was still within 907 
the address space of the program).  This could be sensitive information or even a return address, which if altered 908 
by changing the value of x[-5], could change the program flow. 909 
 910 
C.3.17.3 Avoiding the vulnerability or mitigating its effects 911 
 912 

• Perform range checking before accessing an array since C does not perform bounds checking 913 
automatically.  In the interest of speed and efficiency, range checking only needs to be done when it 914 
cannot be statically shown that an access outside of the array cannot occur. 915 

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C 916 
library–- Part 1: Bounds-checking interfaces.  These are alternative string handling library functions to the 917 
existing Standard C Library.  The functions verify that receiving buffers are large enough for the resulting 918 
strings being placed in them and ensure that resulting strings are null terminated.   One implementation of 919 
these functions has been released as the Safe C Library. 920 

 921 
 922 
C.3.17.4 Implications for standardization 923 
 924 
Future standardization efforts should consider: 925 

• Defining an array type that does automatic bounds checking. 926 
 927 
C.3.17.5 Bibliography 928 
 929 



 
 

 
 

 930 
C.3.18 Unchecked Array Indexing [XYZ] 931 
 932 
C.3.18.0 Status and history 933 
  934 
C.3.18.1 Terminology and features 935 
 936 
C.3.18.2 Description of vulnerability 937 
 938 
 939 
C does not perform bounds checking on arrays, so though arrays may be accessed outside of their bounds, the 940 
value returned is undefined and in some cases may result in a program termination.  For example, in C the 941 
following code is valid, though, for example, if i has the value 10, the result is undefined: 942 
 943 
    int foo(const int i) { 944 

int t; 945 
int x[] = {0,0,0,0,0}; 946 

     t = x[i]; 947 
return t; 948 

  } 949 
 950 
The variable t will likely be assigned whatever is in the location pointed to by x[10] (assuming that x[10] is 951 
still within the address space of the program). 952 
 953 
 954 
C.3.18.3 Avoiding the vulnerability or mitigating its effects 955 
 956 

• Perform range checking before accessing an array since C does not perform bounds checking 957 
automatically.  In the interest of speed and efficiency, range checking only needs to be done when it 958 
cannot be statically shown that an access outside of the array cannot occur. 959 

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C 960 
library–- Part 1: Bounds-checking interfaces.  These are alternative string handling library functions to the 961 
existing Standard C Library.  The functions verify that receiving buffers are large enough for the resulting 962 
strings being placed in them and ensure that resulting strings are null terminated.   One implementation of 963 
these functions has been released as the Safe C Library. 964 

 965 
C.3.18.4 Implications for standardization 966 
 967 
Future standardization efforts should consider: 968 

• Defining an array type that does automatic bounds checking. 969 
 970 
C.3.18.5 Bibliography 971 
 972 
 973 
C.3.19 Unchecked Array Copying [XYW] 974 
 975 
C.3.19.0 Status and history 976 
  977 
C.3.19.1 Terminology and features 978 
 979 
C.3.19.2 Description of vulnerability 980 
 981 



 
 

 
 

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to 982 
another and the amount being copied is greater than is allocated for the destination buffer. 983 
In the interest of ease and efficiency, C library functions such as memcpy(void * restrict s1, 984 
const void * restrict s2, size_t n) and memmove(void *s1, const void *s2, 985 
size_t n) are used to copy the contents from one area to another.  Memcpy() and memmove() simply copy 986 
memory and no checks are made as to whether the destination area is large enough to accommodate the n units 987 
of data being copied.  It is assumed that the calling routine has ensured that adequate space has been provided in 988 
the destination.  Problems can arise when the destination buffer is too small to receive the amount of data being 989 
copied or if the indices being used for either the source or destination are not the intended indices. 990 
 991 
C.3.19.3 Avoiding the vulnerability or mitigating its effects 992 
 993 

• Perform range checking before calling a memory copying function such as memcpy() and memmove().  994 
These functions do not perform bounds checking automatically.  In the interest of speed and efficiency, 995 
range checking only needs to be done when it cannot be statically shown that an access outside of the 996 
array cannot occur. 997 

 998 
C.3.19.4 Implications for standardization 999 
 1000 
Future standardization efforts should consider: 1001 

• Defining functions that contain an extra parameter in memcpy and memmove for the maximum number 1002 
of bytes to copy.  In the past, some have suggested that the size of the destination buffer be used as an 1003 
additional parameter.  Some critics state that this solution is very easy to circumvent by simply repeating 1004 
the parameter that was used for the number of bytes to copy as the parameter for the size of the 1005 
destination buffer.  This analysis and criticism is correct.  What is needed is a failsafe check as to the 1006 
maximum number of bytes to copy.  There are several reasons for creating new functions with an 1007 
additional parameter.  This would make it easier for static analysis to eliminate those cases where the 1008 
memory copy could not be a problem (such as when the maximum number of bytes is demonstrably less 1009 
than the capacity of the receiving buffer).  Manual analysis or more involved static analysis could then be 1010 
used for the remaining situations where the size of the destination buffer may not be sufficient for the 1011 
maximum number of bytes to copy.  This extra parameter may also help in determining which copies could 1012 
take place among objects that overlap.  Such copying is undefined according to the C standard.  It is 1013 
suggested that safer versions of functions that include a restriction max_n on the number of bytes n to 1014 
copy (e.g. void *memncpy(void * restrict s1,const void * restrict s2,size_t 1015 
n), const size_t max_n) be added to the standard in addition to retaining the current 1016 
corresponding functions (e.g. memcpy(void * restrict s1,const void * restrict 1017 
s2,size_t n))).  The additional parameter would be consistent with the copying function pairs that 1018 
have already been created such as strcpy/strncpy and strcat/strncat.  This would allow a safer 1019 
version of memory copying functions for those applications that want to use them in to facilitate both 1020 
safer and more secure code and more efficient and accurate static code reviews. 1021 

 1022 
C.3.19.5 Bibliography 1023 
 1024 
 1025 
C.3.20 Buffer Overflow [XZB] 1026 
 1027 
C.3.20.0 Status and history 1028 
  1029 
C.3.20.1 Terminology and features 1030 
 1031 
C.3.20.2 Description of vulnerability 1032 
 1033 



 
 

 
 

C is a very flexible and efficient language due to its rather lax restrictions on memory manipulations.  Writing 1034 
outside of a buffer can occur very easily in C due to a miscalculation of the size of the buffer, a mistake in a loop 1035 
termination condition or any of dozens of other ways.  Egregious violations of a buffer size are often found during 1036 
testing as crashes of the program occur.  However, more subtle or input dependent overflows may go undetected in 1037 
testing and later be exploited by attackers. 1038 
 1039 
As with other languages, it is very easy to overflow a buffer in C.  The main difference is that C does not prevent or 1040 
detect the occurrence automatically as is done in many other languages.  For instance, consider: 1041 
 1042 
    int foo(const int n) { 1043 
  char buf[10]; 1044 
  for (i=1; i++; i<=n) 1045 
    buf[i] = i + 0x40; 1046 
     return buf[n]; 1047 
  } 1048 
 1049 
 1050 
A value of 10 for n will write 0x50 to buf[10] which is one beyond the end of the array buf which starts at 1051 
buf[0] and ends at buf[9].  Overflows where the amount of the overflow and the content can be manipulated 1052 
by an attacker can cause the program to crash or execute logic that gives the attacker host access.  For instance, the 1053 
gets() function has been deprecated since there isn’t a way stop a user from typing in a longer string than 1054 
expected and overrunning a buffer.  Consider: 1055 
 1056 

int main() 1057 
{ 1058 
  char buf[500]; 1059 
  printf "Type something.\"); 1060 
  gets(buf); 1061 
  printf "You typed: %s\", buf); 1062 
 1063 
  return 0; 1064 
} 1065 

 1066 
Typing in a string longer than 499 characters (1 less than the buffer length to account for the string null termination 1067 
character) will cause the buffer to overflow.  A well crafted string used as input to this program can cause execution 1068 
of an attacker’s malicious code. 1069 
 1070 
 1071 
C.3.20.3 Avoiding the vulnerability or mitigating its effects 1072 
 1073 

• Validate all input values. 1074 
• Check any array index before use if there is a possibility the value could be outside the bounds of the 1075 

array.  1076 
• Use length restrictive functions such as strncpy()instead of strcpy(). 1077 
• Use stack guarding add-ons to prevent overflows of stack buffers. 1078 
• Do not use the deprecated functions or other language features such as gets(). 1079 
• Be aware that the use of all of these preventive measures may still not be able to stop all buffer overflows 1080 

from happening.  However, the use of them can make it much rarer for a buffer overflow to occur and 1081 
much harder to exploit it. 1082 

• Use alternative functions as specified in ISO/IEC TR 24731-1:2007.  This TR provides alternative 1083 
functions for the C Library (as defined in ISO/IEC 9899:1999) that promote safer, more secure 1084 
programming. The functions verify that output buffers are large enough for the intended result 1085 
and return a failure indicator if they are not. Optionally, failing functions call a“"runtime-constraint 1086 



 
 

 
 

handle"” to report the error. Data is never written past the end of an array. All string results are 1087 
null terminated. In addition, the functions in ISO/IEC TR 24731-1:2007 are re-entrant: they never 1088 
return pointers to static objects owned by the function.  ISO/IEC TR 24731-1:2007 also contains 1089 
functions that address insecurities with the C input-output facilities. 1090 

 1091 
C.3.20.4 Implications for standardization 1092 
 1093 
Future standardization efforts should consider: 1094 

• Deprecating less safe functions such as strcpy() and strcat() where a more secure alternative is 1095 
available. 1096 

• Defining safer and more secure replacement functions such as memncpy() and memncat() to 1097 
complement the memcpy() and memcat() functions (see in Implications for standardization.XYW). 1098 

• Adopting the two TRs on safer C library functions, Extensions to the C Library (TR 24731-1: Part I: Bounds-1099 
checking interfaces and TR 24731-2: Part II: Dynamic allocation functions, that are currently under 1100 
consideration by ISO SC22 WG14. 1101 

 1102 
C.3.20.5 Bibliography 1103 
 1104 
 1105 
C.3.21 Pointer Casting and Pointer Type Changes [HFC] 1106 
 1107 
C.3.21.0 Status and history 1108 
  1109 
C.3.21.1 Terminology and features 1110 
 1111 
C.3.21.2 Description of vulnerability 1112 
 1113 
C allows the value of a pointer to and from another data type.  These conversions can cause unexpected changes to 1114 
pointer values. 1115 
 1116 
Pointers in C refer to a specific type, such as integer.  If sizeof(int) is 4 bytes, and ptr is a pointer to integers 1117 
that contains the value 0x5000, then ptr++ would make ptr equal to 0x5004.  However, if ptr were a pointer to 1118 
char, then ptr++ would make ptr equal to 0x5001.  It is the difference due to data sizes coupled with conversions 1119 
between pointer data types that cause unexpected results and potential vulnerabilities.  Due to arithmetic 1120 
operations, pointers may not maintain correct memory alignment or may operate upon the wrong memory 1121 
addresses.  1122 
 1123 
C.3.21.3 Avoiding the vulnerability or mitigating its effects 1124 
 1125 

• Maintain the same type to avoid errors introduced through conversions. 1126 
• Heed compiler warnings that are issued for pointer conversion instances.  The decision may be made to 1127 

avoid all conversions so any warnings must be addressed.  Note that casting into and out of “void *” 1128 
pointers will most likely not generate a compiler warning as this is valid in both C99 and C90. 1129 

 1130 
C.3.21.4 Implications for standardization 1131 
 1132 
Future standardization efforts should consider: 1133 
None 1134 
 1135 
C.3.21.5 Bibliography 1136 
 1137 
 1138 



 
 

 
 

C.3.22 Pointer Arithmetic [RVG] 1139 
 1140 
C.3.22.0 Status and history 1141 
  1142 
C.3.22.1 Terminology and features 1143 
 1144 
C.3.22.2 Description of vulnerability 1145 
 1146 
When performing pointer arithmetic in C, the size of the value to add to a pointer is automatically scaled to the size 1147 
of the type of the pointed-to object.  For instance, when adding a value to the byte address of a 4-byte integer, the 1148 
value is scaled by a factor 4 and then added to the pointer. The effect of this scaling is that if a pointer P points to 1149 
the i-th element of an array object, then (P) + N will point to the i+n-th element of the array.  Failing to 1150 
understand how pointer arithmetic works can lead to miscalculations that result in serious errors, such as buffer 1151 
overflows. 1152 
 1153 
The following example will illustrate arithmetic in C involving a pointer and how the operation is done relative to 1154 
the size of the pointer's target.  Consider the following code snippet: 1155 
 1156 
 int buf[5]; 1157 
 int *buf_ptr = buf; 1158 
  1159 
where the address of buf is 0x1234.  Adding 1 to buf_ptr will result in buf_ptr being equal to 0x1238 on a 1160 
host where an int is 4 bytes.  Buf_ptr will then contain the address of buf[1].  Not realizing that address 1161 
operations will be in terms of the size of the object being pointed to can lead to address miscalculations and 1162 
undefined behaviour. 1163 
 1164 
C.3.22.3 Avoiding the vulnerability or mitigating its effects 1165 
 1166 

• Consider an outright ban on pointer arithmetic due to the error prone nature of pointer arithmetic. 1167 
• Avoid the common pitfalls of pointer arithmetic.  For instance, in checking the end of an array, the 1168 

following method can be used: 1169 
 1170 

int buf[INTBUFSIZE]; 1171 
int *buf_ptr = buf; 1172 
 1173 
while (havedata() && (buf_ptr < &buf[INTBUFSIZE])) /* buf[INTBUFSIZE] 1174 
       is the address of the element 1175 
       following the buf array */ 1176 
{ 1177 
  *buf_ptr++ = parseint(getdata()); 1178 
} 1179 

 1180 
C.3.22.4 Implications for standardization in  1181 
 1182 
Future standardization efforts should consider: 1183 

• Restrictions on pointer arithmetic that could eliminate common pitfalls.  Pointer arithmetic is error prone 1184 
and the flexibility that it offers is very useful, but some of the flexibility is simply a shortcut that if 1185 
restricted could lessen the chance of a pointer arithmetic based error.  1186 

 1187 
C.3.22.5 Bibliography 1188 
 1189 
 1190 



 
 

 
 

C.3.23 Null Pointer Dereference [XYH] 1191 
 1192 
C.3.23.0 Status and history 1193 
  1194 
C.3.23.1 Terminology and features 1195 
 1196 
C.3.23.2 Description of vulnerability 1197 
 1198 
C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and 1199 
realloc().  Each will return the address to the allocated memory.  Due to a variety of situations, the memory 1200 
allocation may not occur as expected and a null pointer will be returned.  Other operations or faults in logic can 1201 
result in a memory pointer being set to null.  Using the null pointer as though it pointed to a valid memory location 1202 
can cause a segmentation fault and other unanticipated situations. 1203 
 1204 
Space for 10000 integers can be dynamically allocated in C in the following way: 1205 
 1206 
  int *ptr = malloc(10000*sizeof(int));  /*allocate space for 10000 ints*/ 1207 
 1208 
Malloc() will return the address of the memory allocation or a null pointer if insufficient memory is available for 1209 
the allocation.  It is good practice after the attempted allocation to check whether the memory has been allocated 1210 
via an if test against NULL: 1211 
 1212 
 if (ptr != NULL) /* check to see that the memory could be allocated */ 1213 
 1214 
Memory allocations usually succeed, so neglecting this test and using the memory will usually work which is why 1215 
neglecting the null test will frequently go unnoticed.  An attacker can intentionally create a situation where the 1216 
memory allocation will fail leading to a segmentation fault.  1217 
 1218 
Faults in logic can cause a code path that will use a memory pointer that was not dynamically allocated or after 1219 
memory has been deallocated and the pointer was set to null as good practice would indicate. 1220 
 1221 
C.3.23.3 Avoiding the vulnerability or mitigating its effects 1222 
 1223 

• Check whether a pointer is null before dereferencing it.  As this can be overly extreme in many cases (such 1224 
as in a for loop that performs operations on each element of a large segment of memory), judicious 1225 
checking of the value of the pointer at key strategic points in the code is recommended. 1226 

 1227 
C.3.23.4 Implications for standardization 1228 
 1229 
Future standardization efforts should consider: 1230 
None 1231 
 1232 
C.3.23.5 Bibliography 1233 
 1234 
 1235 
C.3.24 Dangling Reference to Heap [XYK] 1236 
 1237 
C.3.24.0 Status and history 1238 
  1239 
C.3.24.1 Terminology and features 1240 
 1241 
C.3.24.2 Description of vulnerability 1242 



 
 

 
 

 1243 
C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and 1244 
realloc().  C allows a considerable amount of freedom in accessing the dynamic memory.  Pointers to the 1245 
dynamic memory can be created to perform operations on the memory.  Once the memory is no longer needed, it 1246 
can be released through the use of free().  However, freeing the memory does not prevent the use of the 1247 
pointers to the memory and issues can arise if operations are performed after memory has been freed. 1248 
 1249 
Consider the following segment of code: 1250 
 1251 
   int foo() { 1252 
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/ 1253 
 if (ptr != NULL) /* check to see that the memory could be allocated */ 1254 
  { 1255 
  …   /* perform some operations on the dynamic memory */ 1256 
  free (ptr); /* memory is no longer needed, so free it */ 1257 
  …  /* program continues performing other operations */ 1258 
  ptr[0] = 10;/* ERROR – memory is being used after it has been 1259 
released */ 1260 
  … 1261 
  } 1262 
    … 1263 
 } 1264 
 1265 
The use of memory in C after it has been freed is undefined.  Depending on the execution path taken in the 1266 
program, freed memory may still be free or may have been allocated via another malloc() or other dynamic 1267 
memory allocation.  If the memory that is used is still free, use of the memory may be unnoticed.  However, if the 1268 
memory has been reallocated, altering of the data contained in the memory can result in data corruption.  1269 
Determining that a dangling memory reference is the cause of a problem and locating it can be very difficult. 1270 
 1271 
Setting and using another pointer to the same section of dynamically allocated memory can also lead to undefined 1272 
behaviour.  Consider the following section of code: 1273 
 1274 
   int foo() { 1275 
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/ 1276 
 if (ptr != NULL) /* check to see that the memory could be allocated */ 1277 
  { 1278 

  int ptr2 = &ptr[10]; /* set ptr2 to point to the 10th element of the 1279 
allocated memory */ 1280 

…   /* perform some operations on the dynamic memory */ 1281 
   free (ptr); /* memory is no longer needed, so free it */ 1282 
   ptr = NULL; /* set ptr to NULL to prevent ptr from being used again */ 1283 
  …   /* program continues performing other operations */ 1284 
 ptr2[0] = 10; /* ERROR – memory is being used after it has been released 1285 
via ptr2*/ 1286 
  … 1287 
  } 1288 
 return (0); 1289 
   } 1290 
 1291 
Dynamic memory was allocated via a malloc and then later in the code, ptr2 was used to point to an address in 1292 
the dynamically allocated memory.  After the memory was freed using free(ptr) and the good practice of 1293 
setting ptr to NULL was followed to avoid a dangling reference by ptr later in the code, a dangling reference still 1294 
existed using ptr2. 1295 
 1296 



 
 

 
 

C.3.24.3 Avoiding the vulnerability or mitigating its effects 1297 
 1298 

• Set a freed pointer to null immediately after a free() call, as illustrated in the following code: 1299 
 free (ptr); 1300 

  ptr = NULL; 1301 
• Do not create and use additional pointers to dynamically allocated memory. 1302 
• Only reference dynamically allocated memory using the pointer that was used to allocate the memory. 1303 

  1304 
C.3.24.4 Implications for standardization 1305 
 1306 
Future standardization efforts should consider: 1307 

• Modifying the library free(void *ptr) so that it sets ptr to NULL to prevent reuse of ptr.  1308 
 1309 
C.3.24.5 Bibliography 1310 
 1311 
 1312 
C.3.25 Templates and Generics [SYM] 1313 
 1314 
Does not apply to C. 1315 
 1316 
C.3.25.0 Status and history 1317 
  1318 
C.3.25.1 Terminology and features 1319 
 1320 
C.3.25.2 Description of vulnerability 1321 
 1322 
C.3.25.3 Avoiding the vulnerability or mitigating its effects 1323 
 1324 
C.3.25.4 Implications for standardization 1325 
 1326 
Future standardization efforts should consider: 1327 
None 1328 
 1329 
C.3.25.5 Bibliography 1330 
 1331 
 1332 
C.3.26 Inheritance [RIP] 1333 
 1334 
Does not apply to C. 1335 
 1336 
C.3.26.0 Status and history 1337 
  1338 
C.3.26.1 Terminology and features 1339 
 1340 
C.3.26.2 Description of vulnerability 1341 
 1342 
C.3.26.3 Avoiding the vulnerability or mitigating its effects 1343 
 1344 
C.3.26.4 Implications for standardization 1345 
 1346 
Future standardization efforts should consider: 1347 



 
 

 
 

None 1348 
 1349 
C.3.26.5 Bibliography 1350 
 1351 
 1352 
C.3.27 Initialization of Variables [LAV] 1353 
 1354 
C.3.27.0 Status and history 1355 
  1356 
C.3.27.1 Terminology and features 1357 
 1358 
C.3.27.2 Description of vulnerability 1359 
 1360 
Local, automatic variables can assume unexpected values if they are used before they are initialized.  C99 specifies, 1361 
"If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate" [ISO/IEC 1362 
9899:1999].  In the common case, on architectures that make use of a program stack, this value defaults to 1363 
whichever values are currently stored in stack memory.  While uninitialized memory often contains zeros, this is not 1364 
guaranteed.  Consequently, uninitialized memory can cause a program to behave in an unpredictable or unplanned 1365 
manner and may provide an avenue for attack. 1366 
 1367 
Assuming that an uninitialized variable is 0 can lead to unpredictable program behaviour when the variable is 1368 
initialized to a value other than 0. 1369 
 1370 
C.3.27.3 Avoiding the vulnerability or mitigating its effects 1371 
 1372 

• Heed compiler warnings about uninitialized variables.  These warnings should be resolved as 1373 
recommended to achieve a clean compile at high warning levels. 1374 

• Do not use memory allocated by functions such as malloc() before the memory is initialized as the 1375 
memory contents are indeterminate. 1376 

 1377 
C.3.27.4 Implications for standardization 1378 
 1379 
Future standardization efforts should consider: 1380 
None 1381 
 1382 
C.3.27.5 Bibliography 1383 
 1384 
 1385 
C.3.28 Wrap-around Error [XYY] 1386 
 1387 
C.3.28.0 Status and history 1388 
  1389 
C.3.28.1 Terminology and features 1390 
 1391 
C.3.28.2 Description of vulnerability 1392 
 1393 
Given the limited size of any computer data type, continuously adding one to the data type eventually will cause 1394 
the value to go from a the maximum possible value to a very small value.  C permits this to happen without any 1395 
detection or notification mechanism. 1396 
 1397 
C is often used for bit manipulation.  Part of this is due to the capabilities in C to mask bits and shift them.  Another 1398 



 
 

 
 

part is due to the relative closeness C has to assembly instructions.  Manipulating bits on a signed value can 1399 
inadvertently change the sign bit resulting in a number potentially going from a large positive value to a large 1400 
negative value.  1401 
 1402 
For example, consider the following code for a short int containing 16 bits: 1403 
 1404 
    int foo(short int i) { 1405 
   i++; 1406 
     return i; 1407 
  } 1408 
 1409 
Calling foo with the value of 65535 would return -65536.  Manipulating a value in this way can result in 1410 
unexpected results such as overflowing a buffer.  1411 
 1412 
In C, bit shifting by a value that is greater than the size of the data type or by a negative number is undefined.  The 1413 
following code, where a short int is 16 bits, would be undefined when j is greater than or equal to 16 or 1414 
negative: 1415 
 1416 
    int foo(short int i, const short int j) { 1417 
     return i>>j; 1418 
  } 1419 
 1420 
C.3.28.3 Avoiding the vulnerability or mitigating its effects 1421 
 1422 

• Be aware that any of the following operators have the potential to wrap in C: 1423 
 1424 

  a + b  a – b  a * b  a++  a-- a += b 1425 
  a -= b a *= b a << b a >> b -a 1426 

 1427 
• Use defensive programming techniques to check whether an operation will overflow or underflow the 1428 

receiving data type.  These techniques can be omitted if it can be shown at compile time that overflow or 1429 
underflow is not possible. 1430 

• Only conduct bit manipulations on unsigned data types.  The number of bits to be shifted by a shift 1431 
operator should lie between 1 and (n-1), where n is the size of the data type. 1432 

 1433 
C.3.28.4 Implications for standardization 1434 
 1435 
Future standardization efforts should consider: 1436 
None 1437 
 1438 
C.3.28.5 Bibliography 1439 
 1440 
 1441 
C.3.29 Sign Extension Error [XZI] 1442 
 1443 
C.3.29.0 Status and history 1444 
  1445 
C.3.29.1 Terminology and features 1446 
 1447 
C.3.29.2 Description of vulnerability 1448 
 1449 
C contains a variety of integer sizes: short, int, long int and long long int.    Converting from a smaller 1450 



 
 

 
 

to a larger size signed integer will cause the sign bit to extend which could lead to unexpected results. 1451 
 1452 
The number of bits in a short, int, long int and long long int have been left vague by the C standard 1453 
in order to avoid constraints on the hardware architecture.  Therefore it is quite possible that the a short, int, 1454 
long int and long long int could be contain the identical number of bits.  On an architecture where all are 1455 
the same size, there would not be a conversion issue. 1456 
 1457 
When going from a smaller signed integer data type to a larger one, all of the lower order bits are copied to the 1458 
larger data type.  In order to transfer the signedness of the smaller integer to the larger one in a 2’s complement 1459 
architecture, the sign bit must be extended.  That is, if the sign bit of the smaller data type is 0, then the additional 1460 
bits are set to 0.  If the sign bit is 1, the additional bits are set to 1.  Not modifying the bits (i.e. extending the sign 1461 
bit) in this manner can cause a negative number to become a relatively large positive number upon conversion. 1462 
 1463 
C.3.29.3 Avoiding the vulnerability or mitigating its effects 1464 
 1465 

• Use appropriate conversion routines when converting from one data type to another.  For example, do not 1466 
use an unsigned conversion routine to convert a signed integer type to a larger integer data type as doing 1467 
so can yield unexpected results. 1468 

 1469 
C.3.29.4 Implications for standardization 1470 
 1471 
Future standardization efforts should consider: 1472 
None 1473 
 1474 
C.3.29.5 Bibliography 1475 
 1476 
 1477 
C.3.30 Operator Precedence/Order of Evaluation [JCW] 1478 
 1479 
C.3.30.0 Status and history 1480 
  1481 
C.3.30.1 Terminology and features 1482 
 1483 
C.3.30.2 Description of vulnerability 1484 
 1485 
The order in which an expression is evaluated can drastically alter the result of the expression.  The order of 1486 
evaluation of the operands in C is clearly defined, but misinterpretations by programmers can lead to unexpected 1487 
results. 1488 
 1489 
Consider the following: 1490 
 1491 
    int foo(short int a, short int b) { 1492 
     if (a | 0x7 = b) 1493 
  ... 1494 
  } 1495 
 1496 
designed to mask off and test the lower three bits of “a” for equality to “b”.  However, due to the precedence rules 1497 
in C, the effect of this expression is to perform the “0x7 == b” and then bitwise OR that with “a” which may or 1498 
may not be the expected answer. 1499 
 1500 
C.3.30.3 Avoiding the vulnerability or mitigating its effects 1501 
 1502 



 
 

 
 

• Use parentheses generously to avoid any uncertainty or lack of portability in the order of evaluation of an 1503 
expression.  If parenthesis were used in the previous example, as in: 1504 

 1505 
    int foo(short int a, short int b) { 1506 
     if ((a | 0x7) = b) 1507 
  ... 1508 
  } 1509 
 1510 

the order of the evaluation would be clear. 1511 
 1512 
 1513 
C.3.30.4 Implications for standardization 1514 
 1515 
Future standardization efforts should consider: 1516 

• Creating a few standardized precedence orders.  Standardizing on a few precedence orders will help to 1517 
eliminate the confusing intricacies that exist between languages.  This would not affect current languages 1518 
as altering precedence orders in existing languages is too onerous.  However, this would set a basis for the 1519 
future as new languages are created and adopted.  Stating that a language uses “ISO precedence order A” 1520 
would be very useful rather than having to spell out the entire precedence order that differs in a 1521 
conceptually minor way from some other languages, but in a major way when programmers attempt to 1522 
switch between languages. 1523 

 1524 
C.3.30.5 Bibliography 1525 
 1526 
 1527 
C.3.31 Side-effects and Order of Evaluation [SAM] 1528 
 1529 
C.3.31.0 Status and history 1530 
  1531 
C.3.31.1 Terminology and features 1532 
 1533 
C.3.31.2 Description of vulnerability 1534 
 1535 
C allows expressions to have side effects.  If two or more side effects modify the same expression as in: 1536 
 1537 

int v[10]; 1538 
int i; 1539 
/* … */ 1540 
i = v[i++]; 1541 

 1542 
the behaviour is undefined and this can lead to unexpected results.  Either the “i++” is performed first or the 1543 
assignment “i=v[i]” is performed first.  Because the order of evaluation can have drastic effects on the 1544 
functionality of the code, this can greatly impact portability. 1545 
There are several situations in C where the order of evaluation of subexpressions or the order in which side effects 1546 
take place is unspecified including: 1547 

• The order in which the arguments to a function are evaluated (C99, Section 6.5.2.2,"Function calls"). 1548 
• The order of evaluation of the operands in an assignment statement (C99, Section 6.5.16,"Assignment 1549 

operators"). 1550 
• The order in which any side effects occur among the initialization list expressions is unspecified. In 1551 

particular, the evaluation order need not be the same as the order of subobject initialization (C99, Section 1552 
6.7.8, “Initialization"). 1553 

Because these are unspecified behaviours, testing may give the false impression that the code is working and 1554 



 
 

 
 

portable, when it could just be that the values provided cause evaluations to be performed in a particular order 1555 
that causes side effects to occur as expected. 1556 
 1557 
C.3.31.3 Avoiding the vulnerability or mitigating its effects 1558 
 1559 

• Expressions should be written so that the same effects will occur under any order of evaluation that the C 1560 
standard permits since side effects can be dependent on an implementation specific order of evaluation. 1561 

 1562 
C.3.31.4 Implications for standardization 1563 
 1564 
Future standardization efforts should consider: 1565 
None 1566 
 1567 
C.3.31.5 Bibliography 1568 
 1569 
 1570 
C.3.32 Likely Incorrect Expression [KOA] 1571 
 1572 
C.3.32.0 Status and history 1573 
  1574 
C.3.32.1 Terminology and features 1575 
 1576 
C.3.32.2 Description of vulnerability 1577 
 1578 
C has several instances of operators which are similar in structure, but vastly different in meaning.  This is so 1579 
common that the C example of confusing the Boolean operator “==” with the assignment “=” is frequently cited as 1580 
an example among programming languages.  Using an expression that is technically correct, but which may just be 1581 
a null statement can lead to unexpected results. 1582 
 1583 
C is also provides a lot of freedom in constructing statements.  This freedom, if misused, can result in unexpected 1584 
results and potential vulnerabilities. 1585 
 1586 
The flexibility of C can obscure the intent of a programmer.  Consider: 1587 
 1588 

int x,y; 1589 
/* … */ 1590 
if (x = y) 1591 
 { 1592 
  /* … */ 1593 
 } 1594 

 1595 
A fair amount of analysis may need to be done to determine whether the programmer intended to do an 1596 
assignment as part of the if statement (perfectly valid in C) or whether the programmer made the common 1597 
mistake of using an “=” instead of a “==”.  In order to prevent this confusion, it is suggested that any assignments 1598 
in contexts that are easily misunderstood be moved outside of the Boolean expression.  This would change the 1599 
example code to: 1600 
 1601 

int x,y; 1602 
/* … */ 1603 
x = y; 1604 

 if (x == 0) 1605 
 { 1606 
  /* … */ 1607 



 
 

 
 

 } 1608 
 1609 
This would clearly state what the programmer meant and that the assignment of y to x was intended. 1610 
 1611 
Programmers can easily get in the habit of inserting the “;” statement terminator at the end of statements.  1612 
However, inadvertently doing this can drastically alter the meaning of code, even though the code is valid as in the 1613 
following example: 1614 
 1615 
 int a,b; 1616 
 /* … */ 1617 
 if (a == b);  /* the semi-colon will make this a null statement */ 1618 
 { 1619 
  /* … */ 1620 
 } 1621 
 1622 
Because of the misplaced semi-colon, the code block following the if will always be executed.  In this case, it is 1623 
extremely likely that the programmer did not intend to put the semi-colon there. 1624 
 1625 
C.3.32.3 Avoiding the vulnerability or mitigating its effects 1626 
 1627 

• Simplify statements with interspersed comments to aid in accurately programming functionality and help 1628 
future maintainers understand the intent and nuances of the code.   The flexibility of C permits a 1629 
programmer to create extremely complex expressions.  For example, the following sub-expression, though 1630 
valid, would be a nightmare to understand: 1631 

 1632 
 int d,h,i,k; 1633 
 /* … */ 1634 
 (h+=*d++-h)&&(‘'’'^(h-’'’'))&&(i<<=4 & i||!++i--&&(h--||(k|=i))- 1635 
  i/=2); 1636 
 1637 
• Do not embed assignments inside of expressions.  Assignments embedded within other statements can be 1638 

potentially problematic.  Each of the following would be clearer and have less potential for problems if the 1639 
embedded assignments were conducted outside of the expressions: 1640 

 1641 
 int a,b,c,d; 1642 
 /* … */ 1643 
 if ((a == b) || (c = (d-1))) /* the assignment to c may not occur */ 1644 
     /* if a is equal to b */ 1645 

 1646 
or: 1647 

 1648 
  int a,b,c; 1649 
  /* … */ 1650 
  foo (a=b, c); 1651 

 1652 
Each is a valid C statement, but each may have unintended results. 1653 

• Null statements should have a source line of their own.  This, combined with enforcement by static 1654 
analysis, would make clearer the intention that the statement was meant to be a null statement. 1655 

 1656 
C.3.32.4 Implications for standardization 1657 
 1658 
Future standardization efforts should consider: 1659 
None 1660 
 1661 



 
 

 
 

C.3.32.5 Bibliography 1662 
 1663 
 1664 
C.3.33 Dead and Deactivated Code [XYQ] 1665 
 1666 
C.3.33.0 Status and history 1667 
  1668 
C.3.33.1 Terminology and features 1669 
 1670 
C.3.33.2 Description of vulnerability 1671 
 1672 
As with any programming language that contains branching statements, C programs can potentially contain dead 1673 
code.  It is of concern primarily since dead code may reveal a logic flaw or an unintentional mistake on the part of 1674 
the programmer.  Sometimes statements can be inserted in C programs as defensive programming such as adding a 1675 
default case to a switch statement even though the expectation is that the default can never be reached – until 1676 
through some twist of logic or through modifications to the code the notifying error message reveals the surprising 1677 
event.  These types of defensive statements may be able to be shown to be computationally impossible and thus 1678 
are dead code.  Those are not the focus.  The focus is on those statements which are not defensive and which are 1679 
unreachable.  It is impossible to identify all such cases and therefore only those which are blatant and that indicate 1680 
deeper issues of flawed logic may be able to be identified and removed. 1681 
 1682 
C uses some operators that are easily confused with other operators.  For instance, the common mistake of using 1683 
an assignment operator in a Boolean test as in: 1684 
 1685 
 int a,b; 1686 
 /* … */ 1687 

if (a = b) 1688 
 … 1689 
 1690 
can cause portions of code to become dead code since unless b can contain the value 0, the else portion of the 1691 
if statement cannot be reached. 1692 
 1693 
C.3.33.3 Avoiding the vulnerability or mitigating its effects 1694 
 1695 

• Eliminate dead code to the extent possible from C programs. 1696 
• Use compilers and analysis tools to assist in identifying unreachable code. 1697 
• Use “//” comment syntax instead of “/*…*/” comment syntax to avoid the inadvertent commenting out 1698 

of sections of code. 1699 
• Delete deactivated code from programs due to the possibility of accidentally activating it. 1700 

 1701 
C.3.33.4 Implications for standardization 1702 
 1703 
Future standardization efforts should consider: 1704 
None 1705 
 1706 
C.3.33.5 Bibliography 1707 
 1708 
 1709 
C.3.34 Switch Statements and Static Analysis [CLL] 1710 
 1711 
C.3.34.0 Status and history 1712 
  1713 



 
 

 
 

C.3.34.1 Terminology and features 1714 
 1715 
C.3.34.2 Description of vulnerability 1716 
 1717 
Because of the way in which the switch-case statement in C is structured, it is relatively easy to unintentionally omit 1718 
the break statement between cases causing unintended execution of statements for some cases. 1719 
 1720 
C contains a switch statement of the form: 1721 
 1722 
 char abc; 1723 
 /* … */ 1724 
 switch (abc) 1725 
 { 1726 
    case 1: 1727 

sval = “a”; 1728 
  break; 1729 
    case 2: 1730 
  sval = “b”; 1731 
  break; 1732 
    case 3: 1733 
  sval = “c”; 1734 
  break; 1735 
    default: 1736 
  printf (“Invalid selection\n”); 1737 
 1738 
If there isn’t a default case and the switched expression doesn’t match any of the cases, then control simply shifts 1739 
to the next statement after the switch statement block.  Unintentionally omitting a break statement between two 1740 
cases will cause subsequent cases to be executed until a break or the end of the switch block is reached.  This 1741 
could cause unexpected results. 1742 
 1743 
C.3.34.3 Avoiding the vulnerability or mitigating its effects 1744 
 1745 

• Only a direct fall through should be allowed from one case to another.  That is, every nonempty case 1746 
statement should be terminated with a break statement as illustrated in the following example: 1747 

 1748 
int i; 1749 
/* … */ 1750 
switch (i) 1751 

  { 1752 
    case 1: 1753 
    case 2: 1754 
     i++;  /*  fall through from case 1 to 2 is permitted */ 1755 
  break; 1756 
    case 3: 1757 
  j++; 1758 

case 4: /* fall through from case 3 to 4 is not permitted */ 1759 
/* as it is not a direct fall through due to the */ 1760 
/* j++ statement */ 1761 

   } 1762 
• All switch statements should have a default value if only to indicate that there could exist a case that 1763 

was unanticipated and thought impossible by the developers.  The only exception is for switches on an 1764 
enumerated type where all possible values can be exhausted.  Even in the case of enumerated types, it is 1765 
suggested that a default be inserted in anticipation of possible code changes to the enumerated type. 1766 

 1767 



 
 

 
 

C.3.34.4 Implications for standardization 1768 
 1769 
Future standardization efforts should consider: 1770 

• Defining a “fallthru” construct that will explicitly bind multiple switch cases together and eliminate the 1771 
need for the break statement.  The default would be for a case to break instead of falling through to the 1772 
next case.  Granted this is a major shift in concept, but if it could be accomplished, less unintentional 1773 
errors would occur. 1774 

  1775 
C.3.34.5 Bibliography 1776 
 1777 
 1778 
C.3.35 Demarcation of Control Flow [EOJ] 1779 
 1780 
C.3.35.0 Status and history 1781 
  1782 
C.3.35.1 Terminology and features 1783 
 1784 
A block-structured language is a language that has a syntax for enclosing structures between bracketed keywords, 1785 
such as an if statement bracketed by if and endif, as in FORTRAN, or a code section bracketed by BEGIN and 1786 
END, as in PL/1. 1787 
 1788 
A comb-structured language is a language that has an ordered set of keywords to define separate sections within a 1789 
block, analogous to the multiple teeth or prongs in a comb separating sections of the comb. For example, in Ada, a 1790 
block is a 4-pronged comb with keywords declare, begin, exception, end, and the if statement in Ada is a 1791 
4-pronged comb with keywords if, then, else, end if. 1792 
 1793 
C.3.35.2 Description of vulnerability 1794 
 1795 
C is a block-structured language, while languages such as Ada and Pascal are comb-structured languages.  1796 
Therefore, it may not be readily apparent which statements are part of a loop construct or an if statement. 1797 
 1798 
Consider the following section of code: 1799 
 1800 
    int foo(int a, const int *b) { 1801 
  int i=0; 1802 
   1803 
  /* … */ 1804 

a = 0; 1805 
  for (i=0; i<10; i++); 1806 
    { 1807 
      a = a + b[i]; 1808 
    } 1809 
   1810 
  } 1811 
 1812 
At first it may appear that a will be a sum of the numbers b[0] to b[9].  However, even though the code is 1813 
structured so that the “a = a + b[i]” code is structured to appear within the for loop, the “;” at the end of 1814 
the for statement causes the loop to be on a null statement (the “;”) and the “a = a + b[i];” statement to 1815 
only be executed once.  In this case, this mistake may be readily apparent during development or testing.  More 1816 
subtle cases may not be as readily apparent leading to unexpected results. 1817 
 1818 
If statements in C are also susceptible to control flow problems since there isn’t a requirement in C for there to be 1819 
an else statement for every if statement.  An else statement in C always belong to the most recent if 1820 



 
 

 
 

statement without an else.  However, the situation could occur where it is not readily apparent to which if 1821 
statement an else due to the way the code is indented or aligned. 1822 
 1823 
C.3.35.3 Avoiding the vulnerability or mitigating its effects 1824 
 1825 

• Enclose the bodies of if, else, while, for, etc. in braces.  This will reduce confusion and potential 1826 
problems when modifying the software.  For example: 1827 

 1828 
int a,b,i; 1829 
 1830 
/* … */ 1831 
 1832 
if (i = 10) 1833 

  { 1834 
    a = 5;  /* this is correct */ 1835 
    b = 10; 1836 
   } 1837 
 else 1838 
     a = 10;  /* this is incorrect -- the assignments to b */  1839 
    /* were added later and were expected to */ 1840 
     b = 5;  /* be part of the if and else and indented */ 1841 
    /* as such, but did not become part of the else*/ 1842 
 1843 

• Use a final else statement or a comment stating why the final else isn’t necessary in all if and else 1844 
if statements. 1845 

 1846 
C.3.35.4 Implications for standardization 1847 
 1848 
Future standardization efforts should consider: 1849 
None 1850 
 1851 
C.3.35.5 Bibliography 1852 
 1853 
 1854 
C.3.36 Loop Control Variables [TEX] 1855 
 1856 
C.3.36.0 Status and history 1857 
  1858 
C.3.36.1 Terminology and features 1859 
 1860 
C.3.36.2 Description of vulnerability 1861 
 1862 
C allows the modification of loop control variables within a loop.  Though this is usually not considered good 1863 
programming practice as it can cause unexpected problems, the flexibility of C expects the programmer to use this 1864 
capability responsibly. 1865 
 1866 
Since the modification of a loop control variable within a loop is infrequently encountered, reviewers of C code may 1867 
not expect it and hence miss noticing the modification.  Modifying the loop control variable can cause unexpected 1868 
results if not carefully done.  In C, the following is valid: 1869 
 1870 

int a,i; 1871 
 1872 

for (i=1; i<10; i++) 1873 



 
 

 
 

  { 1874 
   … 1875 
   if (a > 7) 1876 
     i = 10; 1877 
  … 1878 
} 1879 

 1880 
which would cause the for loop to exit once a is greater than 7 regardless of the number of loops that have 1881 
occurred. 1882 
 1883 
C.3.36.3 Avoiding the vulnerability or mitigating its effects 1884 
 1885 

• Do not modify a loop control variable within a loop.  Even though the capability exists in C, it is still 1886 
considered to be a poor programming practice. 1887 

 1888 
C.3.36.4 Implications for standardization 1889 
 1890 
Future standardization efforts should consider: 1891 

• Defining an identifier type for loop control that cannot be modified by anything other than the loop 1892 
control construct would be a relatively minor addition to C that could make C code safer and encourage 1893 
better structured programming. 1894 

 1895 
C.3.36.5 Bibliography 1896 
 1897 
 1898 
C.3.37 Off-by-one Error [XZH] 1899 
 1900 
C.3.37.0 Status and history 1901 
  1902 
C.3.37.1 Terminology and features 1903 
 1904 
C.3.37.2 Description of vulnerability 1905 
 1906 
Arrays are a common place for off by one errors to manifest.  In C, arrays are indexed starting at 0, causing the 1907 
common mistake of looping from 0 to the size of the array as in: 1908 
 1909 
    int foo() { 1910 

int a[10]; 1911 
int i; 1912 
for (i=0, i<=10, i++) 1913 
… 1914 
return (0); 1915 
} 1916 

 1917 
Strings in C are also another common source of errors in C due to the need to allocate space for and account for 1918 
the string sentinel value.  A common mistake is to expect to store an n length string in an n length array instead of 1919 
length n+1 to account for the sentinel ‘\0’.  Interfacing with other languages that do not use sentinel values in 1920 
strings can also lead to an off by one error. 1921 
 1922 
C does not flag accesses outside of array bounds, so an off by one error may not be as detectable in C as in some 1923 
other languages.  Several very good and freely available tools for C can be used to help detect accesses beyond the 1924 
bounds of arrays that are caused by an off by one error.  However, such tools will not help in the case where only a 1925 
portion of the array is used and the access is still within the bounds of the array. 1926 



 
 

 
 

 1927 
Looping one more or one less is usually detectable by good testing.  Due to the structure of the C language, this 1928 
may be the main way to avoid this vulnerability.  Unfortunately some cases may still slip through the development 1929 
and test phase and manifest themselves during operational use. 1930 
 1931 
C.3.37.3 Avoiding the vulnerability or mitigating its effects 1932 
 1933 

• Use careful programming, testing of border conditions and static analysis tools to detect off by one errors 1934 
in C. 1935 

 1936 
C.3.37.4 Implications for standardization 1937 
 1938 
Future standardization efforts should consider: 1939 
None 1940 
 1941 
C.3.37.5 Bibliography 1942 
 1943 
 1944 
C.3.38 Structured Programming [EWD] 1945 
 1946 
C.3.38.0 Status and history 1947 
  1948 
C.3.38.1 Terminology and features 1949 
 1950 
C.3.38.2 Description of vulnerability 1951 
 1952 
It is as easy to write structured programs in C as it is not to.  C contains the goto statement, which can create 1953 
unstructured code.  Also, C has continue, break, and return that can create a complicated control flow, 1954 
when used in an undisciplined manner.  Spaghetti code can be more difficult for C static analyzers to analyze and is 1955 
sometimes used on purpose to intentionally obfuscate the functionality of software.  Code that has been modified 1956 
multiple times by an assortment of programmers to add or remove functionality or to fix problems can be prone to 1957 
become very unstructured. 1958 
 1959 
Because unstructured code in C can cause problems for analyzers (both automated and human) of code, problems 1960 
with the code may not be detected as readily or at all as would be the case if the software was written in a 1961 
structured manner. 1962 
 1963 
C.3.38.3 Avoiding the vulnerability or mitigating its effects 1964 
 1965 

• Write clear and concise structured code to make code as understandable as possible. 1966 
• Restrict the use of goto, continue, break and return to encourage more structured programming. 1967 
• Encourage the use of a single exit point from a function.  At times, this guidance can have the opposite 1968 

effect, such as in the case of an if check of parameters at the start of a function that requires the 1969 
remainder of the function to be encased in the if statement in order to reach the single exit point.  If, for 1970 
example, the use of multiple exit points can arguably make a piece of code clearer, then they should be 1971 
used.  However, the code should be able to withstand a critique that a restructuring of the code would 1972 
have made the need for multiple exit points unnecessary. 1973 

 1974 
C.3.38.4 Implications for standardization 1975 
 1976 
Future standardization efforts should consider: 1977 

• Deprecating the goto statement.  The use of the goto construct is very often spotlighted as the 1978 



 
 

 
 

antithesis of good structured programming.  Though its deprecation will not instantly make all C code 1979 
structured, deprecating the goto and leaving in place the restricted goto variations (e.g. break and 1980 
continue) and possibly adding other restricted goto’s could assist in encouraging safer and more 1981 
secure C programming in general. 1982 

 1983 
C.3.38.5 Bibliography 1984 
 1985 
 1986 
C.3.39 Passing Parameters and Return Values [CSJ] 1987 
 1988 
C.3.39.0 Status and history 1989 
  1990 
C.3.39.1 Terminology and features 1991 
 1992 
C.3.39.2 Description of vulnerability 1993 
 1994 
At times, it is useful to interface a C program with routines written in other languages.  Other languages may have 1995 
different data types, storage orders or parameter passing semantics.  These differences in interfacing with other 1996 
languages can lead to unexpected interpretations or manipulations of data. 1997 
 1998 
C only passes parameters by value.  That is, the receiving function will get the value of the parameter.  Call by 1999 
reference can be achieved by passing a reference as a value.  Interfacing with another language, such as Fortran, 2000 
that uses call by reference can yield some surprising results.  Therefore, the addresses of the arguments must be 2001 
passed when calling a Fortran subroutine from C.  There are many other major and minor issues in interfacing to 2002 
other languages all of which can lead to unexpected results and even potential vulnerabilities.  For example, arrays 2003 
in C are stored in row major order (last index varies fastest) whereas Fortran stores arrays in column major order 2004 
(first index varies fastest).  Other issues are minor annoyances, such as the inability of C to be able to pass a 2005 
constant as a parameter to a Fortran subroutine since there isn’t an address to pass (that is, &7) to satisfy the call 2006 
by reference expectation. 2007 
 2008 
C.3.39.3 Avoiding the vulnerability or mitigating its effects 2009 
 2010 

• Use caution when interfacing with other languages as this can be error prone. 2011 
• Use interface packages that are available for many language combinations which can assist in avoiding 2012 

some problems in interfacing.  Even with an interface package, there will likely still be some issues that 2013 
need to be addressed for a successful interface. 2014 

• Conduct additional rigorous testing on sections of code that interface with other languages. 2015 
 2016 
C.3.39.4 Implications for standardization 2017 
 2018 
Future standardization efforts should consider: 2019 

• Defining a standardized interface package for interfacing C with many of the top programming languages 2020 
and a reciprocal package should be developed of the other top languages to interface with C. 2021 

 2022 
C.3.39.5 Bibliography 2023 
 2024 
 2025 
C.3.40 Dangling References to Stack Frames [DCM] 2026 
 2027 
C.3.40.0 Status and history 2028 
  2029 



 
 

 
 

C.3.40.1 Terminology and features 2030 
 2031 
C.3.40.2 Description of vulnerability 2032 
 2033 
C allows the address of a variable to be stored in a variable.  Should this variable’s address be, for example, the 2034 
address of a local variable that was part of a stack frame, then using the address after the local variable has been 2035 
deallocated can yield unexpected behaviour as the memory will have been made available for further allocation 2036 
and may indeed been allocated for some other use.  Any use of perishable memory after it has been deallocated 2037 
can lead to unexpected results. 2038 
   2039 
C.3.40.3 Avoiding the vulnerability or mitigating its effects 2040 
 2041 

• Do not assign the address of an object to any entity which persists after the object has ceased to exist.  2042 
This is done in order to avoid the possibility of a dangling reference.  Once the object ceases to exist, then 2043 
so will the stored address of the object preventing accidental dangling references. 2044 

• Pointers should be assigned the null-pointer value before executing a return for any block-local 2045 
addresses that have been stored in longer-lived storage. 2046 

C.3.40.4 Implications for standardization 2047 
 2048 
Future standardization efforts should consider: 2049 
None 2050 
 2051 
C.3.40.5 Bibliography 2052 
 2053 
 2054 
C.3.41 Subprogram Signature Mismatch [OTR] 2055 
 2056 
C.3.41.0 Status and history 2057 
  2058 
C.3.41.1 Terminology and features 2059 
 2060 
C.3.41.2 Description of vulnerability 2061 
 2062 
Functions in C may be called with more or less than the number of parameters the receiving function expects.  2063 
However, most C compilers will generate a warning or an error about this situation.  If the number of arguments 2064 
does not equal the number of parameters, the behaviour is undefined.  This can lead to unexpected results when 2065 
the count or types of the parameters differs from the calling to the receiving function.  If too few arguments are 2066 
sent to a function, then the function could still pop the expected number of arguments from the stack leading to 2067 
unexpected results.  2068 
 2069 
C allows a variable number of arguments in function calls.  A good example of an implementation of this is the 2070 
printf function.  This is specified in the function call by terminating the list of parameters with an ellipsis (, 2071 
...).  After the comma, no information about the number or types of the parameters is supplied.  This can be a 2072 
very useful feature for situations such as printf, but the use of this feature outside of very special situations can 2073 
be the basis for vulnerabilities. 2074 
 2075 
Functions may or may not be defined with a function definition.  The function definition may or may not contain a 2076 
parameter type list.  If a function that accepts a variable number of arguments is defined without a parameter 2077 
type list that ends with the ellipsis notation, the behaviour is undefined. 2078 
 2079 
If the calling and receiving functions differ in the type of parameters, C will, if possible, do an implicit conversion 2080 



 
 

 
 

such as the call to sqrt that expects a double: 2081 
 2082 
   double sqrt(double) 2083 
 2084 
the call: 2085 
 2086 
   root2 = sqrt(2); 2087 
 2088 
coerces the integer 2 into the double value 2.0. 2089 
 2090 
C.3.41.3 Avoiding the vulnerability or mitigating its effects 2091 
 2092 

• Use a function prototype to declare a function with its expected parameters to allow the compiler to 2093 
check for a matching count and types of the parameters.  The prototype contains just the name of the 2094 
function and its parameters without the body of code that would normally follow. 2095 

• Do not use the variable argument feature except in rare instances.  The variable argument feature such as 2096 
is used in printf()is difficult to use in a type safe manner. 2097 

 2098 
C.3.41.4 Implications for standardization 2099 
 2100 
Future standardization efforts should consider: 2101 
None 2102 
 2103 
C.3.41.5 Bibliography 2104 
 2105 
 2106 
C.3.42 Recursion [GDL] 2107 
 2108 
C.3.42.0 Status and history 2109 
  2110 
C.3.42.1 Terminology and features 2111 
 2112 
C.3.42.2 Description of vulnerability 2113 
 2114 
C permits recursive calls both directly and indirectly through any chain of other functions.   However, recursive 2115 
functions must be implemented carefully in C as C lacks some of the protective mechanisms that could avert 2116 
serious problems such as an overly large consumption of resources or an overrun of buffers.   Since C is frequently 2117 
cited for its high performance efficiency, the use of recursion in C is counter to this as recursion is usually very 2118 
inefficient both in execution time and memory usage. 2119 
 2120 
As with many languages, the high consumption of resources for recursive calls applies to C.  It is difficult to predict 2121 
the complete range of values that a recursive function can execute that will lead to a manageable consumption of 2122 
resources.  Part of this difficulty is that the range of values can change depending on the current load of the host.  2123 
Manipulation of the input values to a recursive function can result in an intentional exhaustion of system resources 2124 
leading to a denial of service. 2125 
  2126 
C.3.42.3 Avoiding the vulnerability or mitigating its effects 2127 
 2128 

• Only use recursion only in very rare instances.  Although recursion can shorten programs considerably, 2129 
there is a high performance penalty which is contrary to the usual high efficiency of C.  2130 

• Only use recursion if it can be proven that adequate resources exist to support the maximum level of 2131 
recursion possible. 2132 



 
 

 
 

 2133 
C.3.42.4 Implications for standardization 2134 
 2135 
Future standardization efforts should consider: 2136 
None 2137 
 2138 
C.3.42.5 Bibliography 2139 
 2140 
 2141 
C.3.43 Returning Error Status [NZN] 2142 
 2143 
C.3.43.0 Status and history 2144 
  2145 
C.3.43.1 Terminology and features 2146 
 2147 
C.3.43.2 Description of vulnerability 2148 
 2149 
C provides the include file errno.h that defines the macros EDOM, EILSEQ and ERANGE, which expand to 2150 
integer constant expressions with type int, distinct positive values and which are suitable for use in #if 2151 
preprocessing directives.  C also provides the integer errno that can be set to a nonzero value by any library 2152 
function (if the use of errno is not documented in the description of the function in the C Standard, errno could 2153 
be used whether or not there is an error).  Though these values are defined, inconsistencies in responding to error 2154 
conditions can lead to vulnerabilities. 2155 
 2156 
C.3.43.3 Avoiding the vulnerability or mitigating its effects 2157 
 2158 

• Check the returned error status upon return from a function.  The C standard library functions provide an 2159 
error status as the return value and sometimes in an additional global error value. 2160 

• Set errno to zero before a library function call in situations where a program intends to check errno 2161 
before a subsequent library function call. 2162 

• Use errno_t to make it readily apparent that a function is returning an error code.  Often a function that 2163 
returns an errno error code is declared as returning a value of type int.  Although syntactically correct, 2164 
it is not apparent that the return code is an errno error code.  TR 24731-1 introduced the new type 2165 
errno_t in errno.h that is defined to be type int. 2166 

 2167 
C.3.43.4 Implications for standardization 2168 
 2169 
Future standardization efforts should consider: 2170 

• Joining with other languages in developing a standardized set of mechanisms for detecting and treating 2171 
error conditions so that all languages to the extent possible could use them.  Note that this does not mean 2172 
that all languages should use the same mechanisms as there should be a variety (e.g. label parameters, 2173 
auxiliary status variables), but each of the mechanisms should be standardized. 2174 

 2175 
C.3.43.5 Bibliography 2176 
 2177 
 2178 
C.3.44 Termination Strategy [REU] 2179 
 2180 
C.3.44.0 Status and history 2181 
  2182 
C.3.44.1 Terminology and features 2183 



 
 

 
 

 2184 
C.3.44.2 Description of vulnerability 2185 
 2186 
Choosing when and where to exit is a design issue, but choosing how to perform the exit may result in the host 2187 
being left in an unexpected state.  C provides several ways of terminating a program including exit(), _Exit(), 2188 
and abort().  A return from the initial call to the main function is equivalent to calling the exit() function 2189 
with the value returned by the main function as its argument (this is if the return type of the main function is a 2190 
type compatible with int, otherwise the termination status returned to the host environment is unspecified) or 2191 
simply reaching the “}” that terminates the main function returns a value of 0. 2192 
 2193 
All of the termination strategies in C have undefined, unspecified, and/or implementation defined behaviour 2194 
associated with them.  For example, if more than one call to the exit() function is executed by a program, the 2195 
behaviour is undefined.  The amount of clean-up that occurs upon termination such as the removal of temporary 2196 
files or the flushing of buffers varies and may be implementation defined.   2197 
 2198 
A call to exit() or _Exit() will terminate a program normally.  Abnormal program termination will occur 2199 
when abort() is used to exit a program (unless the signal SIGABRT is caught and the signal handler does not 2200 
return).  Unlike a call to exit(), when either _Exit() or abort() are used to terminate a program, it is 2201 
implementation defined as to whether open streams with unwritten buffered data are flushed, open streams are 2202 
closed, or temporary files are removed. This can leave a system in an unexpected state. 2203 
 2204 
C provides the function atexit() that allows functions to be registered so that at normal program termination, 2205 
the registered functions will be executed to perform desired functions.  C99 requires the capability to register at 2206 
least 32 functions.  Implementations expecting more than 32 registered functions may yield unexpected results. 2207 
  2208 
C.3.44.3 Avoiding the vulnerability or mitigating its effects 2209 
 2210 

• Use a return from the main() program as it is the cleanest way to exit a C program. 2211 
• Use exit() to quickly exit from a deeply nested function. 2212 
• Use abort() in situations where an abrupt halt is needed.  If abort() is necessary, the design should 2213 

protect critical data from being exposed after an abrupt halt of the program. 2214 
• Become familiar with the undefined, unspecified and/or implementation aspects of each of the 2215 

termination strategies. 2216 
 2217 
C.3.44.4 Implications for standardization 2218 
 2219 
Future standardization efforts should consider: 2220 

• Since fault handling and exiting of a program is common to all languages, it is suggested that common 2221 
terminology such as the meaning of fail safe, fail hard, fail soft, etc. along with a core API set such as 2222 
exit, abort, etc. be standardized and coordinated with other languages. 2223 

 2224 
C.3.44.5 Bibliography 2225 
 2226 
 2227 
 2228 
C.3.45 Extra Intrinsics [LRM] 2229 
 2230 
Does not apply to C. 2231 
 2232 
C.3.45.0 Status and history 2233 
  2234 



 
 

 
 

C.3.45.1 Terminology and features 2235 
 2236 
C.3.45.2 Description of vulnerability 2237 
 2238 
C.3.45.3 Avoiding the vulnerability or mitigating its effects 2239 
 2240 
C.3.45.4 Implications for standardization 2241 
 2242 
Future standardization efforts should consider: 2243 
None 2244 
 2245 
C.3.45.5 Bibliography 2246 
 2247 
 2248 
C.3.46 Type-breaking Reinterpretation of Data [AMV] 2249 
 2250 
C.3.46.0 Status and history 2251 
 2252 
C.3.46.1 Terminology and features 2253 
 2254 
C.3.46.2 Description of vulnerability 2255 
 2256 
The primary way in C that a reinterpretation of data is accomplished is through a union which may be used to 2257 
interpret the same piece of memory in multiple ways.  If the use of the union members is not managed carefully, 2258 
then unexpected and erroneous results may occur. 2259 
 2260 
C allows the use of pointers to memory so that an integer pointer could be used to manipulate character data.  This 2261 
could lead to a mistake in the logic that is used to interpret the data leading to unexpected and erroneous results. 2262 
 2263 
C.3.46.3 Avoiding the vulnerability or mitigating its effects 2264 
 2265 

• Avoid the use of unions as it is relatively easy for there to exist an unexpected program flow that leads to a 2266 
misinterpretation of the union data. 2267 

 2268 
C.3.46.4 Implications for standardization 2269 
 2270 
Future standardization efforts should consider: 2271 

• Deprecating unions.  The primary reason for the use of unions to save memory has been diminished 2272 
considerably as memory has become cheaper and more available.  Unions are not statically type safe and 2273 
are historically known to be a common source of errors, leading to many C programming guidelines 2274 
specifically prohibiting the use of unions. 2275 

 2276 
C.3.46.5 Bibliography 2277 
 2278 
 2279 
C.3.47 Memory Leak [XYL] 2280 
 2281 
C.3.47.0 Status and history 2282 
  2283 
C.3.47.1 Terminology and features 2284 
 2285 
C.3.47.2 Description of vulnerability 2286 



 
 

 
 

 2287 
C is prone to memory leaks as many programs use dynamically allocated memory.  C relies on manual memory 2288 
management rather than a built in garbage collector primarily since automated memory management can be 2289 
unpredictable, impact performance and is limited in its ability to detect unused memory such as memory that is 2290 
still referenced by a pointer, but is never used. 2291 
 2292 
Memory is dynamically allocated in C using the library calls malloc(), calloc(), and realloc().   When the 2293 
program no longer needs the dynamically allocated memory, it can be released using the library call free().  2294 
Should there be a flaw in the logic of the program, memory continues to be allocated but is not freed when it is no 2295 
longer needed.  A common situation is where memory is allocated while in a function, the memory is not freed 2296 
before the exit from the function and the lifetime of the pointer to the memory has ended upon exit from the 2297 
function. 2298 
 2299 
C.3.47.3 Avoiding the vulnerability or mitigating its effects 2300 
 2301 

• Use debugging tools such as leak detectors to help identify unreachable memory. 2302 
• Allocate and free memory in the same module and at the same level of abstraction to make it easier to 2303 

determine when and if an allocated block of memory has been freed. 2304 
• Use realloc() only to resize dynamically allocated arrays. 2305 
• Use garbage collectors that are available to replace the usual C library calls for dynamic memory allocation 2306 

which allocate memory to allow memory to be recycled when it is no longer reachable.  The use of 2307 
garbage collectors may not be acceptable for some applications as the delay introduced when the 2308 
allocator reclaims memory may be noticeable or even objectionable leading to performance degradation. 2309 

 2310 
C.3.47.4 Implications for standardization 2311 
 2312 
Future standardization efforts should consider: 2313 
None 2314 
 2315 
C.3.47.5 Bibliography 2316 
 2317 
 2318 
C.3.48 Argument Passing to Library Functions [TRJ] 2319 
 2320 
C.3.48.0 Status and history 2321 
 2322 
C.3.48.1 Terminology and features 2323 
 2324 
C.3.48.2 Description of vulnerability 2325 
 2326 
Parameter passing in C is either pass by reference or pass by value.  There isn’t a guarantee that the values being 2327 
passed will be verified by either the calling or receiving functions.  So values outside of the assumed range may be 2328 
received by a function resulting in a potential vulnerability. 2329 
 2330 
A parameter may be received by a function that was assumed to be within a particular range and then an operation 2331 
or series of operations is performed using the value of the parameter resulting in unanticipated results and even a 2332 
potential vulnerability. 2333 
 2334 
C.3.48.3 Avoiding the vulnerability or mitigating its effects 2335 
 2336 

• Do not make assumptions about the values of parameters. 2337 
• Do not assume that the calling or receiving function will be range checking a parameter.  It is always safest 2338 



 
 

 
 

to not make any assumptions about parameters used in C libraries.  Because performance is sometimes 2339 
cited as a reason to use C, parameter checking in both the calling and receiving functions is considered a 2340 
waste of time.  Since the calling routine may have better knowledge of the values a parameter can hold, it 2341 
may be considered the better place for checks to be made as there are times when a parameter doesn’t 2342 
need to be checked since other factors may limit its possible values.  However, since the receiving routine 2343 
understands how the parameter will be used and it is good practice to check all inputs, it makes sense for 2344 
the receiving routine to check the value of parameters.  Therefore, in C it is very difficult to create a 2345 
blanket statement as to where the parameter checks should be made and as a result, parameter checks 2346 
are recommended in both the calling and receiving routines unless knowledge about the calling or 2347 
receiving routines dictates that this isn’t needed. 2348 

 2349 
C.3.48.4 Implications for standardization 2350 
 2351 
Future standardization efforts should consider: 2352 

• Creating a recognizable naming standard for routines such that one version of a library does parameter 2353 
checking to the extent possible and another version does no parameter checking.  The first version would 2354 
be considered safer and more secure and the second could be used in certain situations where 2355 
performance is key and the checking is assumed to be done in the calling routine.  A naming standard 2356 
could be made such that the library that does parameter checking could be named as usual, say 2357 
“library_xyz” and an equivalent version that does not do checking could have a “_p” appended, such as 2358 
“library_xyz_p”.  Without a naming standard such as this, a considerable number of wasted cycles will be 2359 
conducted doing a double check of parameters or even worse, no checking will be done in both the calling 2360 
and receiving routines as each is assuming the other is doing the checking.  2361 

 2362 
C.3.48.5 Bibliography 2363 
 2364 
 2365 
C.3.49 Dynamically-linked Code and Self-modifying Code [NYY] 2366 
 2367 
C.3.49.0 Status and history 2368 
  2369 
C.3.49.1 Terminology and features 2370 
 2371 
C.3.49.2 Description of vulnerability 2372 
 2373 
Most loaders allow dynamically linked libraries also known as shared libraries.  Code is designed and tested using a 2374 
suite of shared libraries which are loaded at execution time.  The process of linking and loading is outside the scope 2375 
of the C standard, but many popular platforms select libraries from directories on the host in a similar way through 2376 
the use of an environment variable that contains the search path to be used.  For example, the environment 2377 
variable for UNIX based systems 2378 
 2379 
 LD_LIBRARY_PATH=.:/opt/gdbm-1.8.3/lib:/net/lib 2380 
 2381 
specifies the directories to be searched to locate needed shared libraries (on Windows platforms, the PATH 2382 
variable is used).  By altering the path or location of libraries, it is possible that the library that is used for testing is 2383 
not the same as the one used for operation. 2384 
 2385 
Shared libraries can call other shared libraries.  It can be very difficult to exactly determine the location and depth 2386 
of the dependencies of shared libraries.  2387 
 2388 
Modifying the LD_LIBRARY_PATH or PATH can alter which shared libraries are loaded.  If an attacker is able to 2389 
insert the /tmp path in the library path as follows: 2390 



 
 

 
 

 2391 
 LD_LIBRARY_PATH=/tmp:.:/opt/gdbm-1.8.3/lib:/net/lib 2392 
 2393 
and inserts a malicious library in the /tmp directory, the malicious library will be used instead of the one the 2394 
developer had intended and tested with the code.  Even with the original path: 2395 
 2396 
 LD_LIBRARY_PATH=.:/opt/gdbm-1.8.3/lib:/net/lib 2397 
 2398 
the use of the current directory path, “.”, at the start of the library path would mean that if an attacker is able to 2399 
insert a malicious library in the directory where the code is executed, the malicious library would be used. 2400 
 2401 
C also allows self-modifying code.  Since in C there isn’t a distinction between data space and code space, 2402 
executable commands can be altered as desired during the execution of the program.  Although self modifying 2403 
code may be easy to do in C, it can be difficult to understand, test and fix leading to potential vulnerabilities in the 2404 
code. 2405 
 2406 
Self-modifying code can be done intentionally in C to obfuscate the effect of a program or in some special 2407 
situations to increase performance.  Because of the ease with which executable code can be modified in C, 2408 
accidental (or maliciously intentional) modification of C code can occur if pointers are misdirected to modify code 2409 
space instead of data space or code is executed in data space.  Accidental modification usually leads to a program 2410 
crash.  Intentional modification can also lead to a program crash, but used in conjunction with other vulnerabilities 2411 
can lead to more serious problems that affect the entire host. 2412 
 2413 
C.3.49.3 Avoiding the vulnerability or mitigating its effects 2414 
 2415 

• Use signatures to verify that the shared libraries used are identical to the libraries with which the code 2416 
was tested. 2417 

• Do not use self-modifying code except in very rare instances.  In those rare instances, self-modifying code 2418 
in C can and should be constrained to a particular section of the code and well commented. 2419 

 2420 
C.3.49.4 Implications for standardization 2421 
 2422 
Future standardization efforts should consider: 2423 

• Standardizing on an easy to use signature mechanism for libraries.  Standard C libraries should be signed 2424 
to allow for verification. 2425 

 2426 
C.3.49.5 Bibliography 2427 
 2428 
 2429 
C.3.50 Library Signature [NSQ] 2430 
 2431 
C.3.50.0 Status and history 2432 
 2433 
C.3.50.1 Terminology and features 2434 
 2435 
C.3.50.2 Description of vulnerability 2436 
 2437 
Integrating C and another language into a single executable relies on knowledge of how to interface the function 2438 
calls, argument lists and data structures so that symbols match in the object code during linking.  Byte alignments 2439 
can be a source of data corruption. 2440 
 2441 
For instance, when calling Fortran from C, several issues arise.  Neither C nor Fortran check for mismatch argument 2442 



 
 

 
 

types or even the number of arguments.  C passes arguments by value and Fortran passes arguments by reference, 2443 
so addresses must be passed to Fortran rather than values in the argument list.  Multidimensional arrays in C are 2444 
stored in row major order, whereas Fortran stores them in column major order.  Strings in C are terminated by a 2445 
null character, whereas Fortran uses the declared length of a string.  These are just some of the issues that arise 2446 
when calling Fortran programs from C.  Each language has its differences with C, so different issues arise with each 2447 
interface. 2448 
 2449 
Writing a library wrapper is the traditional way of interfacing with code from another language.  However, this can 2450 
be quite tedious and error prone. 2451 
 2452 
C.3.50.3 Avoiding the vulnerability or mitigating its effects 2453 
 2454 

• Use a tool, if possible, to automatically create the interface wrappers. 2455 
• Minimize the use of those issues known to be error prone when interfacing from C, such as passing 2456 

character strings, passing multi-dimensional arrays to a column major language, interfacing with other 2457 
parameter formats such as call by reference or name and receiving return codes. 2458 

 2459 
C.3.50.4 Implications for standardization 2460 
 2461 
Future standardization efforts should consider: 2462 
None 2463 
 2464 
C.3.50.5 Bibliography 2465 
 2466 
 2467 
C.3.51 Unanticipated Exceptions from Library Routines [HJW] 2468 
 2469 
C.3.50.0 Status and history 2470 
 2471 
C.3.50.1 Terminology and features 2472 
 2473 
C.3.50.2 Description of vulnerability 2474 
 2475 
Calling software routines produced outside of the control of the main application developer puts all of the code at 2476 
the mercy of the called routines.  An unanticipated exception generated from a library routine could have 2477 
devastating consequences. 2478 
 2479 
C.3.50.3 Avoiding the vulnerability or mitigating its effects 2480 

• Check the values of parameters to ensure appropriate values are passed to libraries in order to reduce or 2481 
eliminate the chance of an unanticipated exception 2482 

 2483 
C.3.50.4 Implications for standardization 2484 
 2485 
Future standardization efforts should consider: 2486 
None 2487 
 2488 
C.3.50.5 Bibliography 2489 
 2490 
 2491 
 2492 
 2493 


