[bookmark: SK_TCSeparator1]ISO/IEC JTC 1/SC 22 N 0000
Date: 2013-08-07
ISO/IEC TR 24772
Edition 3
ISO/IEC JTC 1/SC 22/WG 23
[bookmark: CVP_Secretariat_Location]Secretariat: ANSI
Information Technology — Programming languages — Guidance to avoiding vulnerabilities in programming languages through language selection and use

Document type: International standard
Document subtype: if applicable
Document stage: (10) development stage
Document language: E

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice
This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.
Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester:
ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.
Contents	Page
Foreword	xvi
Introduction	xvii
1. Scope	1
2. Normative references	1
3. Terms and definitions, symbols and conventions	1
3.1 Terms and definitions	1
3.2 Symbols and conventions	5
4. Basic concepts	6
4.1 Purpose of this Technical Report	6
4.2 Intended audience	6
4.3 How to use this document	7
5 Vulnerability issues	8
5.1 Predictable execution	8
5.2 Sources of unpredictability in language specification	9
5.2.1 Incomplete or evolving specification	9
5.2.2 Undefined behaviour	10
5.2.3 Unspecified behaviour	10
5.2.4 Implementation-defined behaviour	10
5.2.5 Difficult features	10
5.2.6 Inadequate language support	10
5.3 Sources of unpredictability in language usage	10
5.3.1 Porting and interoperation	10
5.3.2 Compiler selection and usage	11
6. Programming Language Vulnerabilities	11
6.1 General	11
6.2 Terminology	11
6.3 Type System [IHN]	12
6.4 Bit Representations [STR]	14
6.5 Floating-point Arithmetic [PLF]	16
6.6 Enumerator Issues [CCB]	18
6.7 Numeric Conversion Errors [FLC]	20
6.8 String Termination [CJM]	22
6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]	23
6.10 Unchecked Array Indexing [XYZ]	25
6.11 Unchecked Array Copying [XYW]	27
6.12 Pointer Casting and Pointer Type Changes [HFC]	28
6.13 Pointer Arithmetic [RVG]	29
6.14 Null Pointer Dereference [XYH]	30
6.15 Dangling Reference to Heap [XYK]	31
6.16 Arithmetic Wrap-around Error [FIF]	34
6.17 Using Shift Operations for Multiplication and Division [PIK]	35
6.18 Sign Extension Error [XZI]	36
6.19 Choice of Clear Names [NAI]	37
6.20 Dead Store [WXQ]	39
6.21 Unused Variable [YZS]	40
6.22 Identifier Name Reuse [YOW]	41
6.23 Namespace Issues [BJL]	43
6.24 Initialization of Variables [LAV]	45
6.25 Operator Precedence/Order of Evaluation [JCW]	47
6.26 Side-effects and Order of Evaluation [SAM]	49
6.27 Likely Incorrect Expression [KOA]	50
6.28 Dead and Deactivated Code [XYQ]	52
6.29 Switch Statements and Static Analysis [CLL]	54
6.30 Demarcation of Control Flow [EOJ]	56
6.31 Loop Control Variables [TEX]	57
6.32 Off-by-one Error [XZH]	58
6.33 Structured Programming [EWD]	60
6.34 Passing Parameters and Return Values [CSJ]	61
6.35 Dangling References to Stack Frames [DCM]	63
6.36 Subprogram Signature Mismatch [OTR]	65
6.37 Recursion [GDL]	67
6.38 Ignored Error Status and Unhandled Exceptions [OYB]	68
6.39 Termination Strategy [REU]	70
6.40 Type-breaking Reinterpretation of Data [AMV]	72
6.41 Memory Leak [XYL]	74
6.42 Templates and Generics [SYM]	76
6.43 Inheritance [RIP]	78
6.44 Extra Intrinsics [LRM]	79
6.45 Argument Passing to Library Functions [TRJ]	80
6.46 Inter-language Calling [DJS]	81
6.47 Dynamically-linked Code and Self-modifying Code [NYY]	83
6.48 Library Signature [NSQ]	84
6.49 Unanticipated Exceptions from Library Routines [HJW]	86
6.50 Pre-processor Directives [NMP]	87
6.51 Suppression of Language-defined Run-time Checking [MXB]	89
6.52 Provision of Inherently Unsafe Operations [SKL]	90
6.53 Obscure Language Features [BRS]	91
6.54 Unspecified Behaviour [BQF]	92
6.55 Undefined Behaviour [EWF]	94
6.56 Implementation-defined Behaviour [FAB]	95
6.57 Deprecated Language Features [MEM]	97
6.58 Concurrency – Activation [CGA]	98
6.59 Concurrency – Directed termination [CGT]	100
6.60 Concurrent Data Access [CGX]	101
6.61 Concurrency – Premature Termination [CGS]	103
6.62 Protocol Lock Errors [CGM]	105
6.63 Inadequately Secure Communication of Shared Resources [CGY]	107
6.64 Use of unchecked data from an uncontrolled or tainted source [EFS]	109
6.65 Uncontrolled Format String [SHL]	110
7. Application Vulnerabilities	111
7.1 General	111
7.2 Terminology	111
7.3 Unspecified Functionality [BVQ]	111
7.4 Distinguished Values in Data Types [KLK]	112
7.5 Adherence to Least Privilege [XYN]	113
7.6 Privilege Sandbox Issues [XYO]	114
7.7 Executing or Loading Untrusted Code [XYS]	116
7.8 Memory Locking [XZX]	117
7.9 Resource Exhaustion [XZP]	118
7.10 Unrestricted File Upload [CBF]	119
7.11 Resource Names [HTS]	120
7.12 Injection [RST]	122
7.13 Cross-site Scripting [XYT]	125
7.14 Unquoted Search Path or Element [XZQ]	127
7.15 Improperly Verified Signature [XZR]	128
7.16 Discrepancy Information Leak [XZL]	129
7.17 Sensitive Information Uncleared Before Use [XZK]	130
7.18 Path Traversal [EWR]	130
7.19 Missing Required Cryptographic Step [XZS]	133
7.20 Insufficiently Protected Credentials [XYM]	133
7.21 Missing or Inconsistent Access Control [XZN]	134
7.22 Authentication Logic Error [XZO]	135
7.23 Hard-coded Password [XYP]	136
7.24 Download of Code Without Integrity Check [DLB]	137
7.25 Incorrect Authorization [BJE]	138
7.26 Inclusion of Functionality from Untrusted Control Sphere [DHU]	139
7.27 Improper Restriction of Excessive Authentication Attempts [WPL]	140
7.28 URL Redirection to Untrusted Site ('Open Redirect') [PYQ]	140
7.29 Use of a One-Way Hash without a Salt [MVX]	141
8. New Vulnerabilities	142
8.1 General	142
8.2 Terminology	142
Annex A (informative) Vulnerability Taxonomy and List	142
A.1 General	142
A.2 Outline of Programming Language Vulnerabilities	143
A.3 Outline of Application Vulnerabilities	144
A.4 Vulnerability List	145
Annex B (informative) Language Specific Vulnerability Template	148
Annex C (informative) Vulnerability descriptions for the language Ada	150
C.1 Identification of standards and associated documentation	150
C.2 General terminology and concepts	150
C.3 Type System [IHN]	156
C.4 Bit Representation [STR]	156
C.5 Floating-point Arithmetic [PLF]	157
C.6 Enumerator Issues [CCB]	157
C.7 Numeric Conversion Errors [FLC]	158
C.8 String Termination [CJM]	158
C.9 Buffer Boundary Violation (Buffer Overflow) [HCB]	159
C.10 Unchecked Array Indexing [XYZ]	159
C.11 Unchecked Array Copying [XYW]	159
C.12 Pointer Casting and Pointer Type Changes [HFC]	159
C.13 Pointer Arithmetic [RVG]	160
C.14 Null Pointer Dereference [XYH]	160
C.15 Dangling Reference to Heap [XYK]	160
C.16 Arithmetic Wrap-around Error [FIF]	160
C.17 Using Shift Operations for Multiplication and Division [PIK]	161
C.18 Sign Extension Error [XZI]	161
C.19 Choice of Clear Names [NAI]	161
C.20 Dead store [WXQ]	162
C.21 Unused Variable [YZS]	162
C.22 Identifier Name Reuse [YOW]	163
C.23 Namespace Issues [BJL]	163
C.24 Initialization of Variables [LAV]	163
C.25 Operator Precedence/Order of Evaluation [JCW]	164
C.26 Side-effects and Order of Evaluation [SAM]	164
C.27 Likely Incorrect Expression [KOA]	165
C.28 Dead and Deactivated Code [XYQ]	166
C.29 Switch Statements and Static Analysis [CLL]	166
C.30 Demarcation of Control Flow [EOJ]	167
C.31 Loop Control Variables [TEX]	167
C.32 Off-by-one Error [XZH]	167
C.33 Structured Programming [EWD]	168
C.34 Passing Parameters and Return Values [CSJ]	168
C.35 Dangling References to Stack Frames [DCM]	169
C.36 Subprogram Signature Mismatch [OTR]	169
C.37 Recursion [GDL]	170
C.38 Ignored Error Status and Unhandled Exceptions [OYB]	170
C.39 Termination Strategy [REU]	171
C.40 Type-breaking Reinterpretation of Data [AMV]	171
C.41 Memory Leak [XYL]	172
C.42 Templates and Generics [SYM]	172
C.43 Inheritance [RIP]	173
C.44 Extra Intrinsics [LRM]	173
C.45 Argument Passing to Library Functions [TRJ]	173
C.46 Inter-language Calling [DJS]	174
C.47 Dynamically-linked Code and Self-modifying Code [NYY]	174
C.48 Library Signature [NSQ]	174
C.49 Unanticipated Exceptions from Library Routines [HJW]	174
C.50 Pre-Processor Directives [NMP]	175
C.51 Suppression of Language-defined Run-time Checking [MXB]	175
C.52 Provision of Inherently Unsafe Operations [SKL]	175
C.53 Obscure Language Features [BRS]	176
C.54 Unspecified Behaviour [BQF]	176
C.55 Undefined Behaviour [EWF]	177
C.56 Implementation-Defined Behaviour [FAB]	178
C.57 Deprecated Language Features [MEM]	179
C.58 Implications for standardization	179
Annex D (informative) Vulnerability descriptions for the language C	181
D.1 Identification of standards and associated documents	181
D.2 General terminology and concepts	181
D.3 Type System [IHN]	184
D.4 Bit Representations [STR]	185
D.5 Floating-point Arithmetic [PLF]	186
D.6 Enumerator Issues [CCB]	187
D.7 Numeric Conversion Errors [FLC]	188
D.8 String Termination [CJM]	190
D.9 Buffer Boundary Violation (Buffer Overflow) [HCB]	190
D.10 Unchecked Array Indexing [XYZ]	192
D.11 Unchecked Array Copying [XYW]	192
D.12 Pointer Casting and Pointer Type Changes [HFC]	193
D.13 Pointer Arithmetic [RVG]	193
D.14 Null Pointer Dereference [XYH]	194
D.15 Dangling Reference to Heap [XYK]	194
D.16 Arithmetic Wrap-around Error [FIF]	196
D.17 Using Shift Operations for Multiplication and Division [PIK]	197
D.18 Sign Extension Error [XZI]	197
D.19 Choice of Clear Names [NAI]	197
D.20 Dead Store [WXQ]	198
D.21 Unused Variable [YZS]	198
D.22 Identifier Name Reuse [YOW]	198
D.23 Namespace Issues [BJL]	199
D.24 Initialization of Variables [LAV]	199
D.25 Operator Precedence/Order of Evaluation [JCW]	200
D.26 Side-effects and Order of Evaluation [SAM]	200
D.27 Likely Incorrect Expression [KOA]	201
D.28 Dead and Deactivated Code [XYQ]	202
D.29 Switch Statements and Static Analysis [CLL]	203
D.30 Demarcation of Control Flow [EOJ]	204
D.31 Loop Control Variables [TEX]	205
D.32 Off-by-one Error [XZH]	206
D.33 Structured Programming [EWD]	206
D.34 Passing Parameters and Return Values [CSJ]	207
D.35 Dangling References to Stack Frames [DCM]	208
D.36 Subprogram Signature Mismatch [OTR]	208
D.37 Recursion [GDL]	209
D.38 Ignored Error Status and Unhandled Exceptions [OYB]	209
D.39 Termination Strategy [REU]	210
D.40 Type-breaking Reinterpretation of Data [AMV]	210
D.41 Memory Leak [XYL]	211
D.42 Templates and Generics [SYM]	211
D.43 Inheritance [RIP]	211
D.44 Extra Intrinsics [LRM]	211
D.45 Argument Passing to Library Functions [TRJ]	212
D.46 Inter-language Calling [DJS]	212
D.47 Dynamically-linked Code and Self-modifying Code [NYY]	212
D.48 Library Signature [NSQ]	213
D.49 Unanticipated Exceptions from Library Routines [HJW]	213
D.50 Pre-processor Directives [NMP]	214
D.51 Suppression of Language-defined Run-time Checking [MXB]	215
D.52 Provision of Inherently Unsafe Operations [SKL]	215
D.53 Obscure Language Features [BRS]	215
D.54 Unspecified Behaviour [BQF]	216
D.55 Undefined Behaviour [EWF]	216
D.56 Implementation-defined Behaviour [FAB]	217
D.57 Deprecated Language Features [MEM]	217
D.58 Implications for standardization	218
Annex E (informative) Vulnerability descriptions for the language Python	221
E.1 Identification of standards and associated documents	221
E.2 General Terminology and Concepts	222
E.3 Type System [IHN]	226
E.4 Bit Representations [STR]	228
E.5 Floating-point Arithmetic [PLF]	229
E.6 Enumerator Issues [CCB]	229
E.7 Numeric Conversion Errors [FLC]	230
E.8 String Termination [CJM]	231
E.9 Buffer Boundary Violation [HCB]	231
E.10 Unchecked Array Indexing [XYZ]	231
E.11 Unchecked Array Copying [XYW]	231
E.12 Pointer Casting and Pointer Type Changes [HFC]	231
E.13 Pointer Arithmetic [RVG]	231
E.14 Null Pointer Dereference [XYH]	231
E.15 Dangling Reference to Heap [XYK]	231
E.16 Arithmetic Wrap-around Error [FIF]	232
E.17 Using Shift Operations for Multiplication and Division [PIK]	232
E.18 Sign Extension Error [XZI]	232
E.19 Choice of Clear Names [NAI]	232
E.20 Dead Store [WXQ]	234
E.21 Unused Variable [YZS]	235
E.22 Identifier Name Reuse [YOW]	235
E.23 Namespace Issues [BJL]	237
E.24 Initialization of Variables [LAV]	240
E.25 Operator Precedence/Order of Evaluation [JCW]	240
E.26 Side-effects and Order of Evaluation [SAM]	241
E.27 Likely Incorrect Expression [KOA]	242
E.28 Dead and Deactivated Code [XYQ]	243
E.29 Switch Statements and Static Analysis [CLL]	244
E.30 Demarcation of Control Flow [EOJ]	244
E.31 Loop Control Variables [TEX]	245
E.32 Off-by-one Error [XZH]	246
E.33 Structured Programming [EWD]	246
E.34 Passing Parameters and Return Values [CSJ]	247
E.35 Dangling References to Stack Frames [DCM]	249
E.36 Subprogram Signature Mismatch [OTR]	249
E.37 Recursion [GDL]	249
E.38 Ignored Error Status and Unhandled Exceptions [OYB]	249
E.39 Termination Strategy [REU]	250
E.40 Type-breaking Reinterpretation of Data [AMV]	250
E.41 Memory Leak [XYL]	250
E.42 Templates and Generics [SYM]	251
E.43 Inheritance [RIP]	251
E.44 Extra Intrinsics [LRM]	251
E.45 Argument Passing to Library Functions [TRJ]	252
E.46 Inter-language Calling [DJS]	252
E.47 Dynamically-linked Code and Self-modifying Code [NYY]	253
E.48 Library Signature [NSQ]	253
E.49 Unanticipated Exceptions from Library Routines [HJW]	254
E.50 Pre-processor Directives [NMP]	254
E.51 Suppression of Language-defined Run-time Checking [MXB]	254
E.52 Provision of Inherently Unsafe Operations [SKL]	254
E.53 Obscure Language Features [BRS]	255
E.54 Unspecified Behaviour [BQF]	257
E.55 Undefined Behaviour [EWF]	258
E.56 Implementation–defined Behaviour [FAB]	259
E.57 Deprecated Language Features [MEM]	260
Annex F (informative) Vulnerability descriptions for the language Ruby	261
F.1 Identification of standards and associated documents	261
F.2 General Terminology and Concepts	261
F.3 Type System [IHN]	262
F.4 Bit Representations [STR]	263
F.5 Floating-point Arithmetic [PLF]	264
F.6 Enumerator Issues [CCB]	264
F.7 Numeric Conversion Errors [FLC]	265
F.8 String Termination [CJM]	265
F.9 Buffer Boundary Violation (Buffer Overflow) [HCB]	265
F.10 Unchecked Array Indexing [XYZ]	265
F.11 Unchecked Array Copying [XYW]	265
F.12 Pointer Casting and Pointer Type Changes [HFC]	265
F.13 Pointer Arithmetic [RVG]	266
F.14 Null Pointer Dereference [XYH]	266
F.15 Dangling Reference to Heap [XYK]	266
F.16 Arithmetic Wrap-around Error [FIF]	266
F.17 Using Shift Operations for Multiplication and Division [PIK]	266
F.18 Sign Extension Error [XZI]	266
F.19 Choice of Clear Names [NAI]	266
F.20 Dead Store [WXQ]	267
F.21 Unused Variable [YZS]	267
F.22 Identifier Name Reuse [YOW]	267
F.23 Namespace Issues [BJL]	268
F.24 Initialization of Variables [LAV]	268
F.25 Operator Precedence/Order of Evaluation [JCW]	268
F.26 Side-effects and Order of Evaluation [SAM]	269
F.27 Likely Incorrect Expression [KOA]	270
F.28 Dead and Deactivated Code [XYQ]	270
F.29 Switch Statements and Static Analysis [CLL]	271
F.30 Demarcation of Control Flow [EOJ]	271
F.31 Loop Control Variables [TEX]	271
F.32 Off-by-one Error [XZH]	271
F.33 Structured Programming [EWD]	272
F.34 Passing Parameters and Return Values [CSJ]	272
F.35 Dangling References to Stack Frames [DCM]	273
F.36 Subprogram Signature Mismatch [OTR]	273
F.37 Recursion [GDL]	274
F.38 Ignored Error Status and Unhandled Exceptions [OYB]	274
F.39 Termination Strategy [REU]	274
F.40 Type-breaking Reinterpretation of Data [AMV]	274
F.41 Memory Leak [XYL]	274
F.42 Templates and Generics [SYM]	275
F.43 Inheritance [RIP]	275
F.44 Extra Intrinsics [LRM]	275
F.45 Argument Passing to Library Functions [TRJ]	275
F.46 Inter-language Calling [DJS]	275
F.47 Dynamically-linked Code and Self-modifying Code [NYY]	276
F.48 Library Signature [NSQ]	276
F.49 Unanticipated Exceptions from Library Routines [HJW]	276
F.50 Pre-processor Directives [NMP]	276
F.51 Suppression of Language-defined Run-time Checking [MXB]	277
F.52 Provision of Inherently Unsafe Operations [SKL]	277
F.53 Obscure Language Features [BRS]	277
F.54 Unspecified Behaviour [BQF]	277
F.55 Undefined Behaviour [EWF]	277
F.56 Implementation-defined Behaviour [FAB]	278
F.57 Deprecated Language Features [MEM]	278
Annex G (informative) Vulnerability descriptions for the language SPARK	279
G.1 Identification of standards and associated documentation	279
G.2 General terminology and concepts	279
G.3 Type System [IHN]	280
G.4 Bit Representation [STR]	281
G.5 Floating-point Arithmetic [PLF]	281
G.6 Enumerator Issues [CCB]	281
G.7 Numeric Conversion Errors [FLC]	281
G.8 String Termination [CJM]	281
G.9 Buffer Boundary Violation (Buffer Overflow) [HCB]	281
G.10 Unchecked Array Indexing [XYZ]	281
G.11 Unchecked Array Copying [XYW]	281
G.12 Pointer Casting and Pointer Type Changes [HFC]	282
G.13 Pointer Arithmetic [RVG]	282
G.14 Null Pointer Dereference [XYH]	282
G.15 Dangling Reference to Heap [XYK]	282
G.16 Arithmetic Wrap-around Error [FIF]	282
G.17 Using Shift Operations for Multiplication and Division [PIK]	282
G.18 Sign Extension Error [XZI]	282
G.19 Choice of Clear Names [NAI]	282
G.20 Dead store [WXQ]	282
G.21 Unused Variable [YZS]	283
G.22 Identifier Name Reuse [YOW]	283
G.23 Namespace Issues [BJL]	283
G.24 Initialization of Variables [LAV]	283
G.25 Operator Precedence/Order of Evaluation [JCW]	283
G.26 Side-effects and Order of Evaluation [SAM]	283
G.27 Likely Incorrect Expression [KOA]	283
G.28 Dead and Deactivated Code [XYQ]	283
G.29 Switch Statements and Static Analysis [CLL]	284
G.30 Demarcation of Control Flow [EOJ]	284
G.31 Loop Control Variables [TEX]	284
G.32 Off-by-one Error [XZH]	284
G.33 Structured Programming [EWD]	284
G.34 Passing Parameters and Return Values [CSJ]	284
G.35 Dangling References to Stack Frames [DCM]	285
G.36 Subprogram Signature Mismatch [OTR]	285
G.37 Recursion [GDL]	285
G.38 Ignored Error Status and Unhandled Exceptions [OYB]	285
G.39 Termination Strategy [REU]	285
G.40 Type-breaking Reinterpretation of Data [AMV]	286
G.41 Memory Leak [XYL]	286
G.42 Templates and Generics [SYM]	286
G.43 Inheritance [RIP]	286
G.44 Extra Intrinsics [LRM]	286
G.45 Argument Passing to Library Functions [TRJ]	286
G.46 Inter-language Calling [DJS]	286
G.47 Dynamically-linked Code and Self-modifying Code [NYY]	287
G.48 Library Signature [NSQ]	287
G.49 Unanticipated Exceptions from Library Routines [HJW]	287
G.50 Pre-Processor Directives [NMP]	287
G.51 Suppression of Language-defined Run-time Checking [MXB]	287
G.52 Provision of Inherently Unsafe Operations [SKL]	287
G.53 Obscure Language Features [BRS]	287
G.54 Unspecified Behaviour [BQF]	288
G.55 Undefined Behaviour [EWF]	288
G.56 Implementation-Defined Behaviour [FAB]	288
G.57 Deprecated Language Features [MEM]	288
G.58 Implications for standardization	288
Annex H (informative) Vulnerability descriptions for the language PHP	289
H.1 Identification of standards and associated documentation	289
H.2 General Terminology and Concepts	290
H.3 Type System [IHN]	291
H.4 Bit Representations [STR]	292
H.5 Floating-point Arithmetic [PLF]	293
H.6 Enumerator Issues [CCB]	293
H.7 Numeric Conversion Errors [FLC]	294
H.8 String Termination [CJM]	295
H.9 Buffer Boundary Violation (Buffer Overflow) [HCB]	296
H.10 Unchecked Array Indexing [XYZ]	296
H.11 Unchecked Array Copying [XYW]	296
H.12 Pointer Casting and Pointer Type Changes [HFC]	296
H.13 Pointer Arithmetic [RVG]	296
H.14 Null Pointer Dereference [XYH]	297
H.15 Dangling Reference to Heap [XYK]	297
H.16 Arithmetic Wrap-around Error [FIF]	297
H.17 Using Shift Operations for Multiplication and Division [PIK]	298
H.18 Sign Extension Error [XZI]	299
H.19 Choice of Clear Names [NAI]	299
H.20 Dead Store [WXQ]	301
H.21 Unused Variable [YZS]	301
H.22 Identifier Name Reuse [YOW]	301
H.23 Namespace Issues [BJL]	302
H.24 Initialization of Variables [LAV]	303
H.25 Operator Precedence/Order of Evaluation [JCW]	304
H.26 Side-effects and Order of Evaluation [SAM]	304
H.27 Likely Incorrect Expression [KOA]	305
H.28 Dead and Deactivated Code [XYQ]	306
H.29 Switch Statements and Static Analysis [CLL]	307
H.30 Demarcation of Control Flow [EOJ]	307
H.31 Loop Control Variables [TEX]	308
H.32 Off-by-one Error [XZH]	309
H.33 Structured Programming [EWD]	309
H.34 Passing Parameters and Return Values [CSJ]	310
H.35 Dangling References to Stack Frames [DCM]	310
H.36 Subprogram Signature Mismatch [OTR]	310
H.37 Recursion [GDL]	311
H.38 Ignored Error Status and Unhandled Exceptions [OYB]	311
H.39 Termination Strategy [REU]	313
H.40 Type-breaking Reinterpretation of Data [AMV]	313
H.41 Memory Leak [XYL]	313
H.42 Templates and Generics [SYM]	314
H.43 Inheritance [RIP]	314
H.44 Extra Intrinsics [LRM]	314
H.45 Argument Passing to Library Functions [TRJ]	314
H.46 Inter-language Calling [DJS]	314
H.47 Dynamically-linked Code and Self-modifying Code [NYY]	315
H.48 Library Signature [NSQ]	315
H.49 Unanticipated Exceptions from Library Routines [HJW]	315
H.50 Pre-processor Directives [NMP]	316
H.51 Suppression of Run-time Checking [MXB]	316
H.52 Provision of Inherently Unsafe Operations [SKL]	316
H.53 Obscure Language Features [BRS]	316
H.54 Unspecified Behaviour [BQF]	317
H.55 Undefined Behaviour [EWF]	318
H.56 Implementation–defined Behaviour [FAB]	319
H.57 Deprecated Language Features [MEM]	319
Annex I (informative) Vulnerability descriptions for the language Fortran	320
I.1 Identification of Standards	320
I.2 General Terminology and Concepts	320
I.3 Type System [IHN]	323
I.4 Bit Representations [STR]	324
I.5 Floating-point Arithmetic [PLF]	325
I.6 Enumerator Issues [CCB]	326
I.7 Numeric Conversion Errors [FLC]	326
I.8 String Termination [CJM]	327
I.9 Buffer Boundary Violation [HCB]	327
I.10 Unchecked Array Indexing [XYZ]	328
I.11 Unchecked Array Copying [XYW]	329
I.12 Pointer Casting and Pointer Type Changes [HFC]	330
I.13 Pointer Arithmetic [RVG]	330
I.14 Null Pointer Dereference [XYH]	330
I.15.1 Applicability to language	331
I.16 Arithmetic Wrap-around Error [FIF]	331
I.17 Using Shift Operations for Multiplication and Division [PIK]	332
I.18 Sign Extension Error [XZI]	332
I.19 Choice of Clear Names [NAI]	332
I.20 Dead Store [WXQ]	333
I.21 Unused Variable [YZS]	333
I.22 Identifier Name Reuse [YOW]	333
I.23 Namespace Issues [BJL]	334
I.24 Initialization of Variables [LAV]	334
I.25 Operator Precedence/Order of Evaluation [JCW]	334
I.26 Side-effects and Order of Evaluation [SAM]	335
I.27 Likely Incorrect Expression [KOA]	335
I.28 Dead and Deactivated Code [XYQ]	336
I.29 Switch Statements and Static Analysis [CLL]	336
I.30 Demarcation of Control Flow [EOJ]	336
I.31 Loop Control Variables [TEX]	337
I.32 Off-by-one Error [XZH]	337
I.33 Structured Programming [EWD]	338
I.34 Passing Parameters and Return Values [CSJ]	338
I.35 Dangling References to Stack Frames [DCM]	339
I.36 Subprogram Signature Mismatch [OTR]	339
I.37 Recursion [GDL]	339
I.38 Ignored Error Status and Unhandled Exceptions [OYB]	340
I.39 Termination Strategy [REU]	340
I.40 Type-breaking Reinterpretation of Data [AMV]	341
I.41 Memory Leak [XYL]	341
I.42 Templates and Generics [SYM]	341
I.43 Inheritance [RIP]	341
I.44 Extra Intrinsics [LRM]	342
I.45 Argument Passing to Library Functions [TRJ]	342
I.46 Inter-language Calling [DJS]	342
I.47 Dynamically-linked Code and Self-modifying Code [NYY]	343
I.48 Library Signature [NSQ]	343
I.49 Unanticipated Exceptions from Library Routines [HJW]	343
I.50 Pre-processor Directives [NMP]	343
I.51 Suppression of Language-defined Run-time Checking [MXB]	344
I.52 Provision of Inherently Unsafe Operations [SKL]	344
I.53 Obscure Language Features [BRS]	345
I.54 Unspecified Behaviour [BQF]	345
I.55 Undefined Behaviour [EWF]	345
I.56 Implementation-defined Behaviour [FAB]	346
I.57 Deprecated Language Features [MEM]	346
I.58 Implications for Standardization	347
Bibliography	348
Index	351

[bookmark: _Toc443470358][bookmark: _Toc450303208][bookmark: _Toc358896355]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
In exceptional circumstances, when the joint technical committee has collected data of a different kind from that which is normally published as an International Standard (“state of the art”, for example), it may decide to publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review every five years in the same manner as an International Standard.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC TR 24772, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.
[bookmark: _Toc443470359][bookmark: _Toc450303209]

[bookmark: _Toc358896356]Introduction
All programming languages contain constructs that are incompletely specified, exhibit undefined behaviour, are implementation-dependent, or are difficult to use correctly. The use of those constructs may therefore give rise to vulnerabilities, as a result of which, software programs can execute differently than intended by the writer. In some cases, these vulnerabilities can compromise the safety of a system or be exploited by attackers to compromise the security or privacy of a system.
This Technical Report is intended to provide guidance spanning multiple programming languages, so that application developers will be better able to avoid the programming constructs that lead to vulnerabilities in software written in their chosen language and their attendant consequences. This guidance can also be used by developers to select source code evaluation tools that can discover and eliminate some constructs that could lead to vulnerabilities in their software or to select a programming language that avoids anticipated problems.
It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a complete list of programming language vulnerabilities because new weaknesses are discovered continually. Any such report can only describe those that have been found, characterized, and determined to have sufficient probability and consequence.
Furthermore, to focus its limited resources, the working group developing this report decided to defer comprehensive treatment of several subject areas until future editions of the report. These subject areas include:
· Object-oriented language features (although some simple issues related to inheritance are described in 6.43 Inheritance [RIP])
· Numerical analysis (although some simple items regarding the use of floating point are described in 6.5 Floating-point Arithmetic [PLF])
WG 23/N 0461
Baseline Edition – 3	TR 24772
· Inter-language operability
	xvi
	© ISO/IEC 2013 – All rights reserved

	© ISO/IEC 2013 – All rights reserved
	xvii

Information Technology — Programming Languages — Guidance to avoiding vulnerabilities in programming languages through language selection and use
[bookmark: _Toc358896357][bookmark: _Toc443461091][bookmark: _Toc443470360][bookmark: _Toc450303210][bookmark: _Toc192557820][bookmark: _Toc336348220]1. Scope
This Technical Report specifies software programming language vulnerabilities to be avoided in the development of systems where assured behaviour is required for security, safety, mission-critical and business-critical software. In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.
Vulnerabilities are described in a generic manner that is applicable to a broad range of programming languages.
[bookmark: _Toc358896358][bookmark: _Toc443461093][bookmark: _Toc443470362][bookmark: _Toc450303212][bookmark: _Toc192557830]2. Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 80000–2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be use in the natural sciences and technology
ISO/IEC 2382–1:1993, Information technology — Vocabulary — Part 1: Fundamental terms
[bookmark: _Toc358896359][bookmark: _Toc443461094][bookmark: _Toc443470363][bookmark: _Toc450303213][bookmark: _Toc192557831]3. Terms and definitions, symbols and conventions
[bookmark: _Toc358896360]3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 2382–1 and the following apply. Other terms are defined where they appear in italic type.
3.1.1 Communication
3.1.1.1
protocol
set of rules and supporting structures for the interaction of threads
Note 1: A protocol can be tightly embedded and rely upon data in memory and hardware to control interaction of threads or can be applied to more loosely coupled arrangements, such as message communication spanning networks and computer systems.
3.1.1.2
stateless protocol
communication or cooperation between threads where no state is preserved in the protocol itself (example HTTP or direct access to a shared resource)
Note 1: Since most interaction between threads requires that state be preserved, the cooperating threads must use values of the resources(s) themselves or add additional communication exchanges to maintain state. Stateless protocols require that the application provide explicit resource protection and locking mechanisms to guarantee the correct creation, view, access to, modification of, and destruction of the resource – for example, the state needed for correct handling of the resource.
3.1.2 Execution model
3.1.2.1
thread
sequential stream of execution
Note 1: Although the term thread is used here and the context portrayed is that of shared-memory threads executing as part of a process, everything documented applies equally to other variants of concurrency such as interrupt handlers being enabled by a process, processes being created on the same system using operating system routines, or processes created as a result of distributed messages sent over a network. The mitigation approaches will be similar to those listed in the relevant vulnerability descriptions, but the implications for standardization would be dependent on how much language support is provided for the programming of the concurrent system.
3.1.2.2
thread activation
creation and setup of a thread up to the point where the thread begins execution
Note 1: A thread may depend upon one or more other threads to define its access to other objects to be accessed and to determine its duration.
3.1.2.3
activated thread
thread that is created and then begins execution as a result of thread activation
3.1.2.4
activating thread
thread that exists first and makes the library calls or contains the language syntax that causes the activated thread to be activated
Note 1: The activating thread may or may not wait for the activated thread to finish activation and may or may not check for errors if the activation fails. The activating thread may or may not be permitted to terminate until after the activated thread terminates.
3.1.2.5
static thread activation
creation and initiation of a thread by program initiation, an operating system or runtime kernel, or by another thread as part of a declarative part of the thread before it begins execution
Note 1: In static activation, a static analysis can determine exactly how many threads will be created and how much resource, in terms of memory, processors, cpu cycles, priority ranges and inter-thread communication structures, will be needed by the executing program before the program begins.
3.1.2.6
dynamic thread activation
creation and initiation of a thread by another thread (including the main program) as an executable, repeatable command, statement or subprogram call
3.1.2.7
thread abort
request to stop and shut down a thread immediately
Note 1: The request is asynchronous if from another thread, or synchronous if from the thread itself. The effect of the abort request (such as whether it is treated as an exception) and its immediacy (that is, how long the thread may continue to execute before it is shut down) depend on language-specific rules. Immediate shutdown minimizes latency but may leave shared data structures in a corrupted state.
3.1.2.8
termination-directing thread
thread (including the OS) that requests the abortion of one or more threads
3.1.2.9
thread termination
completion and orderly shutdown of a thread, where the thread is permitted to make data objects consistent, release any acquired resources, and notify any dependent threads that it is terminating
Note 1: There are a number of steps in the termination of a thread as listed below, but depending upon the multithreading model, some of these steps may be combined, may be explicitly programmed, or may be missing:
· the termination of programmed execution of the thread, including termination of any synchronous communication;
· the finalization of the local objects of the thread;
· waiting for any threads that may depend on the thread to terminate;
· finalization of any state associated with dependent threads;
· notification that finalization is complete, including possible notification of the activating task;
· removal and cleanup of thread control blocks and any state accessible by the thread or by other threads in outer scopes.
3.1.2.10
terminated thread
thread that has been halted from any further execution
3.1.2.11
master thread
thread which must wait for a terminated thread before it can take further execution steps (including termination of itself)
3.1.2.12
process
single execution of a program, or portion of an application
Note 1: Processes do not normally share a common memory space, but often share
· processor,
· network,
· operating system,
· filing system,
· environment variables, or
· other resources.
Processes are usually started and stopped by an operating system and may or may not interact with other processes. A process may contain multiple threads.
3.1.3 Properties
3.1.3.1
software quality
degree to which software implements the requirements described by its specification and the degree to which the characteristics of a software product fulfill its requirements
3.1.3.2
predictable execution
property of the program such that all possible executions have results that can be predicted from the source code
3.1.4 Safety
3.1.4.1
safety hazard
potential source of harm
Note 1: IEC 61508–4: defines a “Hazard” as a “potential source of harm”, where “harm” is “physical injury or damage to the health of people either directly or indirectly as a result of damage to property or to the environment”. Some derived standards, such as UK Defence Standard 00-56, broaden the definition of “harm” to include material and environmental damage (not just harm to people caused by property and environmental damage).
3.1.4.2
safety-critical software
software for applications where failure can cause very serious consequences such as human injury or death
Note 1: IEC 61508–4: defines “Safety-related software” as “software that is used to implement safety functions in a safety-related system. Notwithstanding that in some domains a distinction is made between safety-related (can lead to any harm) and safety-critical (life threatening), this Technical Report uses the term safety-critical for all vulnerabilities that can result in safety hazards.
3.1.5 Vulnerabilities
[bookmark: _Toc192557832]3.1.5.1
application vulnerability
security vulnerability or safety hazard, or defect
3.1.5.2
language vulnerability
property (of a programming language) that can contribute to, or that is strongly correlated with, application vulnerabilities in programs written in that language
Note 1: The term "property" can mean the presence or the absence of a specific feature, used singly or in combination. As an example of the absence of a feature, encapsulation (control of where names can be referenced from) is generally considered beneficial since it narrows the interface between modules and can help prevent data corruption. The absence of encapsulation from a programming language can thus be regarded as a vulnerability. Note that a property together with its complement can both be considered language vulnerabilities. For example, automatic storage reclamation (garbage collection) can be a vulnerability since it can interfere with time predictability and result in a safety hazard. On the other hand, the absence of automatic storage reclamation can also be a vulnerability since programmers can mistakenly free storage prematurely, resulting in dangling references.
[bookmark: _Toc192557834]3.1.5.3
security vulnerability
weakness in an information system, system security procedures, internal controls, or implementation that could be exploited or triggered by a threat
[bookmark: _Toc358896361]3.2 Symbols and conventions
3.2.1 Symbols
For the purposes of this document, the symbols given in ISO 80000–2 apply. Other symbols are defined where they appear in this document.
3.2.2 Conventions
Programming language tokens and syntactic tokens appear in courier font.
[bookmark: _Toc358896362][bookmark: _Toc443461095][bookmark: _Toc443470364][bookmark: _Toc450303214]4. Basic concepts
[bookmark: _Toc358896363]4.1 Purpose of this Technical Report
This Technical Report specifies software programming language vulnerabilities to be avoided in the development of systems where assured behaviour is required for security, safety, mission critical and business critical software. In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.
This Technical Report does not address software engineering and management issues such as how to design and implement programs, use configuration management tools, use managerial processes, and perform process improvement. Furthermore, the specification of properties and applications to be assured are not treated.
While this Technical Report does not discuss specification or design issues, there is recognition that boundaries among the various activities are not clear-cut. This Technical Report seeks to avoid the debate about where low-level design ends and implementation begins by treating selected issues that some might consider design issues rather than coding issues.
The body of this Technical Report provides users of programming languages with a language-independent overview of potential vulnerabilities in their usage. Annexes describe how the general observations apply to specific languages.
[bookmark: _Toc358896364]4.2 Intended audience
The intended audience for this Technical Report are those who are concerned with assuring the predictable execution of the software of their system; that is, those who are developing, qualifying, or maintaining a software system and need to avoid language constructs that could cause the software to execute in a manner other than intended.
Developers of applications that have clear safety, security or mission-criticality are expected to be aware of the risks associated with their code and could use this Technical Report to ensure that their development practices address the issues presented by the chosen programming languages, for example by subsetting or providing coding guidelines.
It should not be assumed, however, that other developers can ignore this Technical Report. A weakness in a non-critical application may provide the route by which an attacker gains control of a system or otherwise disrupts co-hosted applications that are critical. It is hoped that all developers would use this Technical Report to ensure that common vulnerabilities are removed or at least minimized from all applications.
Specific audiences for this International Technical Report include developers, maintainers and regulators of:
· Safety-critical applications that might cause loss of life, human injury, or damage to the environment.
· Security-critical applications that must ensure properties of confidentiality, integrity, and availability.
· Mission-critical applications that must avoid loss or damage to property or finance.
· Business-critical applications where correct operation is essential to the successful operation of the business.
· Scientific, modeling and simulation applications which require high confidence in the results of possibly complex, expensive and extended calculation.
[bookmark: _Toc358896365]4.3 How to use this document
This Technical Report gathers descriptions of programming language vulnerabilities, as well as selected application vulnerabilities, which have occurred in the past and are likely to occur again. Each vulnerability and its possible mitigations are described in the body of the report in a language-independent manner, though illustrative examples may be language specific. In addition, annexes for particular languages describe the vulnerabilities and their mitigations in a manner specific to the language.
Because new vulnerabilities are always being discovered, it is anticipated that this Technical Report will be revised and new descriptions added. For that reason, a scheme that is distinct from sub-clause numbering has been adopted to identify the vulnerability descriptions. Each description has been assigned an arbitrarily generated, unique three-letter code. These codes should be used in preference to sub-clause numbers when referencing descriptions because they will not change as additional descriptions are added to future editions of this Technical Report.
The main part of this Technical Report contains descriptions that are intended to be language-independent to the greatest possible extent. Annexes apply the generic guidance to particular programming languages.
This Technical Report has been written with several possible usages in mind:
· Programmers familiar with the vulnerabilities of a specific language can reference the guide for more generic descriptions and their manifestations in less familiar languages.
· Tool vendors can use the three-letter codes as a succinct way to “profile” the selection of vulnerabilities considered by their tools.
· Individual organizations may wish to write their own coding standards intended to reduce the number of vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be addressed in those standards and the selection of coding guidelines to be enforced.
· Organizations or individuals selecting a language for use in a project may want to consider the vulnerabilities inherent in various candidate languages.
· Scientists, engineers, economists, statisticians, or others who write computer programs as tools of their chosen craft can read this document to become more familiar with the issues that may affect their work.
The descriptions include suggestions for ways of avoiding the vulnerabilities. Some are simply the avoidance of particular coding constructs, but others may involve increased review or other verification and validation methods. Source code checking tools can be used to automatically enforce some coding rules and standards.
Clause 2 provides Normative references, and Clause 3 provides Terms, definitions, symbols and conventions.
Clause 4 provides the basic concepts used for this Technical Report.
Clause 5, Vulnerability Issues, provides rationale for this Technical Report and explains how many of the vulnerabilities occur.
Clause 6, Programming Language Vulnerabilities, provides language-independent descriptions of vulnerabilities in programming languages that can lead to application vulnerabilities. Each description provides:
· a summary of the vulnerability,
· characteristics of languages where the vulnerability may be found,
· typical mechanisms of failure,
· techniques that programmers can use to avoid the vulnerability, and
· ways that language designers can modify language specifications in the future to help programmers mitigate the vulnerability.
Clause 7, Application Vulnerabilities, provides descriptions of selected application vulnerabilities which have been found and exploited in a number of applications and which have well known mitigation techniques, and which result from design decisions made by coders in the absence of suitable language library routines or other mechanisms. For these vulnerabilities, each description provides:
· a summary of the vulnerability,
· typical mechanisms of failure, and
· techniques that programmers can use to avoid the vulnerability.
Clause 8, New Vulnerabilities, provides new vulnerabilities that have not yet had corresponding programming language annex text developed.
Annex A, Vulnerability Taxonomy and List, is a categorization of the vulnerabilities of this report in the form of a hierarchical outline and a list of the vulnerabilities arranged in alphabetic order by their three letter code.
Annex B, Language Specific Vulnerability Template, is a template for the writing of programming language specific annexes that explain how the vulnerabilities from clause 6 are realized in that programming language (or show how they are absent), and how they might be mitigated in language-specific terms.
Additional annexes, each named for a particular programming language, list the vulnerabilities of Clauses 6 and 7 and describe how each vulnerability appears in the specific language and how it may be mitigated in that language, whenever possible. All of the language-dependent descriptions assume that the user adheres to the standard for the language as listed in the sub-clause of each annex.
[bookmark: _Toc192557840][bookmark: _Toc358896366]5 Vulnerability issues
[bookmark: _Toc358896367][bookmark: _Toc443461096][bookmark: _Toc443470365][bookmark: _Toc450303215]5.1 Predictable execution
There are many reasons why software might not execute as expected by its developers, its users or other stakeholders. Reasons include incorrect specifications, configuration management errors and a myriad of others. This Technical Report focuses on one cause—the usage of programming languages in ways that render the execution of the code less predictable.
Predictable execution is a property of a program such that all possible executions have results that can be predicted from examination of the source code. Achieving predictability is complicated by that fact that software may be used:
· on unanticipated platforms (for example, ported to a different processor)
· in unanticipated ways (as usage patterns change),
· in unanticipated contexts (for example, software reuse and system-of-system integrations), and
· by unanticipated users (for example, those seeking to exploit and penetrate a software system).
Furthermore, today’s ubiquitous connectivity of software systems virtually guarantees that most software will be attacked—either because it is a target for penetration or because it offers a springboard for penetration of other software. Accordingly, today’s programmers must take additional care to ensure predictable execution despite the new challenges.
Software vulnerabilities are unwanted characteristics of software that may allow software to execute in ways that are unexpected. Programmers introduce vulnerabilities into software by using language features that are inherently unpredictable in the variable circumstances outlined above or by using features in a manner that reduces what predictability they could offer. Of course, complete predictability is an ideal (particularly because new vulnerabilities are often discovered through experience), but any programmer can improve predictability by carefully avoiding the introduction of known vulnerabilities into code.
This Technical Report focuses on a particular class of vulnerabilities, language vulnerabilities. These are properties of programming languages that can contribute to (or are strongly correlated with) application vulnerabilities—security weaknesses, safety hazards, or defects. An example may clarify the relationship. The programmer’s use of a string copying function that does not check length may be exploited by an attacker to place incorrect return values on the program stack, hence passing control of the execution to code provided by the attacker. The string copying function is the language vulnerability and the resulting weakness of the program in the face of the stack attack is the application vulnerability. The programming language vulnerability enables the application vulnerability. The language vulnerability can be avoided by using a string copying function that does set appropriate bounds on the length of the string to be copied. By using a bounded copy function the programmer improves the predictability of the code’s execution.
The primary purpose of this Technical Report is to survey common programming language vulnerabilities; this is done in Clause 6. Each description explains how an application vulnerability can result. In Clause 7, a few additional application vulnerabilities are described. These are selected because they are associated with language weaknesses even if they do not directly result from language vulnerabilities. For example, a programmer might have stored a password in plain text (see 7.20 Insufficiently Protected Credentials [XYM]) because the programming language did not provide a suitable library function for storing the password in a non-recoverable format.
In addition to considering the individual vulnerabilities, it is instructive to consider the sources of uncertainty that can decrease the predictability of software. These sources are briefly considered in the remainder of this clause.
[bookmark: _Toc358896368]5.2 Sources of unpredictability in language specification
[bookmark: _Toc358896369]5.2.1 Incomplete or evolving specification
The design and specification of a programming language involves considerations that are very different from the use of the language in programming. Language specifiers often need to maintain compatibility with older versions of the language—even to the extent of retaining inherently vulnerable features. Sometimes the semantics of new or complex features aren’t completely known, especially when used in combination with other features.
[bookmark: _Toc358896370]5.2.2 Undefined behaviour
It’s simply not possible for the specifier of a programming language to describe every possible behaviour. For example, the result of using a variable to which no value has been assigned is left undefined by many languages. In such cases, a program might do anything—including crashing with no diagnostic or executing with wrong data, leading to incorrect results.
[bookmark: _Toc358896371]5.2.3 Unspecified behaviour
The behaviour of some features may be incompletely defined. The language implementer would have to choose from a finite set of choices, but the choice may not be apparent to the programmer. In such cases, different compilers may lead to different results.
[bookmark: _Toc358896372]5.2.4 Implementation-defined behaviour
In some cases, the results of execution may depend upon characteristics of the compiler that was used, the processor upon which the software is executed, or the other systems with which the software has interfaces. In principle, one could predict the execution with sufficient knowledge of the implementation, but such knowledge is sometimes difficult to obtain. Furthermore, dependence on a specific implementation-defined behaviour will lead to problems when a different processor or compiler is used—sometimes if different compiler switch settings are used.
[bookmark: _Toc358896373]5.2.5 Difficult features
Some language features may be difficult to understand or to use appropriately, either due to complicated semantics (for example, floating point in numerical analysis applications) or human limitations (for example, deeply nested program constructs or expressions). Sometimes simple typing errors can lead to major changes in behaviour without a diagnostic (for example, typing “=” for assignment when one really intended “==” for comparison).
[bookmark: _Toc358896374]5.2.6 Inadequate language support
No language is suitable for every possible application. Furthermore, programmers sometimes do not have the freedom to select the language that is most suitable for the task at hand. In many cases, libraries must be used to supplement the functionality of the language. Then, the library itself becomes a potential source of uncertainty reducing the predictability of execution.
[bookmark: _Toc358896375]5.3 Sources of unpredictability in language usage
[bookmark: _Toc358896376]5.3.1 Porting and interoperation
When a program is recompiled using a different compiler, recompiled using different switches, executed with different libraries, executed on a different platform, or even interfaced with different systems, its behaviour will change. Changes result from different choices for unspecified and implementation-defined behaviour, differences in library function, and differences in underlying hardware and operating system support. The problem is far worse if the original programmer chose to use implementation-dependent extensions to the language rather than staying with the standardized language.
[bookmark: _Toc358896377]5.3.2 Compiler selection and usage
Nearly all software has bugs and compilers are no exception. They should be carefully selected from trusted sources and qualified prior to use. Perhaps less obvious, though, is the use of compiler switches. Different switch settings can result in differences in generated code. A careful selection of settings can improve the predictability of code, for example, a setting that causes the flagging of any usage of an implementation-defined behaviour.
[bookmark: _Toc192557848][bookmark: _Toc358896378]6. Programming Language Vulnerabilities
[bookmark: _Toc358896379]6.1 General
This clause provides language-independent descriptions of vulnerabilities in programming languages that can lead to application vulnerabilities. Each description provides:
· a summary of the vulnerability,
· characteristics of languages where the vulnerability may be found,
· typical mechanisms of failure,
· techniques that programmers can use to avoid the vulnerability, and
· ways that language designers can modify language specifications in the future to help programmers mitigate the vulnerability.
Descriptions of how vulnerabilities are manifested in particular programming languages are provided in annexes of this Technical Report. In each case, the behaviour of the language is assumed to be as specified by the standard cited in the annex. Clearly, programs could have different vulnerabilities in a non-standard implementation. Examples of non-standard implementations include:
· compilers written to implement some specification other than the standard,
· use of non-standard vendor extensions to the language, and
· use of compiler switches providing alternative semantics.
[bookmark: _Toc358896380][bookmark: _Toc192557849]6.2 Terminology
The following descriptions are written in a language-independent manner except when specific languages are used in examples. The annexes may be consulted for language specific descriptions.
This clause will, in general, use the terminology that is most natural to the description of each individual vulnerability. Hence terminology may differ from description to description.
[bookmark: _Ref313956872][bookmark: _Toc358896381]6.3 Type System [IHN]
6.3.1 Description of application vulnerability
When data values are converted from one data type to another, even when done intentionally, unexpected results can occur.
6.3.2 Cross reference
JSF AV Rules: 148 and 183
MISRA C 2012: 4.6, 10.1, 10.3, and 10.4
MISRA C++ 2008: 3-9-2, 5-0-3 to 5-0-14
CERT C guidelines: DCL07-C, DCL11-C, DCL35-C, EXP05-C and EXP32-C
Ada Quality and Style Guide: 3.4
6.3.3 Mechanism of failure
The type of a data object informs the compiler how values should be represented and which operations may be applied. The type system of a language is the set of rules used by the language to structure and organize its collection of types. Any attempt to manipulate data objects with inappropriate operations is a type error. A program is said to be type safe (or type secure) if it can be demonstrated that it has no type errors [27].
Every programming language has some sort of type system. A language is statically typed if the type of every expression is known at compile time. The type system is said to be strong if it guarantees type safety and weak if it does not. There are strongly typed languages that are not statically typed because they enforce type safety with runtime checks [27].
In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the inclusion of mechanisms to bypass type safety in particular circumstances. For that reason and because every language has a different type system, this description will focus on taking advantage of whatever features for type safety may be available in the chosen language.
Sometimes it is appropriate for a data value to be converted from one type to another compatible one. For example, consider the following program fragment, written in no specific language:
float a;
integer i;
a := a + i;
The variable "i" is of integer type. It must beis converted to the float type before it can beis added to the data value. An implicit conversion, as shown, is called coercionThis is an implicit type conversion. If, on the other hand, the conversion must be explicitspecified by the program, for example, "a := a + float(i)", then it is an explicit type conversionthe conversion is called a cast.
Type equivalence is the strictest form of type compatibility; two types are equivalent if they are compatible without using coercion or castingimplicit or explicit conversion. Type equivalence is usually characterized in terms of name type equivalence—two variables have the same type if they are declared in the same declaration or declarations that use the same type name—or structure type equivalence—two variables have the same type if they have identical structures. There are variations of these approaches and most languages use different combinations of them [28]. Therefore, a programmer skilled in one language may very well code inadvertent type errors when using a different language.
It is desirable for a program to be type safe because the application of operations to operands of an inappropriate type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of static analysis for other problems. Searching for type errors is a valuable exercise because their presence often reveals design errors as well as coding errors. Many languages check for type errors—some at compile-time, others at run-time. Obviously, compile-time checking is more valuable because it can catch errors that are not executed by a particular set of test cases.
Making the most use of the type system of a language is useful in two ways. First, data conversions always bear the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits while the inverse conversion risks the loss of any fractional value. Conversion of an integer value from a type with a longer representation to a type with a shorter representation risks the loss of significant digits. This can produce particularly puzzling results if the value is used to index an array. Conversion of a floating-point value from a type with a longer representation to a type with a shorter representation risks the loss of precision. This can be particularly severe in computations where the number of calculations increases as a power of the problem size. (It should be noted that similar surprises can occur when an application is retargeted to a machine with different representations of numeric values.)
Second, a programmer can use the type system to increase the probability of catching design errors or coding blunders. For example, the following Ada fragment declares two distinct floating-point types:
	type Celsius is new Float;
	type Fahrenheit is new Float;
The declaration makes it impossible to add a value of type Celsius to a value of type Fahrenheit without explicit conversion.
6.3.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· Languages that support multiple types and allow conversions between types.
6.3.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Take advantage of any facility offered by the programming language to declare distinct types and use any mechanism provided by the language processor and related tools to check for or enforce type compatibility.
· Use available language and tools facilities to preclude or detect the occurrence of coercionimplicit type conversions. If it is not possible, use human review to assist in searching for coercionsimplicit conversions.
· Avoid casting explicit type conversion of data values except when there is no alternative. Document such occurrences so that the justification is made available to maintainers.
· Use the most restricted data type that suffices to accomplish the job. For example, use an enumeration type to select from a limited set of choices (such as, a switch statement or the discriminant of a union type) rather than a more general type, such as integer. This will make it possible for tooling to check if all possible choices have been covered.
· Treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue. Do not resolve the problem by modifying the code by insertingto include an explicit castconversion, without further analysis; instead examine the underlying design to determine if the type error is a symptom of a deeper problem.
· Never ignore instances of coercionimplicit type conversion; if the conversion is necessary, change it to a castan explicit conversion and document the rationale for use by maintainers.
· Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed as auxiliary variables, partial results and final results.
6.3.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language specifiers should standardize on a common, uniform terminology to describe their type systems so that programmers experienced in other languages can reliably learn the type system of a language that is new to them.
· Provide a mechanism for selecting data types with sufficient capability for the problem at hand.
· Provide a way for the computation to determine the limits of the data types actually selected.
· Language implementers should consider providing compiler switches or other tools to provide the highest possible degree of checking for type errors.
[bookmark: _Ref313957212][bookmark: _Toc358896382]6.4 Bit Representations [STR]
6.4.1 Description of application vulnerability
Interfacing with hardware, other systems and protocols often requires access to one or more bits in a single computer word, or access to bit fields that may cross computer words for the machine in question. Mistakes can be made as to what bits are to be accessed because of the “endianness” of the processor (see below) or because of miscalculations. Access to those specific bits may affect surrounding bits in ways that compromise their integrity. This can result in the wrong information being read from hardware, incorrect data or commands being given, or information being mangled, which can result in arbitrary effects on components attached to the system.
6.4.2 Cross reference
JSF AV Rules 147, 154 and 155
MISRA C 2012: 1.1, 6.1, 6.2, and 10.1
MISRA C++ 2008: 5-0-21, 5-2-4 to 5-2-9, and 9-5-1
CERT C guidelines: EXP38-C, INT00-C, INT07-C, INT12-C, INT13-C, and INT14-C
Ada Quality and Style Guide: 7.6.1 through 7.6.9, and 7.3.1
6.4.3 Mechanism of failure
Computer languages frequently provide a variety of sizes for integer variables. Languages may support short, integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level graphics or other external constructs may require each bit or set of bits to have a particular meaning. Those bit sets may or may not coincide with the sizes supported by a particular language implementation. When they do not, it is common practice to pack all of the bits into one word. Masking and shifting of the word using powers of two to pick out individual bits or using sums of powers of 2 to pick out subsets of bits (for example, using 28=22+23+24 to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits. Knowledge of the underlying bit storage is usually not necessary to accomplish simple extractions such as these. Problems can arise when programmers mix their techniques to reference the bits or output the bits. Problems can arise when programmers mix arithmetic and logical operations to reference the bits or output the bits. The storage ordering of the bits may not be what the programmer expects.
Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies of bit level programming must be known. Some computers or other devices store the bits left-to-right while others store them right-to-left. The kind of storage can cause problems when interfacing with external devices that expect the bits in the opposite order. One problem arises when assumptions are made when interfacing with external constructs and the ordering of the bits or words are not the same as the receiving entity. Programmers may inadvertently use the sign bit in a bit field and then may not be aware that an arithmetic shift (sign extension) is being performed when right shifting causing the sign bit to be extended into other fields. Alternatively, a left shift can cause the sign bit to be one. Bit manipulations can also be problematic when the manipulations are done on binary encoded records that span multiple words. The storage and ordering of the bits must be considered when doing bit-wise operations across multiple words as bytes may be stored in big-endian or little-endian format.
6.4.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow bit manipulations.
6.4.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Explicitly document aAny assumption aboutreliance on bit ordering should be explicitly documentedsuch as explicit bit patterns, shifts, or bit numbers.
· Understand tThe way bit ordering is done on the host system and on the systems with which the bit manipulations will be interfaced should be understood.
· Bit fields should be used in languages that support themWhere the language supports it, use bit fields in preference to binary, octal, or hex representations.
· Avoid bBit operationsors should not be used on signed operands.
· Localize and document the code associated with explicit manipulation of bits and bit fields.
· Use static analysis tools that identify and report reliance upon bit ordering or bit representation.
6.4.6 Implications for standardization
In future standardization activities, the following items should be considered:
· For languages that are commonly used for bit manipulations, an API (Application Programming Interface) for bit manipulations that is independent of word size and machine instruction set should be defined and standardized.
[bookmark: _Ref313957086][bookmark: _Ref313984470][bookmark: _Ref313984492][bookmark: _Ref313984499][bookmark: _Toc358896383]6.5 Floating-point Arithmetic [PLF]
6.5.1 Description of application vulnerability
Most real numbers cannot be represented exactly in a computer. To represent real numbers, most computers use IEC 60559 [7], or the US equivalent ANSI/IEEE Std 754 [35]. Furthermore the bit representation for a floating-point number can vary from compiler to compiler and on different platforms, however, relying on a particular representation can cause problems when a different compiler is used or the code is reused on another platform. Regardless of the representation, many real numbers can only be approximated since representing the real number using a binary representation may well require an endlessly repeating string of bits or more binary digits than are available for representation. Therefore it should be assumed that a floating-point number is only an approximation, even though it may be an extremely good one. Floating-point representation of a real number or a conversion to floating-point can cause surprising results and unexpected consequences to those unaccustomed to the idiosyncrasies of floating-point arithmetic.
Many algorithms that use floating point can have anomalous behaviour when used with certain values. The most common results are erroneous results or algorithms that never terminate for certain segments of the numeric domain, or for isolated values. Those without training or experience in numerical analysis may not be aware of which algorithms, or, for a particular algorithm, of which domain values should be the focus of attention.
6.5.2 Cross reference
JSF AV Rules: 146, 147, 184, 197, and 202
MISRA C 2012: 1.1 and 14.1
MISRA C++ 2008: 0-4-3, 3-9-3, and 6-2-2
CERT C guidelines: FLP00-C, FP01-C, FLP02-C and FLP30-C
Ada Quality and Style Guide: 5.5.6 and 7.2.1 through 7.2.8
6.5.3 Mechanism of failure
Floating-point numbers are generally only an approximation of the actual value. Expressed in base 10 world, the value of 1/3 is 0.333333… The same type of situation occurs in the binary world, but the numbers that can be represented with a limited number of digits in base 10, such as 1/10=0.1 become endlessly repeating sequences in the binary world. So 1/10 represented as a binary number is:
0.0001100110011001100110011001100110011001100110011…
Which is 0*1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64… and no matter how many digits are used, the representation will still only be an approximation of 1/10. Therefore when adding 1/10 ten times, the final result may or may not be exactly 1.
Accumulating floating point values through the repeated addition of values, particularly relatively small values, can provide unexpected results. Using an accumulated value to terminate a loop can result in an unexpected number of iterations. Rounding and truncation can cause tests of floating-point numbers against other values to yield unexpected results. Another cause of floating point errors is reliance upon comparisons of floating point values or the comparison of a floating point value with zero. Tests of equality or inequality can vary due to rounding or truncation errors, which may propagate far from the operation of origin. Even comparisons of constants may fail when a different rounding mode was employed by the compiler and by the application. Differences in magnitudes of floating-point numbers can result in no change of a very large floating-point number when a relatively small number is added to or subtracted from it.
Manipulating bits in floating-point numbers is also very implementation dependent. Typically special representations are specified for positive and negative zero and infinity. Relying on a particular bit representation is inherently problematic, especially when a new compiler is introduced or the code is reused on another platform. The uncertainties arising from floating-point can be divided into uncertainty about the actual bit representation of a given value (such as, big-endian or little-endian) and the uncertainty arising from the rounding of arithmetic operations (for example, the accumulation of errors when imprecise floating-point values are used as loop indices).
6.5.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· All languages with floating-point variables can be subject to rounding or truncation errors.
6.5.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Do not use a floating-point expression in a Boolean test for equality. Instead, use coding that determines the difference between the two values to determine whether the difference is acceptably small enough so that two values can be considered equal. Note that if the two values are very large, the “small enough” difference can be a very large number.
· Use library functions with known numerical characteristics whenever possible.
· Unless the use of floating-point is simple, an expert in numerical analysis should check the stability and accuracy of the algorithm employed.
· Avoid the use of a floating-point variable as a loop counter. If it is necessary to use a floating-point value as a loop control, use inequality to determine the loop control (that is, <, <=, > or >=).
· Understand the floating-point format used to represent the floating-point numbers. This will provide some understanding of the underlying idiosyncrasies of floating-point arithmetic.
· Manipulating the bit representation of a floating-point number should not be done except with built-in language operators and functions that are designed to extract the mantissa and exponent.
· Do not use floating-point for exact values such as monetary amounts. Use floating-point only when necessary such as for fundamentally inexact values such as measurements.
· Consider the use of decimal floating-point facilities when available.
6.5.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages that do not already adhere to or only adhere to a subset of IEC 60559 [7] should consider adhering completely to the standard. Examples of standardization that should be considered:
· C should consider requiring IEC 60559 for floating-point arithmetic, rather than providing it as an option, as is the case in ISO/IEC 9899:2011[4].
· Java should consider fully adhering to IEC 60559 instead of a subset.
· Languages should consider providing a means to generate diagnostics for code that attempts to test equality of two floating point values.
· Languages should consider standardizing their data type to ISO/IEC 10967-1:1994 and ISO/IEC 10967-2:2001.
[bookmark: _Ref313906129][bookmark: _Ref313906133][bookmark: _Ref313948292][bookmark: _Toc358896384]6.6 Enumerator Issues [CCB]
6.6.1 Description of application vulnerability
Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of integral values (called the representation) and an order between the members of the set. In some languages there are no other operations available except order, equality, first, last, previous, and next; in others the full underlying representation operators are available, such as integer “+” and “-” and bit-wise operations.
Most languages that provide enumeration types also provide mechanisms to set non-default representations. If these mechanisms do not enforce whole-type operations and check for conflicts then some members of the set may not be properly specified or may have the wrong mappings. If the value-setting mechanisms are positional only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.
For arrays indexed by enumerations with non-default representations, there is a risk of structures with holes, and if those indexes can be manipulated numerically, there is a risk of out-of-bound accesses of these arrays.
Most of these errors can be readily detected by static analysis tools with appropriate coding standards, restrictions and annotations. Similarly mismatches in enumeration value specification can be detected statically. Without such rules, errors in the use of enumeration types are computationally hard to detect statically as well as being difficult to detect by human review.
6.6.2 Cross reference
JSF AV Rule: 145
MISRA C 2012: 8.12, 9.2, and 9.3
MISRA C++ 2008: 8-5-3
CERT C guidelines: INT09-C
Holzmann rule 6
Ada Quality and Style Guide: 3.4.2
6.6.3 Mechanism of failure
As a program is developed and maintained the list of items in an enumeration often changes in three basic ways: new elements are added to the list; order between the members of the set often changes; and representation (the map of values of the items) change. Expressions that depend on the full set or specific relationships between elements of the set can create value errors that could result in wrong results or in unbounded behaviours if used as array indices.
Improperly mapped representations can result in some enumeration values being unreachable, or may create “holes” in the representation where values that cannot be defined are propagated.
If arrays are indexed by enumerations containing non-default representations, some implementations may leave space for values that are unreachable using the enumeration, with a possibility of unnecessarily large memory allocations or a way to pass information undetected (hidden channel).
When enumerators are set and initialized explicitly and the language permits incomplete initializers, then changes to the order of enumerators or the addition or deletion of enumerators can result in the wrong values being assigned or default values being assigned improperly. Subsequent indexing can result in invalid accesses and possibly unbounded behaviours.
6.6.4 Applicable language Characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that permit incomplete mappings between enumerator specification and value assignment, or that provide a positional-only mapping require additional static analysis tools and annotations to help identify the complete mapping of every literal to its value.
· Languages that provide a trivial mapping to a type such as integer require additional static analysis tools to prevent mixed type errors. They also cannot prevent invalid values from being placed into variables of such enumerator types. For example:
enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c = a + b;
In this example, c may have a value not defined by the enumeration, and any further use as that enumeration will lead to erroneous results.
· Some languages provide no enumeration capability, leaving it to the programmer to define named constants to represent the values and ranges.
6.6.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For languages with a complete enumeration abstraction this is the compiler.
· In code that performs different computations depending on the value of an enumeration, ensure that each possible enumeration value is covered, or provide a default that raises an error or exception.
· Use an enumerated type to select from a limited set of choices and use tools that statically detect omissions of possible values in an enumeration.
6.6.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages that currently permit arithmetic and logical operations on enumeration types could provide a mechanism to ban such operations program-wide.
· Languages that provide automatic defaults or that do not enforce static matching between enumerator definitions and initialization expressions could provide a mechanism to enforce such matching.
[bookmark: _Ref313948858][bookmark: _Toc358896385]6.7 Numeric Conversion Errors [FLC]
[bookmark: _Toc192557851]6.7.1 Description of application vulnerability
Certain contexts in various languages may require exact matches with respect to types [32]:
aVar := anExpression
value1 + value2
foo(arg1, arg2, arg3, … , argN)
Type -conversion seeks to follow these exact match rules while allowing programmers some flexibility in using values such as: structurally-equivalent types in a name-equivalent language, types whose value ranges may be distinct but intersect (for example, subranges), and distinct types with sensible/meaningful corresponding values (for example, integers and floats). Explicit conversions are called type casts XE "type casts" . An implicit type-conversion between compatible but not necessarily equivalent types is called type coercion XE "type coercion" .
Numeric conversions can lead to a loss of data, if the target representation is not capable of representing the original value. For example, converting from an integer type to a smaller integer type can result in truncation if the original value cannot be represented in the smaller size and converting a floating point to an integer can result in a loss of precision or an out-of-range value.
Type-conversion errors can lead to erroneous data being generated, algorithms that fail to terminate, array bounds-errors, or arbitrary program execution.
[bookmark: _Toc192557852]6.7.2 Cross reference
CWE:
192. Integer Coercion Error
MISRA C 2012: 7.2, 10.1, 10.3, 10.4, 10.6-10.8, and 11.1-11.8
MISRA C++ 2008: 2-13-3, 5-0-3, 5-0-4, 5-0-5, 5-0-6, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-2-5, 5-2-9, and 5-3-2
CERT C guidelines: FLP34-C, INT02-C, INT08-C, INT31-C, and INT35-C
[bookmark: _Toc192557854]6.7.3 Mechanism of failure
Numeric conversion errors results in data integrity issues, but they may also result in a number of safety and security vulnerabilities.
When the conversion results in no change in representation but a change in value for the new type, this may result in a value that is not expressible in the new type, or that has a dramatically different order or meaning. One such situation is the change of sign between the origin and destination (negative -> positive or positive -> negative), which changes the relative order of members of the two types and could result in memory access failures if the values are used in address calculations.
Vulnerabilities typically occur when appropriate range checking is not performed, and unanticipated values are encountered. These can result in safety issues, for example, when the Ariane 5 launcher failure occurred due to an improperly handled conversion error resulting in the processor being shutdown [29].
Conversion errors can also result in security issues. An attacker may input a particular numeric value to exploit a flaw in the program logic. The resulting erroneous value may then be used as an array index, a loop iterator, a length, a size, state data, or in some other security-critical manner. For example, a truncated integer value may be used to allocate memory, while the actual length is used to copy information to the newly allocated memory, resulting in a buffer overflow [30].
Numeric type-conversion errors often lead to undefined states of execution resulting in infinite loops or crashes. In some cases, integer type-conversion errors can lead to exploitable buffer overflow conditions, resulting in the execution of arbitrary code. Integer type-conversion errors result in an incorrect value being stored for the variable in question.
[bookmark: _Toc192557855]6.7.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that perform implicit type -conversion (coercion).
· Weakly typed languages that do not strictly enforce type rules.
· Languages that support logical, arithmetic, or circular shifts on integer values.
· Languages that do not generate exceptions on problematic conversions.
[bookmark: _Toc174091390][bookmark: _Toc192557856]6.7.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· The first line of defense against integer vulnerabilities should be range checking, either explicitly or through strong typing. AllIf range checking is not provided by the language, use explicit range checks to validate the correctness of all integer values originating from a source that is not trusted should be validated for correctness. However, it is difficult to guarantee that multiple input variables cannot be manipulated to cause an error to occur in some operation somewhere in a program [30].
· An alternative or ancillary approach isAlternatively, use explicit range checks to protect each operation. However, because of the large number of integer operations that are susceptible to these problems and the number of checks required to prevent or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to implement.
· Choose aA language that generates exceptions on erroneous data conversions might be chosen.
· Design objects and program flow such that multiple or complex casts explicit type conversions are unnecessary. Ensure thatUnderstand any data explicit type casting conversion that you must use is entirely understood to reduce the plausibility of error in use.
· The use ofUse static analysis can oftentools to identify whether or not unacceptable numeric conversions will occur, to the extent possible.
·
· Verifiably in-range operations are often preferable to treating out of range values as an error condition because the handling of these errors has been repeatedly shown to cause denial-of-service problems in actual applications. Faced with a numeric conversion error, the underlying computer system may do one of two things: (a) signal some sort of error condition, or (b) produce a numeric value that is within the range of representable values on that system. The latter semantics may be preferable in some situations in that it allows the computation to proceed, thus avoiding a denial-of-service attack. However, it raises the question of what numeric result to return to the userAvoid the use of “plausible but wrong” default values when a calculation cannot be completed correctly. Either generate an error or produce a value that is out of range and is certain to be detected. Take care that any error processing does not lead to a denial-of-service vulnerability.
A recent innovation from ISO/IEC TR 24731-1 [13] that has been added to the C standard 9899:2011 [4] is the definition of the rsize_t type for the C programming language. Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly. For example, negative numbers appear as very large positive numbers when converted to an unsigned type like size_t. Also, some implementations do not support objects as large as the maximum value that can be represented by type size_t. For these reasons, it is sometimes beneficial to restrict the range of object sizes to detect programming errors. For implementations targeting machines with large address spaces, it is recommended that RSIZE_MAX be defined as the smaller of the size of the largest object supported or (SIZE_MAX >> 1), even if this limit is smaller than the size of some legitimate, but very large, objects. Implementations targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX, which means that there is no object size that is considered a runtime-constraint violation.	Comment by dmk: This belongs in the C annex.
[bookmark: _Toc192557857]6.7.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider providing means similar to the ISO/IEC 9899:2011 [4] definition of rsize_t type for C to restrict object sizes so as to expose programming errors.
· Languages should consider making all type -conversions explicit or at least generating warnings for implicit conversions where loss of data might occur.
[bookmark: _Ref313948619][bookmark: _Toc358896386][bookmark: _Toc192557869]6.8 String Termination [CJM]
6.8.1 Description of application vulnerability
Some programming languages use a termination character to indicate the end of a string. Relying on the occurrence of the string termination character without verification can lead to either exploitation or unexpected behaviour.
6.8.2 Cross reference
CWE:
170. Improper Null Termination
CERT C guidelines: STR03-C, STR31-C, STR32-C, and STR36-C
6.8.3 Mechanism of failure
String termination errors occur when the termination character is solely relied upon to stop processing on the string and the termination character is not present. Continued processing on the string can cause an error or potentially be exploited as a buffer overflow. This may occur as a result of a programmer making an assumption that a string that is passed as input or generated by a library contains a string termination character when it does not.
Programmers may forget to allocate space for the string termination character and expect to be able to store an n length character string in an array that is n characters long. Doing so may work in some instances depending on what is stored after the array in memory, but it may fail or be exploited at some point.
6.8.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that use a termination character to indicate the end of a string.
· Languages that do not do bounds checking when accessing a string or array.
6.8.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Do not rely solely on the string termination character.
· Use library calls that do not rely on string termination characters such as strncpy instead of strcpy in the standard C library.
· Use static analysis tools that detect errors in string termination.
6.8.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Eliminating library calls that make assumptions about string termination characters.
· Checking bounds when an array or string is accessed.
· Specifying a string construct that does not need a string termination character.
[bookmark: _Ref313948896][bookmark: _Toc358896387]6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]
6.9.1 Description of application vulnerability
A buffer boundary violation arises when, due to unchecked array indexing or unchecked array copying, storage outside the buffer is accessed. Usually boundary violations describe the situation where such storage is then written. Depending on where the buffer is located, logically unrelated portions of the stack or the heap could be modified maliciously or unintentionally. Usually, buffer boundary violations are accesses to contiguous memory beyond either end of the buffer data, accessing before the beginning or beyond the end of the buffer data is equally possible, dangerous and maliciously exploitable.
6.9.2 Cross reference
CWE:
120. Buffer copy without Checking Size of Input (‘Classic Buffer Overflow’)
122. Heap-based Buffer Overflow
124. Boundary Beginning Violation (‘Buffer Underwrite’)
129. Unchecked Array Indexing
131. Incorrect Calculation of Buffer Size
787. Out-of-bounds Write
805. Buffer Access with Incorrect Length Value
JSF AV Rule: 15 and 25
MISRA C 2012: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, ARR38-C, MEM35-C and STR31-C
6.9.3 Mechanism of failure
The program statements that cause buffer boundary violations are often difficult to find.
There are several kinds of failures (in all cases an exception may be raised if the accessed location is outside of some permitted range of the run-time environment):
· A read access will return a value that has no relationship to the intended value, such as, the value of another variable or uninitialized storage.
· An out-of-bounds read access may be used to obtain information that is intended to be confidential.
· A write access will not result in the intended value being updated and may result in the value of an unrelated object (that happens to exist at the given storage location) being modified, including the possibility of changes in external devices resulting from the memory location being hardware-mapped.
· When an array has been allocated storage on the stack an out-of-bounds write access may modify internal runtime housekeeping information (for example, a function's return address) which might change a program’s control flow.
· An inadvertent or malicious overwrite of function pointers that may be in memory, causing them to point to an unexpected location or the attacker's code. Even in applications that do not explicitly use function pointers, the run-time will usually store pointers to functions in memory. For example, object methods in object-oriented languages are generally implemented using function pointers in a data structure or structures that are kept in memory. The consequence of a buffer boundary violation can be targeted to cause arbitrary code execution; this vulnerability may be used to subvert any security service.
6.9.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that do not detect and prevent an array being accessed outside of its declared bounds (either by means of an index or by pointer0F[footnoteRef:1]). [1: Using the physical memory address to access the memory location.]

· Languages that do not automatically allocate storage when accessing an array element for which storage has not already been allocated.
· Languages that provide bounds checking but permit the check to be suppressed.
· Languages that allow a copy or move operation without an automatic length check ensuring that source and target locations are of at least the same size. The destination target can be larger than the source being copied.
6.9.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use of implementation-provided functionality to automatically check array element accesses and prevent out-of-bounds accesses.
· Use of static analysis to verify that all array accesses are within the permitted bounds. Such analysis may require that source code contain certain kinds of information, such as, that the bounds of all declared arrays be explicitly specified, or that pre- and post-conditions be specified.
· Sanity checks should be performedPerform sanity checks on all calculated expressions used as an array index or for pointer arithmetic.
·
· Some guideline documents recommend only using variables having an unsigned data type when indexing an array, on the basis that an unsigned data type can never be negative. This recommendation simply converts an indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value rather than a negative one. Also some languages support arrays whose lower bound is greater than zero, so an index can be positive and be less than the lower bound. Some languages support zero-sized arrays, so any reference to a location within such an array is invalid.
· In the past the implementation of array bound checking has sometimes incurred what has been considered to be a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators to perform sophisticated analysis that significantly reduces the runtime overhead (because runtime checks are only made when it cannot be shown statically that no bound violations canAscertain whether or not the compiler can insert bounds checks while still meeting the performance requirements of the program and direct the compiler to insert such checks where appropriate. occur).
6.9.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should provide safe copying of arrays as built-in operation.
· Languages should consider only providing array copy routines in libraries that perform checks on the parameters to ensure that no buffer overrun can occur.
· Languages should perform automatic bounds checking on accesses to array elements, unless the compiler can statically determine that the check is unnecessary. This capability may need to be optional for performance reasons.
· Languages that use pointer types should consider specifying a standardized feature for a pointer type that would enable array bounds checking.
[bookmark: _Ref313957370][bookmark: _Toc358896388]6.10 Unchecked Array Indexing [XYZ]
6.10.1 Description of application vulnerability
Unchecked array indexing occurs when a value is used as an index into an array without checking that it falls within the acceptable index range.
6.10.2 Cross reference
CWE:
129. Unchecked Array Indexing
676. Use of Potentially Dangerous Function
JSF AV Rules: 164 and 15
MISRA C 2012: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, and ARR38-C
Ada Quality and Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8
6.10.3 Mechanism of failure
A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might use buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array index overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; that is, "buffer overflows" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition, with consequences ranging from denial of service, and data corruption, to arbitrary code execution. The most common situation leading to unchecked array indexing is the use of loop index variables as buffer indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore causing a buffer overflow or underflow. Another common situation leading to this condition is the use of a function's return value, or the resulting value of a calculation directly as an index in to a buffer. Unchecked array indexing can result in the corruption of relevant memory and perhaps instructions, lead to the program halting, if the values are outside of the valid memory area. If the memory corrupted is data, rather than instructions, the system might continue to function with improper values. If the corrupted memory can be effectively controlled, it may be possible to execute arbitrary code, as with a standard buffer overflow.
Language implementations might or might not statically detect out of bound access and generate a compile-time diagnostic. At runtime the implementation might or might not detect the out-of-bound access and provide a notification. The notification might be treatable by the program or it might not be. Accesses might violate the bounds of the entire array or violate the bounds of a particular index. It is possible that the former is checked and detected by the implementation while the latter is not. The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.)
Aside from bounds checking, some languages have ways of protecting against out-of-bounds accesses. Some languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some languages provide for whole array operations that may obviate the need to access individual elements thus preventing unchecked array accesses.
6.10.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that do not automatically bounds check array accesses.
· Languages that do not automatically extend the bounds of an array to accommodate array accesses.
6.10.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Include sanity checks to ensure the validity of any values used as index variables.
· The choice could be made to use a language that is not susceptible to these issues.
· When available, use whole array operations whenever possible.
6.10.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider providing compiler switches or other tools to check the size and bounds of arrays and their extents that are statically determinable.
· Languages should consider providing whole array operations that may obviate the need to access individual elements.
· Languages should consider the capability to generate exceptions or automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds.
[bookmark: _Ref313957363][bookmark: _Toc358896389]6.11 Unchecked Array Copying [XYW]
6.11.1 Description of application vulnerability
A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to another and the amount being copied is greater than is allocated for the destination buffer.
6.11.2 Cross reference
CWE:
121. Stack-based Buffer Overflow
JSF AV Rule: 15
MISRA C 2012: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR33-C and STR31-C
Ada Quality and Style Guide: 7.6.7 and 7.6.8
6.11.3 Mechanism of failure
Many languages and some third party libraries provide functions that efficiently copy the contents of one area of storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied from/to storage area is large enough to accommodate the amount of data being copied.
The arguments to these library functions include the addresses of the contents of the two storage areas and the number of bytes (or some other measure) to copy. Passing the appropriate combination of incorrect start addresses or number of bytes to copy makes it possible to read or write outside of the storage allocated to the source/destination area. When passed incorrect parameters the library function performs one or more unchecked array index accesses, as described in 6.10 Unchecked Array Indexing [XYZ].
6.11.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that contain standard library functions for performing bulk copying of storage areas.
· The same range of languages having the characteristics listed in 6.10 Unchecked Array Indexing [XYZ].
6.11.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur (perhaps by writing a wrapper for the Standard provided functions). Perform checks on the argument expressions prior to calling the Standard library function to ensure that no buffer overrun will occur.
· Use static analysis to verify that the appropriate library functions are only called with arguments that do not result in a buffer overrun. Such analysis may require that source code contain certain kinds of information, for example, that the bounds of all declared arrays be explicitly specified, or that pre- and post-conditions be specified as annotations or language constructs.
[bookmark: _Ref336414790]6.11.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider only providing libraries that perform checks on the parameters to ensure that no buffer overrun can occur.
· Languages should consider providing full array assignment.
[bookmark: _Ref313948959][bookmark: _Toc358896390]6.12 Pointer Type Casting Conversions and Pointer Type Changes [HFC]
6.12.1 Description of application vulnerability
The code produced for access via a data or function pointer requires that the type of the pointer is appropriate for the data or function being accessed. Otherwise undefined behaviour can occur. Specifically, “access via a data pointer” is defined to be “fetch or store indirectly through that pointer” and “access via a function pointer” is defined to be “invocation indirectly through that pointer.” The detailed requirements for what is meant by the “appropriate” type may vary among languages.
Even if the type of the pointer is appropriate for the access, erroneous pointer operations can still cause a fault.
 6.12.2 Cross reference
CWE:
136. Type Errors
188. Reliance on Data/Memory Layout
JSF AV Rules: 182 and 183
MISRA C 2012: 11.1-11.8
MISRA C++ 2008: 5-2-2 to 5-2-9
CERT C guidelines: INT11-C and EXP36-A
Hatton 13: Pointer casts
Ada Quality and Style Guide: 7.6.7 and 7.6.8
6.12.3 Mechanism of failure
If a pointer’s type is not appropriate for the data or function being accessed, data can be corrupted or privacy can be broken by inappropriate read or write operation using the indirection provided by the pointer value. With a suitable type definition, large portions of memory can be maliciously or accidentally modified or read. Such modification of data objects will generally lead to value faults of the application. Modification of code elements such as function pointers or internal data structures for the support of object-orientation can affect control flow. This can make the code susceptible to targeted attacks by causing invocation via a pointer-to-function that has been manipulated to point to an attacker’s malicious code.
6.12.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
1. Pointers (and/or references) can be converted to different pointer types.
1. Pointers to functions can be converted to pointers to data.
6.12.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
1. Treat the compiler’s pointer-conversion warnings as serious errors.
1. Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions. For example, consider the rules itemized above from JSF AV [15], CERT C [11], Hatton [18], or MISRA C [12].
1. [bookmark: _GoBack]Use oOther means of assurance might includesuch as proofs of correctness, analysis with tools, verification techniques, or other methods to check that pointer conversions do not lead to later undefined behaviour.
6.12.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider creating a mode that provides a runtime check of the validity of all accessed objects before the object is read, written or executed.
[bookmark: _Ref313957150][bookmark: _Toc358896391]6.13 Pointer Arithmetic [RVG]
6.13.1 Description of application vulnerability
Using pointer arithmetic incorrectly can result in addressing arbitrary locations, which in turn can cause a program to behave in unexpected ways.
6.13.2 Cross reference
JSF AV Rule: 215
MISRA C 2012: 18.1-18.4
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: EXP08-C
6.13.3 Mechanism of failure
Pointer arithmetic used incorrectly can produce:
· Addressing arbitrary memory locations, including buffer underflow and overflow.
· Arbitrary code execution.
· Addressing memory outside the range of the program.
6.13.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow pointer arithmetic.
6.13.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Avoid using pointer arithmetic for accessing anything except composite types.
· Prefer indexing for accessing array elements rather than using pointer arithmetic.
· Limit pointer arithmetic calculations to the addition and subtraction of integers.
6.13.6 Implications for standardization
	[None]
[bookmark: _Ref313957324][bookmark: _Toc358896392]6.14 Null Pointer Dereference [XYH]
[bookmark: _Toc192557871]6.14.1 Description of application vulnerability
A null-pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to a valid memory location. This is a special case of accessing storage via an invalid pointer.
[bookmark: _Toc192557872]6.14.2 Cross reference
CWE:
476. NULL Pointer Dereference
JSF AV Rule 174
CERT C guidelines: EXP34-C
Ada Quality and Style Guide: 5.4.5
[bookmark: _Toc192557874]6.14.3 Mechanism of failure
When a pointer with a value of NULL is used as though it pointed to a valid memory location, then a null-pointer dereference is said to take place. This can result in a segmentation fault, unhandled exception, or accessing unanticipated memory locations.
[bookmark: _Toc192557875]6.14.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that permit the use of pointers and that do not check the validity of the location being accessed prior to the access.
· Languages that allow the use of a NULL pointer.
[bookmark: _Toc192557876]6.14.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Before dereferencing a pointer, ensure it is not equal to NULL.
[bookmark: _Toc192557877]6.14.6 Implications for standardization
In future standardization activities, the following items should be considered:
· A language feature that would check a pointer value for NULL before performing an access should be considered.
[bookmark: _Toc192557879][bookmark: _Ref313957330][bookmark: _Toc358896393]6.15 Dangling Reference to Heap [XYK]
[bookmark: _Toc192557881]6.15.1 Description of application vulnerability
A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack frame in which the object resided has been freed due to exiting the dynamic scope. The memory for the object may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location of memory, corrupting data or code.
This description concerns the former case, dangling references to the heap. The description of dangling references to stack frames is [DCM]. In many languages references are called pointers; the issues are identical.
A notable special case of using a dangling reference is calling a deallocator, for example, free(), twice on the same pointer value. Such a “Double Free” may corrupt internal data structures of the heap administration, leading to faulty application behaviour (such as infinite loops within the allocator, returning the same memory repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to another request since the first free()call, to name but a few), or it may have no adverse effects at all.
Memory corruption through the use of a dangling reference is among the most difficult of errors to locate.
With sufficient knowledge about the heap management scheme (often provided by the OS (Operating System) or run-time system), use of dangling references is an exploitable vulnerability, since the dangling reference provides a method with which to read and modify valid data in the designated memory locations after freed memory has been re-allocated by subsequent allocations.
[bookmark: _Toc192557882]6.15.2 Cross reference
CWE:
415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))
416. Use After Free
MISRA C 2012: 18.1-18.6
MISRA C++ 2008: 0-3-1, 7-5-1, 7-5-2, 7-5-3, and 18-4-1
CERT C guidelines: MEM01-C, MEM30-C, and MEM31.C
Ada Quality and Style Guide: 5.4.5, 7.3.3, and 7.6.6
[bookmark: _Toc192557884]6.15.3 Mechanism of failure
The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved for it. An object exists and retains its last-stored value throughout its lifetime. If an object is referred to outside of its lifetime, the behaviour is undefined. Explicit deallocation of heap-allocated storage ends the lifetime of the object residing at this memory location (as does leaving the dynamic scope of a declared variable). The value of a pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are called dangling references.
The use of dangling references to previously freed memory can have any number of adverse consequences — ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse of the freed memory, and of the subsequent usage of a dangling reference.
Like memory leaks and errors due to double de-allocation, the use of dangling references has two common and sometimes overlapping causes:
· An error condition or other exceptional circumstances that unexpectedly cause an object to become undefined.
· Developer confusion over which part of the program is responsible for freeing the memory.
If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallocated. Therefore, assignment using the original pointer has the effect of changing the value of an unrelated variable. This induces unexpected behaviour in the affected program. If the newly allocated data happens to hold a class description, in an object-oriented language for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address of malicious code, execution of arbitrary code can be achieved.
[bookmark: _Toc192557885]6.15.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that permit the use of pointers and that permit explicit deallocation by the developer or provide for alternative means to reallocate memory still pointed to by some pointer value.
· Languages that permit definitions of constructs that can be parameterized without enforcing the consistency of the use of parameter at compile time.
[bookmark: _Toc192557886]6.15.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use an implementation that checks whether a pointer is used that designates a memory location that has already been freed.
· Use a coding style that does not permit deallocation.
· In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the language is object-oriented, ensure that object destructors delete each chunk of memory only once. Ensuring that all pointers are set to NULL once the memory they point to have been freed can be an effective strategy. The utilization of multiple or complex data structures may lower the usefulness of this strategy.
· Use a static analysis tool that is capable of detecting some situations when a pointer is used after the storage it refers to is no longer a pointer to valid memory location.
· Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to programming defects such as double-free vulnerabilities, accessing freed memory, or dereferencing NULL pointers or pointers that are not initialized. To avoid these situations, it is recommended that memory be allocated and freed at the same level of abstraction, and ideally in the same code module.
[bookmark: _Toc192316172][bookmark: _Toc192325324][bookmark: _Toc192325826][bookmark: _Toc192326328][bookmark: _Toc192326830][bookmark: _Toc192327334][bookmark: _Toc192557387][bookmark: _Toc192557888][bookmark: _Toc192557889]6.15.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Implementations of the free function could tolerate multiple frees on the same reference/pointer or frees of memory that was never allocated.
· Language specifiers should design generics in such a way that any attempt to instantiate a generic with constructs that do not provide the required capabilities results in a compile-time error.
· For properties that cannot be checked at compile time, language specifiers should provide an assertion mechanism for checking properties at run-time. It should be possible to inhibit assertion checking if efficiency is a concern.
· A storage allocation interface should be provided that will allow the called function to set the pointer used to NULL after the referenced storage is deallocated.
[bookmark: _Ref313948839][bookmark: _Toc358896394][bookmark: _Toc192557921]6.16 Arithmetic Wrap-around Error [FIF]
6.16.1 Description of application vulnerability
Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the minimum value representable in its type and, depending upon
· whether the type is signed or unsigned,
· the specification of the language semantics and/or
· implementation choices,
"wraps around" to an unexpected value. This vulnerability is related to 6.17 Using Shift Operations for Multiplication and Division [PIK][footnoteRef:2]. [2: This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of this international technical report.]

6.16.2 Cross reference
CWE:
128. Wrap-around Error
190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2012: 7.2, 10.1, 10.3, 10.4, 10.6, 10.7, and 12.4
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1
CERT C guidelines: INT30-C, INT32-C, and INT34-C
6.16.3 Mechanism of failure
Due to how arithmetic is performed by computers, if a variable’s value is increased past the maximum value representable in its type, the system may fail to provide an overflow indication to the program. One of the most common processor behaviour is to “wrap” to a very large negative value, or set a condition flag for overflow or underflow, or saturate at the largest representable value.
Wrap-around often generates an unexpected negative value; this unexpected value may cause a loop to continue for a long time (because the termination condition requires a value greater than some positive value) or an array bounds violation. A wrap-around can sometimes trigger buffer overflows that can be used to execute arbitrary code.
It should be noted that the precise consequences of wrap-around differ depending on:
· Whether the type is signed or unsigned.
· Whether the type is a modulus type.
· Whether the type’s range is violated by exceeding the maximum representable value or falling short of the minimum representable value.
· The semantics of the language specification.
· Implementation decisions.
However, in all cases, the resulting problem is that the value yielded by the computation may be unexpected.
6.16.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that do not trigger an exception condition when a wrap-around error occurs.
6.16.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Determine applicable upper and lower bounds for the range of all variables and use language mechanisms or static analysis to determine that values are confined to the proper range.
· Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.
6.16.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language standards developers should consider providing facilities to specify either an error, a saturated value, or a modulo result when numeric overflow occurs. Ideally, the selection among these alternatives could be made by the programmer.
[bookmark: _Ref313957075][bookmark: _Toc358896395]6.17 Using Shift Operations for Multiplication and Division [PIK]
6.17.1 Description of application vulnerability
Using shift operations as a surrogate for multiply or divide may produce an unexpected value when the sign bit is changed or when value bits are lost. This vulnerability is related to 6.16 Arithmetic Wrap-around Error [FIF][footnoteRef:3]. [3: This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of this international technical report.]

6.17.2 Cross reference
CWE:
128. Wrap-around Error
190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2012: 7.2, 10.1, 10.3, 10.4, 10.6, 10.7, and 12.4
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1
CERT C guidelines: INT30-C, INT32-C, and INT34-C
6.17.3 Mechanism of failure
Shift operations intended to produce results equivalent to multiplication or division fail to produce correct results if the shift operation affects the sign bit or shifts significant bits from the value.
Such errors often generate an unexpected negative value; this unexpected value may cause a loop to continue for a long time (because the termination condition requires a value greater than some positive value) or an array bounds violation. The error can sometimes trigger buffer overflows that can be used to execute arbitrary code.
6.17.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that permit logical shift operations on variables of arithmetic type.
6.17.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Determine applicable upper and lower bounds for the range of all variables and use language mechanisms or static analysis to determine that values are confined to the proper range.
· Analyze the software using static analysis looking for unexpected consequences of shift operations.
· Avoid using shift operations as a surrogate for multiplication and division. Most compilers will use the correct operation in the appropriate fashion when it is applicable.
6.17.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Not providing logical shifting on arithmetic values or flagging it for reviewers.
[bookmark: _Toc192557966][bookmark: _Ref313957382][bookmark: _Toc358896396]6.18 Sign Extension Error [XZI]
[bookmark: _Toc192557968]6.18.1 Description of application vulnerability
Extending a signed variable that holds a negative value may produce an incorrect result.
[bookmark: _Toc192557969]6.18.2 Cross reference
CWE:
194. Incorrect Sign Extension
MISRA C++ 2008: 5-0-4
CERT C guidelines: INT13-C
[bookmark: _Toc192557971]6.18.3 Mechanism of failure
Converting a signed data type to a larger data type or pointer can cause unexpected behaviour due to the extension of the sign bit. A negative data element that is extended with an unsigned extension algorithm will produce an incorrect result. For instance, this can occur when a signed character is converted to a type short or a signed integer (32-bit) is converted to an integer type long (64-bit). Sign extension errors can lead to buffer overflows and other memory based problems. This can occur unexpectedly when moving software designed and tested on a 32-bit architecture to a 64-bit architecture computer.
[bookmark: _Toc192557972]6.18.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that are weakly typed due to their lack of enforcement of type classifications and interactions.
· Languages that explicitly or implicitly allow applying unsigned extension operations to signed entities or vice-versa.
[bookmark: _Toc192557973]6.18.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use a sign extension library, standard function, or appropriate language-specific coding methods to extend signed values.
· Use static analysis tools to help locate situations in which the conversion of variables might have unintended consequences.
[bookmark: _Toc192557974]6.18.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language definitions should define implicit and explicit conversions in a way that prevents alteration of the mathematical value beyond traditional rounding rules.
[bookmark: _Ref313956996][bookmark: _Toc358896397]6.19 Choice of Clear Names [NAI]
6.19.1 Description of application vulnerability
Humans sometimes choose similar or identical names for objects, types, aggregates of types, subprograms and modules. They tend to use characteristics that are specific to the native language of the software developer to aid in this effort, such as use of mixed-casing, underscores and periods, or use of plural and singular forms to support the separation of items with similar names. Similarly, development conventions sometimes use casing for differentiation (for example, all uppercase for constants).
Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in name so little that human reviewers are unlikely to distinguish between them, or when the system maps such entities to a single entity.
Conventions such as the use of capitalization, and singular/plural distinctions may work in small and medium projects, but there are a number of significant issues to be considered:
· Large projects often have mixed languages and such conventions are often language-specific.
· Many implementations support identifiers that contain international character sets and some language character sets have different notions of casing and plurality.
· Different word-forms tend to be language and dialect specific, such as a pidgin, and may be meaningless to humans that speak other dialects.
An important general issue is the choice of names that differ from each other negligibly (in human terms), for example by differing by only underscores, (none, "_" "__"), plurals ("s"), visually similar characters (such as "l" and "1", "O" and "0"), or underscores/dashes ("-","_"). [There is also an issue where identifiers appear distinct to a human but identical to the computer, such as FOO, Foo, and foo in some computer languages.] Character sets extended with diacritical marks and non-Latin characters may offer additional problems. Some languages or their implementations may pay attention to only the first n characters of an identifier.
The problems described above are different from overloading or overriding where the same name is used intentionally (and documented) to access closely linked sets of subprograms. This is also different than using reserved names which can lead to a conflict with the reserved use and the use of which may or may not be detected at compile time.
Name confusion can lead to the application executing different code or accessing different objects than the writer intended, or than the reviewers understood. This can lead to outright errors, or leave in place code that may execute sometime in the future with unacceptable consequences.
Although most such mistakes are unintentional, it is plausible that such usages can be intentional, if masking surreptitious behaviour is a goal.
6.19.2 Cross reference
JSF AV Rules: 48-56
MISRA C 2012: 1.1
CERT C guidelines: DCL02-C
Ada Quality and Style Guide: 3.2
6.19.3 Mechanism of Failure
Calls to the wrong subprogram or references to the wrong data element (that was missed by human review) can result in unintended behaviour. Language processors will not make a mistake in name translation, but human cognition limitations may cause humans to misunderstand, and therefore may be missed in human reviews.
6.19.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages with relatively flat name spaces will be more susceptible. Systems with modules, classes, packages can use qualification to disambiguate names that originate from different parents.
· Languages that provide preconditions, post conditions, invariances and assertions or redundant coding of subprogram signatures help to ensure that the subprograms in the module will behave as expected, but do nothing if different subprograms are called.
· Languages that treat letter case as significant. Some languages do not differentiate between names with differing case, while others do.
6.19.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Implementers can create coding standards that provide meaningful guidance on name selection and use. Good language specific guidelines could eliminate most problems.
· Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of names. Human review can then often spot the names that are sorted at an unexpected location or which look almost identical to an adjacent name in the list.
· Use static tools (often the compiler) to detect declarations that are unused.
· Use languages with a requirement to declare names before use or use available tool or compiler options to enforce such a requirement.
6.19.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages that do not require declarations of names should consider providing an option that does impose that requirement.
[bookmark: _Ref313957315][bookmark: _Toc358896398]6.20 Dead Store [WXQ]
6.20.1 Description of application vulnerability
A variable's value is assigned but never subsequently used, either because the variable is not referenced again, or because a second value is assigned before the first is used. This may suggest that the design has been incompletely or inaccurately implemented, for example, a value has been created and then ‘forgotten about’.
This vulnerability is very similar to 6.21 Unused Variable [YZS].
6.20.2 Cross reference
CWE:
563. Unused Variable
MISRA C++ 2008: 0-1-4 and 0-1-6
CERT C guidelines: MSC13-C
See also 6.21 Unused Variable [YZS]
6.20.3 Mechanism of failure
A variable is assigned a value but this is never subsequently used. Such an assignment is then generally referred to as a dead store.
A dead store may be indicative of careless programming or of a design or coding error; as either the use of the value was forgotten (almost certainly an error) or the assignment was performed even though it was not needed (at best inefficient). Dead stores may also arise as the result of mistyping the name of a variable, if the mistyped name matches the name of a variable in an enclosing scope.
There are legitimate uses for apparent dead stores. For example, the value of the variable might be intended to be read by another execution thread or an external device. In such cases, though, the variable should be marked as volatile. Common compiler optimization techniques will remove apparent dead stores if the variables are not marked as volatile, hence causing incorrect execution.
A dead store is justifiable if, for example:
· The code has been automatically generated, where it is commonplace to find dead stores introduced to keep the generation process simple and uniform.
· The code is initializing a sparse data set, where all members are cleared, and then selected values assigned a value.
6.20.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Any programming language that provides assignment.
6.20.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use static analysis to identify any dead stores in the program, and ensure that there is a justification for them.
· If variables are intended to be accessed by other execution threads or external devices, mark them as volatile.
· Avoid declaring variables of compatible types in nested scopes with similar names.
6.20.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider providing optional warning messages for dead store.
[bookmark: _Ref313957409][bookmark: _Toc358896399]6.21 Unused Variable [YZS]
6.21.1 Description of application vulnerability
An unused variable is one that is declared but neither read nor written in the program. This type of error suggests that the design has been incompletely or inaccurately implemented.
Unused variables by themselves are innocuous, but they may provide memory space that attackers could use in combination with other techniques.
This vulnerability is similar to 6.20 Dead Store [WXQ] if the variable is initialized but never used.
6.21.2 Cross reference
CWE:
563. Unused Variable
MISRA C++ 2008: 0-1-3
CERT C guidelines: MSC13-C
See also 6.20 Dead Store [WXQ]
6.21.3 Mechanism of failure
A variable is declared, but never used. The existence of an unused variable may indicate a design or coding error.
Because compilers routinely diagnose unused local variables, their presence may be an indication that compiler warnings are either suppressed or are being ignored.
While unused variables are innocuous, they may provide available memory space to be used by attackers to exploit other vulnerabilities.
6.21.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that provide variable declarations.
6.21.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Enable detection of unused variables in the compiler.
6.21.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider requiring mandatory diagnostics for unused variables.
[bookmark: _Ref313957400][bookmark: _Toc358896400]6.22 Identifier Name Reuse [YOW]
6.22.1 Description of application vulnerability
When distinct entities are defined in nested scopes using the same name it is possible that program logic will operate on an entity other than the one intended.
When it is not clear which identifier is used, the program could behave in ways that were not predicted by reading the source code. This can be found by testing, but circumstances can arise (such as the values of the same-named objects being mostly the same) where harmful consequences occur. This weakness can also lead to vulnerabilities such as hidden channels where humans believe that important objects are being rewritten or overwritten when in fact other objects are being manipulated.
For example, the innermost definition is deleted from the source, the program will continue to compile without a diagnostic being issued (but execution can produce unexpected results).
6.22.2 Cross reference
JSF AV Rules: 120 and 135-9
MISRA C 2012: 5.3, 5.8, 5.9, 21.1, 21.2
MISRA C++ 2008: 2-10-2, 2-10-3, 2-10-4, 2-10-5, 2-10-6, 17-0-1, 17-0-2, and 17-0-3
CERT C guidelines: DCL01-C and DCL32-C
Ada Quality and Style Guide: 5.6.1 and 5.7.1
6.22.3 Mechanism of failure
Many languages support the concept of scope. One of the ideas behind the concept of scope is to provide a mechanism for the independent definition of identifiers that may share the same name.
For instance, in the following code fragment:

int some_var;
{
 int t_var;
 int some_var; /* definition in nested scope */

 t_var = 3;
 some_var = 2;
}

an identifier called some_var has been defined in different scopes.
If either the definition of some_var or t_var that occurs in the nested scope is deleted (for example, when the source is modified) it is necessary to delete all other references to the identifier’s scope. If a developer deletes the definition of t_var but fails to delete the statement that references it, then most languages require a diagnostic to be issued (such as reference to undefined variable). However, if the nested definition of some_var is deleted but the reference to it in the nested scope is not deleted, then no diagnostic will be issued (because the reference resolves to the definition in the outer scope).
In some cases non-unique identifiers in the same scope can also be introduced through the use of identifiers whose common substring exceeds the length of characters the implementation considers to be distinct. For example, in the following code fragment:
extern int global_symbol_definition_lookup_table_a[100];
extern int global_symbol_definition_lookup_table_b[100];
the external identifiers are not unique on implementations where only the first 31 characters are significant. This situation only occurs in languages that allow multiple declarations of the same identifier (other languages require a diagnostic message to be issued).
A related problem exists in languages that allow overloading or overriding of keywords or standard library function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.
Definitions for new identifiers should not use a name that is already visible within the scope containing the new definition. Alternately, utilize language-specific facilities that check for and prevent inadvertent overloading of names should be used.
6.22.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· Languages that allow the same name to be used for identifiers defined in nested scopes.
· Languages where unique names can be transformed into non-unique names as part of the normal tool chain.
6.22.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Ensure that a definition of an entity does not occur in a scope where a different entity with the same name is accessible and can be used in the same context. A language-specific project coding convention can be used to ensure that such errors are detectable with static analysis.
· Ensure that a definition of an entity does not occur in a scope where a different entity with the same name is accessible and has a type that permits it to occur in at least one context where the first entity can occur.
· Use language features, if any, which explicitly mark definitions of entities that are intended to hide other definitions.
· Develop or use tools that identify name collisions or reuse when truncated versions of names cause conflicts.
· Ensure that all identifiers differ within the number of characters considered to be significant by the implementations that are likely to be used, and document all assumptions.
6.22.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should require mandatory diagnostics for variables with the same name in nested scopes.
· Languages should require mandatory diagnostics for variable names that exceed the length that the implementation considers unique.
· Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or standard library function identifiers.
[bookmark: _Ref313906186][bookmark: _Toc358896401]6.23 Namespace Issues [BJL]
6.23.1 Description of Application Vulnerability
If a language provides separate, non-hierarchical namespaces, a user-controlled ordering of namespaces, and a means to make names declared in these name spaces directly visible to an application, the potential of unintentional and possible disastrous change in application behaviour can arise, when names are added to a namespace during maintenance.
Namespaces include constructs like packages, modules, libraries, classes or any other means of grouping declarations for import into other program units.
6.23.2 Cross references
 MISRA C++ 2008: 7-3-1, 7-3-3, 7-3-5, 14-5-1, and 16-0-2
6.23.3 Mechanism of Failure
The failure is best illustrated by an example. Namespace N1 provides the name A but not B; Namespace N2 provides the name B but not A. The application wishes to use A from N1 and B from N2. At this point, there are no obvious issues. The application chooses (or needs to) import the namespaces to obtain names for direct usage, for an example.
Use N1, N2; – presumed to make all names in N1 and N2 directly visible
… X := A + B;
The semantics of the above example are intuitive and unambiguous.
Later, during maintenance, the name B is added to N1. The change to the namespace usually implies a recompilation of dependent units. At this point, two declarations of B are applicable for the use of B in the above example.
Some languages try to disambiguate the above situation by stating preference rules in case of such ambiguity among names provided by different name spaces. If, in the above example, N1 is preferred over N2, the meaning of the use of B changes silently, presuming that no typing error arises. Consequently the semantics of the program change silently and assuredly unintentionally, since the implementer of N1 cannot assume that all users of N1 would prefer to take any declaration of B from N1 rather than its previous namespace.
It does not matter what the preference rules actually are, as long as the namespaces are mutable. The above example is easily extended by adding A to N2 to show a symmetric error situation for a different precedence rule.
If a language supports overloading of subprograms, the notion of “same name” used in the above example is extended to mean not only the same name, but also the same signature of the subprogram. For vulnerabilities associated with overloading and overriding, see 6.22 Identifier Name Reuse [YOW]. In the context of namespaces, however, adding signature matching to the name binding process, merely extends the described problem from simple names to full signatures, but does not alter the mechanism or quality of the described vulnerability. In particular, overloading does not introduce more ambiguity for binding to declarations in different name spaces.
This vulnerability not only creates unintentional errors. It also can be exploited maliciously, if the source of the application and of the namespaces is known to the aggressor and one of the namespaces is mutable by the attacker.
6.23.4 Applicable Language Characteristics
The vulnerability is applicable to languages with the following characteristics:
· Languages that support non-hierarchical separate name-spaces, have means to import all names of a namespace “wholesale” for direct use, and have preference rules to choose among multiple imported direct homographs. All three conditions need to be satisfied for the vulnerability to arise.
6.23.5 Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Avoiding “wholesale” import directives
· Using only selective “single name” import directives or using fully qualified names (in both cases, provided that the language offers the respective capabilities)
6.23.6 Implications for Standardization
In future standardization activities, the following items should be considered:
· Languages should not have preference rules among mutable namespaces. Ambiguities should be invalid and avoidable by the user, for example, by using names qualified by their originating namespace.
[bookmark: _Ref313956938][bookmark: _Toc358896402]6.24 Initialization of Variables [LAV]
6.24.1 Description of application vulnerability
Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable execution in the block that uses the value of the variable, and has the potential to export bad values to callers, or cause out-of-bounds memory accesses.
Uninitialized variable usage is frequently not detected until after testing and often when the code in question is delivered and in use, because happenstance will provide variables with adequate values (such as default data settings or accidental left-over values) until some other change exposes the defect.
Variables that are declared during module construction (by a class constructor, instantiation, or elaboration) may have alternate paths that can read values before they are set. This can happen in straight sequential code but is more prevalent when concurrency or co-routines are present, with the same impacts described above.
Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects are incrementally built, or fields are added under maintenance.
When possible and supported by the language, whole-structure initialization is preferable to field-by-field initialization statements, and named association is preferable to positional, as it facilitates human review and is less susceptible to failures under maintenance. For classes, the declaration and initialization may occur in separate modules. In such cases it must be possible to show that every field that needs an initial value receives that value, and to document ones that do not require initial values.
6.24.2 Cross reference
CWE:
457. Use of Uninitialized Variable
JSF AV Rules: 71, 143, and 147
MISRA C 2012: 9.1, 9.2, and 9.3
MISRA C++ 2008: 8-5-1
CERT C guidelines: DCL14-C and EXP33-C
Ada Quality and Style Guide: 5.9.6
6.24.3 Mechanism of failure
Uninitialized objects may have invalid values, valid but wrong values, or valid and dangerous values. Wrong values could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause wrong calculations and results.
There is a special case of pointers or access types. When such a type contains null values, a bound violation and hardware exception can result. When such a type contains plausible but meaningless values, random data reads and writes can collect erroneous data or can destroy data that is in use by another part of the program; when such a type is an access to a subprogram with a plausible (but wrong) value, then either a bad instruction trap may occur or a transfer to an unknown code fragment can occur. All of these scenarios can result in undefined behaviour.
Uninitialized variables are difficult to identify and use for attackers, but can be arbitrarily dangerous in safety situations.
6.24.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that permit variables to be read before they are assigned.
6.24.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· The general problem of showing that all objects are initialized is intractable; hence developers must carefully structure programs to show that all variables are set before first read on every path throughout the subprogram. Where objects are visible from many modules, it is difficult to determine where the first read occurs, and identify a module that must set the value before that read. When concurrency, interrupts and coroutines are present, it becomes especially imperative to identify where early initialization occurs and to show that the correct order is set via program structure, not by timing, OS precedence, or chance.
· The simplest method is to initialize each object at elaboration time, or immediately after subprogram execution commences and before any branches. If the subprogram must commence with conditional statements, then the programmer is responsible to show that every variable declared and not initialized earlier is initialized on each branch. However, the initial value must be a sensible value for the logic of the program. So-called "junk initialization", for example, setting every variable to zero, prevents the use of tools to detect otherwise uninitialized variables.
· Applications can consider defining or reserving fields or portions of the object to only be set when fully initialized. However, this approach has the effect of setting the variable to possibly mistaken values while defeating the use of static analysis to find the uninitialized variables.
· It should be possible to use static analysis tools to show that all objects are set before use in certain specific cases, but as the general problem is intractable, programmers should keep initialization algorithms simple so that they can be analyzed.
· When declaring and initializing the object together, if the language does not require that the compiler statically verify that the declarative structure and the initialization structure match, use static analysis tools to help detect any mismatches.
· When setting compound objects, if the language provides mechanisms to set all components together, use those in preference to a sequence of initializations as this helps coverage analysis; otherwise use tools that perform such coverage analysis and document the initialization. Do not perform partial initializations unless there is no choice, and document any deviations from 100% initialization.
· Where default assignments of multiple components are performed, explicit declaration of the component names and/or ranges helps static analysis and identification of component changes during maintenance.
· Some languages have named assignments that can be used to build reviewable assignment structures that can be analyzed by the language processor for completeness. Languages with positional notation only can use comments and secondary tools to help show correct assignment.
6.24.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Some languages have ways to determine if modules and regions are elaborated and initialized and to raise exceptions if this does not occur. Languages that do not could consider adding such capabilities.
· Languages could consider setting aside fields in all objects to identify if initialization has occurred, especially for security and safety domains.
· Languages that do not support whole-object initialization could consider adding this capability.
[bookmark: _Toc192558046][bookmark: _Ref313956888][bookmark: _Toc358896403]6.25 Operator Precedence/Order of Evaluation [JCW]
[bookmark: _Toc192558048]6.25.1 Description of application vulnerability
Each language provides rules of precedence and associativity, for each expression that operands bind to which operators. These rules are also known as “grouping” or “binding”.
Experience and experimental evidence shows that developers can have incorrect beliefs about the relative precedence of many binary operators. See, Developer beliefs about binary operator precedence. C Vu, 18(4):14-21, August 2006
6.25.2 Cross reference
JSF AV Rules: 204 and 213
MISRA C 2012: 10.1, 12.1, 13.2, 14.4, 20.7, 20.10, and 20.11
MISRA C++ 2008: 4-5-1, 4-5-2, 4-5-3, 5-0-1, 5-0-2, 5-2-1, 5-3-1, 16-0-6, 16-3-1, and 16-3-2
CERT C guidelines: EXP00-C
Ada Quality and Style Guide: 7.1.8 and 7.1.9
[bookmark: _Toc192558050]6.25.3 Mechanism of failure
In C and C++, the bitwise operators (bitwise logical and bitwise shift) are sometimes thought of by the programmer having similar precedence to arithmetic operations, so just as one might correctly write “x – 1 == 0” (“x minus one is equal to zero”), a programmer might erroneously write “x & 1 == 0”, mentally thinking “x anded-with 1 is equal to zero”, whereas the operator precedence rules of C and C++ actually bind the expression as “compute 1==0, producing ‘false’ interpreted as zero, then bitwise-and the result with x”, producing (a constant) zero, contrary to the programmer’s intent.
Examples from an opposite extreme can be found in programs written in APL, which is noteworthy for the absence of any distinctions of precedence. One commonly made mistake is to write “a * b + c”, intending to produce “a times b plus c”, whereas APL’s uniform right-to-left associativity produces “b plus c, times a”.
[bookmark: _Toc192558051]6.25.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages whose precedence and associativity rules are sufficiently complex that developers do not remember them.
[bookmark: _Toc192558052]6.25.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules itemized above from JSF AV [15], CERT C [11] or MISRA C [12].
· Use parentheses around binary operator combinations that are known to be a source of error (for example, mixed arithmetic/bitwise and bitwise/relational operator combinations).
· Break up complex expressions and use temporary variables to make the order clearer.
[bookmark: _Toc192558053]6.25.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language definitions should avoid providing precedence or a particular associativity for operators that are not typically ordered with respect to one another in arithmetic, and instead require full parenthesization to avoid misinterpretation.
[bookmark: _Ref313957170][bookmark: _Toc358896404]6.26 Side-effects and Order of Evaluation [SAM]
6.26.1 Description of application vulnerability
Some programming languages allow subexpressions to cause side-effects (such as assignment, increment, or decrement). For example, some programming languages permit such side-effects, and if, within one expression (such as “i = v[i++]”), two or more side-effects modify the same object, undefined behaviour results.
Some languages allow subexpressions to be evaluated in an unspecified ordering, or even removed during optimization. If these subexpressions contain side-effects, then the value of the full expression can be dependent upon the order of evaluation. Furthermore, the objects that are modified by the side-effects can receive values that are dependent upon the order of evaluation.
If a program contains these unspecified or undefined behaviours, testing the program and seeing that it yields the expected results may give the false impression that the expression will always yield the expected result.
6.26.2 Cross reference
JSF AV Rules: 157, 158, 166, 204, 204.1, and 213
MISRA C 2012: 12.1, 13.2, 13.5 and 13.6
MISRA C++ 2008: 5-0-1
CERT C guidelines: EXP10-C, EXP30-C
Ada Quality and Style Guide: 7.1.8 and 7.1.9
6.26.3 Mechanism of failure
When subexpressions with side effects are used within an expression, the unspecified order of evaluation can result in a program producing different results on different platforms, or even at different times on the same platform. For example, consider
a = f(b) + g(b);
where f and g both modify b. If f(b) is evaluated first, then the b used as a parameter to g(b) may be a different value than if g(b) is performed first. Likewise, if g(b) is performed first, f(b) may be called with a different value of b.
Other examples of unspecified order, or even undefined behaviour, can be manifested, such as
a = f(i) + i++;
or
a[i++] = b[i++];
Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding side-effects and order of evaluation are not changed by the presence of parentheses; consider
j = i++ * i++;
where even if parentheses are placed around the i++ subexpressions, undefined behaviour still remains. (All examples use the syntax of C or Java for brevity; the effects can be created in any language that allows functions with side-effects in the places where C allows the increment operations.)
The unpredictable nature of the calculation means that the program cannot be tested adequately to any degree of confidence. A knowledgeable attacker can take advantage of this characteristic to manipulate data values triggering execution that was not anticipated by the developer.
6.26.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that permit expressions to contain subexpressions with side effects.
· Languages whose subexpressions are computed in an unspecified ordering.
6.26.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Make use of one or more programming guidelines which (a) prohibit these unspecified or undefined behaviours, and (b) can be enforced by static analysis. (See JSF AV and MISRA rules in Cross reference clause [SAM])
· Keep expressions simple. Complicated code is prone to error and difficult to maintain.
6.26.6 Implications for standardization
In future standardization activities, the following items should be considered:
· In developing new or revised languages, give consideration to language features that will eliminate or mitigate this vulnerability, such as pure functions.
[bookmark: _Toc192558055][bookmark: _Ref313956928][bookmark: _Toc358896405]6.27 Likely Incorrect Expression [KOA]
[bookmark: _Toc192558057]6.27.1 Description of application vulnerability
Certain expressions are symptomatic of what is likely to be a mistake made by the programmer. The statement is not contrary to the language standard, but is unlikely to be intended. The statement may have no effect and effectively is a null statement or may introduce an unintended side-effect. A common example is the use of = in an if expression in C where the programmer meant to do an equality test using the == operator. Other easily confused operators in C are the logical operators such as && for the bitwise operator &, or vice versa. It is valid and possible that the programmer intended to do an assignment within the if expression, but due to this being a common error, a programmer doing so would be using a poor programming practice. A less likely occurrence, but still possible is the substitution of == for = in what is supposed to be an assignment statement, but which effectively becomes a null statement. These mistakes may survive testing only to manifest themselves in deployed code where they may be maliciously exploited.
[bookmark: _Toc192558058]6.27.2 Cross reference
CWE:
480. Use of Incorrect Operator
481. Assigning instead of Comparing
482. Comparing instead of Assigning
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 160 and 166
MISRA C 2012: 2.2, 13.3-13.6, and 14.3
MISRA C++ 2008: 0-1-9, 5-0-1, 6-2-1, and 6-5-2
CERT C guidelines: MSC02-C and MSC03-C
[bookmark: _Toc192558060]6.27.3 Mechanism of failure
Some of the failures are simply a case of programmer carelessness. Substitution of = instead of == in a Boolean test is easy to do and most C and C++ programmers have made this mistake at one time or another. Other instances can be the result of intricacies of the language definition that specifies what part of an expression must be evaluated. For instance, having an assignment expression in a Boolean statement is likely making an assumption that the complete expression will be executed in all cases. However, this is not always the case as sometimes the truth-value of the Boolean expression can be determined after only executing some portion of the expression. For instance:
if ((a == b) || (c = (d-1)))
Should (a==b) be determined to be true, then there is no need for the subexpression (c=(d-1)) to be executed and as such, the assignment (c=(d-1)) will not occur.
Embedding expressions in other expressions can yield unexpected results. Increment and decrement operators (++ and --) can also yield unexpected results when mixed into a complex expression.
Incorrectly calculated results can lead to a wide variety of erroneous program execution
[bookmark: _Toc192558061]6.27.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· All languages are susceptible to likely incorrect expressions.
[bookmark: _Toc192558062]6.27.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Simplify expressions.
· Do not use assignment expressions as function parameters. Sometimes the assignment may not be executed as expected. Instead, perform the assignment before the function call.
· Do not perform assignments within a Boolean expression. This is likely unintended, but if it is not, then move the assignment outside of the Boolean expression for clarity and robustness.
· On some rare occasions, some statements intentionally do not have side effects and do not cause control flow to change. These should be annotated through comments and made obvious that they are intentionally no-ops with a stated reason. If possible, such reliance on null statements should be avoided. In general, except for those rare instances, all statements should either have a side effect or cause control flow to change.
[bookmark: _Toc192558063]6.27.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider providing warnings for statements that are unlikely to be right such as statements without side effects. A null (no-op) statement may need to be added to the language for those rare instances where an intentional null statement is needed. Having a null statement as part of the language will reduce confusion as to why a statement with no side effects is present in code.
· Languages should consider not allowing assignments used as function parameters.
· Languages should consider not allowing assignments within a Boolean expression.
· Language definitions should avoid situations where easily confused symbols (such as = and ==, or ; and :, or != and /=) are valid in the same context. For example, = is not generally valid in an if statement in Java because it does not normally return a boolean value.
[bookmark: _Toc192557931][bookmark: _Ref313957433][bookmark: _Toc358896406]6.28 Dead and Deactivated Code [XYQ]
[bookmark: _Toc192557933]6.28.1 Description of application vulnerability
Dead and Deactivated code is code that exists in the executable, but which can never be executed, either because there is no call path that leads to it (for example, a function that is never called), or the path is semantically infeasible (for example, its execution depends on the state of a conditional that can never be achieved).
Dead and Deactivated code may be undesirable because it may indicate the possibility of a coding error. A security issue is also possible if a “jump target” is injected. Many safety standards prohibit dead code because dead code is not traceable to a requirement.
Also covered in this vulnerability is code which is believed to be dead, but which is inadvertently executed.
Dead and Deactivated code is considered separately from the description of Unused Variable, which is provided by [YZS].
[bookmark: _Toc192316222][bookmark: _Toc192325374][bookmark: _Toc192325876][bookmark: _Toc192326378][bookmark: _Toc192326880][bookmark: _Toc192327384][bookmark: _Toc192557437][bookmark: _Toc192557938][bookmark: _Toc192557939]6.28.2 Cross reference
CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 127 and 186
MISRA C 2012: 2.1 and 4.4
MISRA C++ 2008: 0-1-1 to 0-1-10, 2-7-2, and 2-7-3
CERT C guidelines: MSC07-C and MSC12-C
DO-178B/C
[bookmark: _Toc192557941]6.28.3 Mechanism of failure
DO-178B defines Dead and Deactivated code as:
· Dead code – Executable object code (or data) which cannot be executed (code) or used (data) in an operational configuration of the target computer environment and is not traceable to a system or software requirement.
· Deactivated code – Executable object code (or data) which by design is either (a) not intended to be executed (code) or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or used (data) in certain configurations of the target computer environment, for example, code that is enabled by a hardware pin selection or software programmed options.
Dead code is code that exists in an application, but which can never be executed, either because there is no call path to the code (for example, a function that is never called) or because the execution path to the code is semantically infeasible, as in
integer i = 0;
if (i == 0)
then fun_a();
else fun_b();
fun_b is dead code, as only fun_a can ever be executed.
Compilers that optimize sometimes generate and then remove dead code, including code placed there by the programmer. The deadness of code can also depend on the linking of separately compiled modules.
The presence of dead code is not in itself an error. There may also be legitimate reasons for its presence, for example:
· Defensive code, only executed as the result of a hardware failure.
· Code that is part of a library not required in this application.
· Diagnostic code not executed in the operational environment.
· Code that is temporarily deactivated but may be needed soon. This may occur as a way to make sure the code is still accepted by the language translator to reduce opportunities for errors when it is reactivated.
· Code that is made available so that it can be executed manually via a debugger
Such code may be referred to as “deactivated”. That is, dead code that is there by intent.
There is a secondary consideration for dead code in languages that permit overloading of functions and other constructs that use complex name resolution strategies. The developer may believe that some code is not going to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be selected as the best match for some use that was intended to be of an overloading function. That is, although the developer believes it is never going to be used, in practice it is used in preference to the intended function.
However, it may be the case that because of some other error, the code is rendered unreachable. Therefore, any dead code should be reviewed and documented.
[bookmark: _Toc192557942]6.28.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow code to exist in the executable that can never be executed.
[bookmark: _Toc192557943]6.28.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· The developer should endeavor to remove dead code from an application unless its presence serves a purpose.
· When a developer identifies code that is dead because a conditional consistently evaluates to the same value, this could be indicative of an earlier bug or it could be indicative of inadequate path coverage in the test regimen. Additional investigation may be needed to ascertain why the same value is occurring.
· The developer should identify any dead code in the application, and provide a justification (if only to themselves) as to why it is there.
· The developer should also ensure that any code that was expected to be unused is actually documented as dead code.
· The developer should apply standard branch coverage measurement tools and ensure by 100% coverage that all branches are neither dead nor deactivated.
· The developer should use analysis tools to identify unreachable code.
[bookmark: _Toc192557944]6.28.6 Implications for standardization
[None]
[bookmark: _Toc192558016][bookmark: _Ref313948640][bookmark: _Toc358896407]6.29 Switch Statements and Static Analysis [CLL]
[bookmark: _Toc192558018]6.29.1 Description of application vulnerability
Many programming languages provide a construct, such as a C-like switch statement, that chooses among multiple alternative control flows based upon the evaluated result of an expression. The use of such constructs may introduce application vulnerabilities if not all possible cases appear within the switch or if control unexpectedly flows from one alternative to another.
[bookmark: _Toc192558019]6.29.2 Cross reference
JSF AV Rules: 148, 193, 194, 195, and 196
MISRA C 2012: 16.3-16.6
MISRA C++ 2008: 6-4-3, 6-4-5, 6-4-6, and 6-4-8
CERT C guidelines: MSC01-C
Ada Quality and Style Guide: 5.6.1 and 5.6.10
[bookmark: _Toc192558021]6.29.3 Mechanism of failure
The fundamental challenge when using a switch statement is to make sure that all possible cases are, in fact, treated correctly.
[bookmark: _Toc192558022]6.29.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
1. Languages that contain a construct, such as a switch statement, that provides a selection among alternative control flows based on the evaluation of an expression.
1. Languages that do not require full coverage of a switch statement.
1. Languages that provide a default case (choice) in a switch statement.
[bookmark: _Toc192558023]6.29.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Base the switch choice upon the value of an expression that has a small number of potential values that can be statically enumerated. In languages that provide them, a variable of an enumerated type is to be preferred because a possible set of values is known statically and is small in number (as compared, for example, to the value set of an integer variable). Where it is practical to statically enumerate the switched type, it is preferable to omit the default case, because the static analysis is simplified and because maintainers can better understand the intent of the original programmer. When one must switch based upon the value of an instance of some other type, it is necessary to have a default case, preferably to be regarded as a serious error condition.
· Avoid “flowing through” from one case to another. Even if correctly implemented, it is difficult for reviewers and maintainers to distinguish whether the construct was intended or is an error of omission3F[footnoteRef:4]. In cases where flow-through is necessary and intended, an explicitly coded branch may be preferable to clearly mark the intent. Providing comments regarding intention can be helpful to reviewers and maintainers. [4: Using multiple labels on individual alternatives is not a violation of this recommendation, though.]

· Perform static analysis to determine if all cases are, in fact, covered by the code. (Note that the use of a default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted alternatives were or were not intended for default treatment.)
· Other means of mitigation include manual review, bounds testing, tool analysis, verification techniques, and proofs of correctness.
[bookmark: _Toc192558024]6.29.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language specifications could require compilers to ensure that a complete set of alternatives is provided in cases where the value set of the switch variable can be statically determined.
[bookmark: _Toc192558026][bookmark: _Ref313948694][bookmark: _Toc358896408]6.30 Demarcation of Control Flow [EOJ]
[bookmark: _Toc192558028]6.30.1 Description of application vulnerability
Some programming languages explicitly mark the end of an if statement or a loop, whereas other languages mark only the end of a block of statements. Languages of the latter category are prone to oversights by the programmer, causing unintended sequences of control flow.
[bookmark: _Toc192558029]6.30.2 Cross reference
JSF AV Rules: 59 and 192
MISRA C 2012: 15.6 and 15.7
MISRA C++ 2008: 6-3-1, 6-4-1, 6-4-2, 6-4-3, 6-4-8, 6-5-1, 6-5-6, 6-6-1 to 6-6-5, and16-0-2
Hatton 18: Control flow – if structure
Ada Quality and Style Guide: 3, 5.6.1 through 5.6.10
[bookmark: _Toc192558031]6.30.3 Mechanism of failure
Programmers may rely on indentation to determine inclusion of statements within constructs. Testing of the software may not reveal that statements that appear to be included in a construct (due to formatting) actually lay outside of it because of the absence of a terminator. Moreover, for a nested if-then-else statement the programmer may be confused about which if statement controls the else part directly. This can lead to unexpected results.
[bookmark: _Toc192558032]6.30.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
1. Languages that contain loops and conditional statements that are not explicitly terminated by an “end” construct.
[bookmark: _Toc192558033]6.30.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
1. Adopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that program structure is apparent.
1. Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules itemized above from JSF AV, MISRA C, MISRA C++ or Hatton.
1. Other means of assurance might include proofs of correctness, analysis with tools, verification techniques, or other methods.
1. Pretty-printers and syntax-aware editors may be helpful in finding such problems, but sometimes disguise them.
1. Include a final else statement at the end of if-…-else-if constructs to avoid confusion.
1. Always enclose the body of statements of an if, while, for, do, or other statements potentially introducing a block of code in braces (“{}”) or other demarcation indicators appropriate to the language used.
[bookmark: _Toc192558034]6.30.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Specifiers of languages should consider adding a mode that strictly enforces compound conditional and looping constructs with explicit termination, such as “end if” or a closing bracket.
· Specifiers of languages might consider explicit termination of loops and conditional statements.
· Specifiers might consider features to terminate named loops and conditionals and determine if the structure as named matches the structure as inferred.
[bookmark: _Ref313957302][bookmark: _Toc358896409]6.31 Loop Control Variables [TEX]
6.31.1 Description of application vulnerability
Many languages support a looping construct whose number of iterations is controlled by the value of a loop control variable. Looping constructs provide a method of specifying an initial value for this loop control variable, a test that terminates the loop and the quantity by which it should be decremented or incremented on each loop iteration.
In some languages it is possible to modify the value of the loop control variable within the body of the loop. Experience shows that such value modifications are sometimes overlooked by readers of the source code, resulting in faults being introduced.
6.31.2 Cross reference
JSF AV Rule: 201
MISRA C 2012: 14.2
MISRA C++ 2008: 6-5-1 to 6-5-6
6.31.3 Mechanism of failure
Readers of source code often make assumptions about what has been written. A common assumption is that a loop control variable is not modified in the body of the loop. A programmer may write incorrect code based on this assumption.
6.31.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that permit a loop control variable to be modified in the body of its associated loop.
6.31.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Not modifying a loop control variable in the body of its associated loop body.
· Some languages, such as C and C++ do not explicitly specify which of the variables appearing in a loop header is the control variable for the loop. MISRA C [12] and MISRA C++ [16] have proposed algorithms for deducing which, if any, of these variables is the loop control variable in the programming languages C and C++ (these algorithms could also be applied to other languages that support a C-like for-loop).
6.31.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language designers should consider the addition of an identifier type for loop control that cannot be modified by anything other than the loop control construct.
[bookmark: _Toc192557976][bookmark: _Ref313957450][bookmark: _Toc358896410]6.32 Off-by-one Error [XZH]
[bookmark: _Toc192557978]6.32.1 Description of application vulnerability
A program uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value. This usually arises from one of a number of situations where the bounds as understood by the developer differ from the design, such as:
· Confusion between the need for < and <= or > and >= in a test.
· Confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 when the underlying structure is indexed from 0; beginning an algorithm at 0 when the underlying structure is indexed from 1 (or some other start point); or using the length of a structure as its bound instead of the sentinel values.
· Failing to allow for storage of a sentinel value, such as the NULL string terminator that is used in the C and C++ programming languages.
These issues arise from mistakes in mapping the design into a particular language, in moving between languages (such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when exchanging data between languages with different default array bounds.
The issue also can arise in algorithms where relationships exist between components, and the existence of a bounds value changes the conditions of the test.
The existence of this possible flaw can also be a serious security hole as it can permit someone to surreptitiously provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidden channels.
[bookmark: _Toc192557979]6.32.2 Cross reference
CWE:
193. Off-by-one Error
[bookmark: _Toc192557981]6.32.3 Mechanism of failure
An off-by-one error could lead to:
· an out-of bounds access to an array (buffer overflow),
· incomplete comparisons or calculation mistakes,
· a read from the wrong memory location, or
· an incorrect conditional.
Such incorrect accesses can cause cascading errors or references to invalid locations, resulting in potentially unbounded behaviour.
Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit externally, but the cascading errors and boundary-condition errors can be severe.
[bookmark: _Toc192557982]6.32.4 Applicable language characteristics
As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any language; however, it is most likely to occur when:
· The language relies on the developer having implicit knowledge of structure start and end indices (for example, knowing whether arrays start at 0 or 1 – or indeed some other value).
· Where the language relies upon explicit bounds values to terminate variable length arrays.
[bookmark: _Toc192557983]6.32.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· A systematic development process, use of development/analysis tools and thorough testing are all common ways of preventing errors, and in this case, off-by-one errors.
· Where references are being made to structure indices and the languages provide ways to specify the whole structure or the starting and ending indices explicitly (for example, Ada provides xxx'First and xxx'Last for each dimension), these should be used always. Where the language doesn't provide these, constants can be declared and used in preference to numeric literals.
· Where the language doesn’t encapsulate variable length arrays, encapsulation should be provided through library objects and a coding standard developed that requires such arrays to only be used via those library objects, so the developer does not need to be explicitly concerned with managing bounds values.
[bookmark: _Toc192557984]6.32.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should provide encapsulations for arrays that:
· Prevent the need for the developer to be concerned with explicit bounds values.
· Provide the developer with symbolic access to the array start, end and iterators.
[bookmark: _Toc174091383][bookmark: _Ref313948712][bookmark: _Toc358896411]6.33 Structured Programming [EWD]
[bookmark: _Toc174091385]6.33.1 Description of application vulnerability
Programs that have a convoluted control structure are likely to be more difficult to be human readable, less understandable, harder to maintain, more difficult to modify, harder to statically analyze, more difficult to match the allocation and release of resources, and more likely to be incorrect.
[bookmark: _Toc174091386]6.33.2 Cross reference
JSF AV Rules: 20, 113, 189, 190, and 191
MISRA C 2012: 15.1-15.3, and 21.4
MISRA C++ 2008: 6-6-1, 6-6-2, 6-6-3, and 17-0-5
CERT C guidelines: SIG32-C
Ada Quality and Style Guide: 3, 4, 5.4, 5.6, and 5.7
[bookmark: _Toc174091388]6.33.3 Mechanism of failure
Lack of structured programming can lead to:
· Memory or resource leaks.
· Error-prone maintenance.
· Design that is difficult or impossible to validate.
· Source code that is difficult or impossible to statically analyze.
[bookmark: _Toc174091389]6.33.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow leaving a loop without consideration for the loop control.
· Languages that allow local jumps (goto statement).
· Languages that allow non-local jumps (setjmp/longjmp in the C programming language).
· Languages that support multiple entry and exit points from a function, procedure, subroutine or method.
6.33.5 Avoiding the vulnerability or mitigating its effects
Use only those features of the programming language that enforce a logical structure on the program. The program flow follows a simple hierarchical model that employs looping constructs such as for, repeat, do, and while.
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Avoid using language features such as goto.
· Avoid using language features such as continue and break in the middle of loops.
· Avoid using language features that transfer control of the program flow via a jump.
· Avoid multiple exit points to a function/procedure/method/subroutine.
· Avoid multiple entry points to a function/procedure/method/subroutine.
[bookmark: _Toc174091391]6.33.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should support and favor structured programming through their constructs to the extent possible.
[bookmark: _Ref71795799][bookmark: _Ref313948653][bookmark: _Toc358896412]6.34 Passing Parameters and Return Values [CSJ]
6.34.1 Description of application vulnerability
Nearly every procedural language provides some method of process abstraction permitting decomposition of the flow of control into routines, functions, subprograms, or methods. (For the purpose of this description, the term subprogram will be used.) To have any effect on the computation, the subprogram must change data visible to the calling program. It can do this by changing the value of a non-local variable, changing the value of a parameter, or, in the case of a function, providing a return value. Because different languages use different mechanisms with different semantics for passing parameters, a programmer using an unfamiliar language may obtain unexpected results.
6.34.2 Cross reference
JSF AV Rules: 116, 117, and 118
MISRA C 2012: 8.2, 8.3, 8.13, and 17.1-17.3
MISRA C++ 2008: 0-3-2, 7-1-2, 8-4-1, 8-4-2, 8-4-3, and 8-4-4
CERT C guidelines: EXP12-C and DCL33-C
Ada Quality and Style Guide: 5.2 and 8.3
6.34.3 Mechanism of failure
The mechanisms for parameter passing include: call by reference, call by copy, and call by name. The last is so specialized and supported by so few programming languages that it will not be treated in this description.
In call by reference, the calling program passes the addresses of the arguments to the called subprogram. When the subprogram references the corresponding formal parameter, it is actually sharing data with the calling program. If the subprogram changes a formal parameter, then the corresponding actual argument is also changed. If the actual argument is an expression or a constant, then the address of a temporary location is passed to the subprogram; this may be an error in some languages.
In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters act as local variables. Values are passed between the actual arguments and the formal parameters by copying. Some languages may control changes to formal parameters based on labels such as in, out, or inout. There are three cases to consider: call by value for in parameters; call by result for out parameters and function return values; and call by value-result for inout parameters. For call by value, the calling program evaluates the actual arguments and copies the result to the corresponding formal parameters that are then treated as local variables by the subprogram. For call by result, the values of the locals corresponding to formal parameters are copied to the corresponding actual arguments. For call by value-result, the values are copied in from the actual arguments at the beginning of the subprogram's execution and back out to the actual arguments at its termination.
The obvious disadvantage of call by copy is that extra copy operations are needed and execution time is required to produce the copies. Particularly if parameters represent sizable objects, such as large arrays, the cost of call by copy can be high. For this reason, many languages also provide the call by reference mechanism. The disadvantage of call by reference is that the calling program cannot be assured that the subprogram hasn't changed data that was intended to be unchanged. For example, if an array is passed by reference to a subprogram intended to sum its elements, the subprogram could also change the values of one or more elements of the array. However, some languages enforce the subprogram's access to the shared data based on the labeling of actual arguments with modes—such as in, out, or inout or by constant pointers.
Another problem with call by reference is unintended aliasing. It is possible that the address of one actual argument is the same as another actual argument or that two arguments overlap in storage. A subprogram, assuming the two formal parameters to be distinct, may treat them inappropriately. For example, if one codes a subprogram to swap two values using the exclusive-or method, then a call to swap(x,x) will zero the value of x. Aliasing can also occur between arguments and non-local objects. For example, if a subprogram modifies a non-local object as a side-effect of its execution, referencing that object by a formal parameter will result in aliasing and, possibly, unintended results.
Some languages provide only simple mechanisms for passing data to subprograms, leaving it to the programmer to synthesize appropriate mechanisms. Often, the only available mechanism is to use call by copy to pass small scalar values or pointer values containing addresses of data structures. Of course, the latter amounts to using call by reference with no checking by the language processor. In such cases, subprograms can pass back pointers to anything whatsoever, including data that is corrupted or absent.
Some languages use call by copy for small objects, such as scalars, and call by reference for large objects, such as arrays. The choice of mechanism may even be implementation-defined. Because the two mechanisms produce different results in the presence of aliasing, it is very important to avoid aliasing.
An additional problem may occur if the called subprogram fails to assign a value to a formal parameter that the caller expects as an output from the subprogram. In the case of call by reference, the result may be an uninitialized variable in the calling program. In the case of call by copy, the result may be that a legitimate initialization value provided by the caller is overwritten by an uninitialized value because the called program did not make an assignment to the parameter. This error may be difficult to detect through review because the failure to initialize is hidden in the subprogram.
An additional complication with subprograms occurs when one or more of the arguments are expressions. In such cases, the evaluation of one argument might have side-effects that result in a change to the value of another or unintended aliasing. Implementation choices regarding order of evaluation could affect the result of the computation. This particular problem is described in Side-effects and Order of Evaluation clause [SAM].
6.34.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that provide mechanisms for defining subprograms where the data passes between the calling program and the subprogram via parameters and return values. This includes methods in many popular object-oriented languages.
6.34.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use available mechanisms to label parameters as constants or with modes like in, out, or inout.
· When a choice of mechanisms is available, pass small simple objects using call by copy.
· When a choice of mechanisms is available and the computational cost of copying is tolerable, pass larger objects using call by copy.
· When the choice of language or the computational cost of copying forbids using call by copy, then take safeguards to prevent aliasing:
· Minimize side-effects of subprograms on non-local objects; when side-effects are coded, ensure that the affected non-local objects are not passed as parameters using call by reference.
· To avoid unintentional aliasing, avoid using expressions or functions as actual arguments; instead assign the result of the expression to a temporary local and pass the local.
· Utilize tools or other forms of analysis to ensure that non-obvious instances of aliasing are absent.
· Perform reviews or analysis to determine that called subprograms fulfill their responsibilities to assign values to all output parameters.
6.34.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Programming language specifications could provide labels—such as in, out, and inout—that control the subprogram’s access to its formal parameters, and enforce the access.
[bookmark: _Ref313948661][bookmark: _Toc358896413]6.35 Dangling References to Stack Frames [DCM]
6.35.1 Description of application vulnerability
Many languages allow treating the address of a local variable as a value stored in other variables. Examples are the application of the address operator in C or C++, or of the ‘Access or ‘Address attributes in Ada. In some languages, this facility is also used to model the call-by-reference mechanism by passing the address of the actual parameter by-value. An obvious safety requirement is that the stored address shall not be used after the lifetime of the local variable has expired. This situation can be described as a “dangling reference to the stack”.
6.35.2 Cross reference
CWE:
562. Return of Stack Variable Address
JSF AV Rule: 173
MISRA C 2012: 4.1 and 18.6
MISRA C++ 2008: 0-3-1, 7-5-1, 7-5-2, and 7-5-3
CERT C guidelines: EXP35-C and DCL30-C
Ada Quality and Style Guide: 7.6.7, 7.6.8, and 10.7.6
6.35.3 Mechanism of failure
The consequences of dangling references to the stack come in two variants: a deterministically predictable variant, which therefore can be exploited, and an intermittent, non-deterministic variant, which is next to impossible to elicit during testing. The following code sample illustrates the two variants; the behaviour is not language-specific:
struct s { … };
typedef struct s array_type[1000];
array_type* ptr;
array_type* F()
{
 struct s Arr[1000];
 ptr = &Arr; // Risk of variant 1;
 return &Arr; // Risk of variant 2;
}
…
 struct s secret;
 array_type* ptr2;
 ptr2 = F();
 secret = (*ptr2)[10]; // Fault of variant 2
 …
 secret = (*ptr)[10]; // Fault of variant 1
The risk of variant 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime of Arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since altered by other calls and possibly validly owned by other routines. As part of a call-back, the fault allows systematic examination of portions of the stack contents without triggering an array-bounds-checking violation. Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as memory gets corrupted by completely unrelated code portions. (A life-time check as part of pointer assignment can prevent the risk. In many cases, such as the situations above, the check is statically decidable by a compiler. However, for the general case, a dynamic check is needed to ensure that the copied pointer value lives no longer than the designated object.)
The risk of variant 2 is an idiom “seen in the wild” to return the address of a local variable to avoid an expensive copy of a function result, as long as it is consumed before the next routine call occurs. The idiom is based on the ill-founded assumption that the stack will not be affected by anything until this next call is issued. The assumption is false, however, if an interrupt occurs and interrupt handling employs a strategy called “stack stealing”, which is, using the current stack to satisfy its memory requirements. Thus, the value of Arr can be overwritten before it can be retrieved after the call on F. As this fault will only occur if the interrupt arrives after the call has returned but before the returned result is consumed, the fault is highly intermittent and next to impossible to re-create during testing. Thus, it is unlikely to be exploitable, but also exceedingly hard to find by testing. It can begin to occur after a completely unrelated interrupt handler has been coded or altered. Only static analysis can relatively easily detect the danger (unless the code combines it with risks of variant 1). Some compilers issue warnings for this situation; such warnings need to be heeded, and some forms of static analysis are effective in identifying such problems.
6.35.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· The address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable or can be returned by this routine as a result.
· No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of the designated entity.
6.35.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Do not use the address of locally declared entities as storable, assignable or returnable value (except where idioms of the language make it unavoidable).
· Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed by the lifetime of the designated object.
· Never return the address of a local variable as the result of a function call.
6.35.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Do not provide means to obtain the address of a locally declared entity as a storable value; or
· Define implicit checks to implement the assurance of enclosed lifetime expressed in sub-clause 5 of this vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of a local entity is taken as part of a return statement or expression.
[bookmark: _Ref313957049][bookmark: _Toc358896414]6.36 Subprogram Signature Mismatch [OTR]
6.36.1 Description of application vulnerability
If a subprogram is called with a different number of parameters than it expects, or with parameters of different types than it expects, then the results will be incorrect. Depending on the language, the operating environment, and the implementation, the error might be as benign as a diagnostic message or as extreme as a program continuing to execute with a corrupted stack. The possibility of a corrupted stack provides opportunities for penetration.
6.36.2 Cross reference
CWE:
628. Function Call with Incorrectly Specified Arguments
686. Function Call with Incorrect Argument Type
683. Function Call with Incorrect Order of Arguments
JSF AV Rule: 108
MISRA C 2012: 8.2-8.4, 17.1, and 17.3
MISRA C++ 2008: 0-3-2, 3-2-1, 3-2-2, 3-2-3, 3-2-4, 3-3-1, 3-9-1, 8-3-1, 8-4-1, and 8-4-2
CERT C guidelines: DCL31-C, and DCL35-C
6.36.3 Mechanism of failure
When a subprogram is called, the actual arguments of the call are pushed on to the execution stack. When the subprogram terminates, the formal parameters are popped off the stack. If the number and type of the actual arguments do not match the number and type of the formal parameters, then depending upon the calling mechanism used by the language translator, the push and the pop will not be consistent and, if so, the stack will be corrupted. Stack corruption can lead to unpredictable execution of the program and can provide opportunities for execution of unintended or malicious code.
The compilation systems for many languages and implementations can check to ensure that the list of actual parameters and any expected return match the declared set of formal parameters and return value (the subprogram signature) in both number and type. (In some cases, programmers should observe a set of conventions to ensure that this is true.) However, when the call is being made to an externally compiled subprogram, an object-code library, or a module compiled in a different language, the programmer must take additional steps to ensure a match between the expectations of the caller and the called subprogram.
6.36.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that do not require their implementations to ensure that the number and types of actual arguments are equal to the number and types of the formal parameters.
· Implementations that permit programs to call subprograms that have been externally compiled (without a means to check for a matching subprogram signature), subprograms in object code libraries, and any subprograms compiled in other languages.
6.36.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use language or compiler support or static analysis tools to detect mismatches in calling signatures and the actual subprogram, particularly in multilingual environments.
· Take advantage of any mechanism provided by the language to ensure that subprogram signatures match.
· Avoid any language features that permit variable numbers of actual arguments without a method of enforcing a match for any instance of a subprogram call.
· Take advantage of any language or implementation feature that would guarantee matching the subprogram signature in linking to other languages or to separately compiled modules.
· Intensively review subprogram calls where the match is not guaranteed by tooling.
· Ensure that only a trusted source is used when using non-standard imported modules.
6.36.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language specifiers could ensure that the signatures of subprograms match within a single compilation unit and could provide features for asserting and checking the match with externally compiled subprograms.
[bookmark: _Ref313948876][bookmark: _Toc358896415]6.37 Recursion [GDL]
6.37.1 Description of application vulnerability
Recursion is an elegant mathematical mechanism for defining the values of some functions. It is tempting to write code that mirrors the mathematics. However, the use of recursion in a computer can have a profound effect on the consumption of finite resources, leading to denial of service.
6.37.2 Cross reference
CWE:
674. Uncontrolled Recursion
JSF AV Rule: 119
MISRA C 2012: 17.2
MISRA C++ 2008: 7-5-4
CERT C guidelines: MEM05-C
Ada Quality and Style Guide: 5.6.6
6.37.3 Mechanism of failure
Recursion provides for the economical definition of some mathematical functions. However, economical definition and economical calculation are two different subjects. It is tempting to calculate the value of a recursive function using recursive subprograms because the expression in the programming language is straightforward and easy to understand. However, the impact on finite computing resources can be profound. Each invocation of a recursive subprogram may result in the creation of a new stack frame, complete with local variables. If stack space is limited and the calculation of some values will lead to an exhaustion of resources resulting in the program terminating.
In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this is not true when considering computer operations generally, especially when processing error conditions. For example, finalization of a computing context after treating an error condition might result in recursion (such as attempting to recover resources by closing a file after an error was encountered in closing the same file). Although such situations may have other problems, they typically do not result in exhaustion of resources but may otherwise result in a denial of service.
6.37.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Any language that permits the recursive invocation of subprograms.
6.37.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Minimize the use of recursion.
· Converting recursive calculations to the corresponding iterative calculation. In principle, any recursive calculation can be remodeled as an iterative calculation which will have a smaller impact on some computing resources but which may be harder for a human to comprehend. The cost to human understanding must be weighed against the practical limits of computing resource.
· In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then recursion may be acceptable, but should be documented for the use of maintainers.
It should be noted that some languages or implementations provide special (more economical) treatment of a form of recursion known as tail-recursion. In this case, the impact on computing economy is reduced. When using such a language, tail recursion may be preferred to an iterative calculation.
6.37.6 Implications for standardization
[None]
[bookmark: _Ref313957058][bookmark: _Toc358896416]6.38 Ignored Error Status and Unhandled Exceptions [OYB]
6.38.1 Description of application vulnerability
Unpredicted faults and exceptional situations arise during the execution of code, preventing the intended functioning of the code. They are detected and reported by the language implementation or by explicit code written by the user. Different strategies and language constructs are used to report such errors and to take remedial action. Serious vulnerabilities arise when detected errors are reported but ignored or not properly handled.

6.38.2 Cross reference
CWE:
754. Improper Check for Unusual or Exceptional Conditions
JSF AV Rules: 115 and 208
MISRA C 2012: 4.7
MISRA C++ 2008: 15-3-2 and 19-3-1
CERT C guidelines: DCL09-C, ERR00-C, and ERR02-C
6.38.3 Mechanism of failure
The fundamental mechanism of failure is that the program does not react to a detected error or reacts inappropriately to it. Execution may continue outside the envelope provided by its specification, making additional errors or serious malfunction of the software likely. Alternatively, execution may terminate. The mechanism can be easily exploited to perform denial-of-service attacks.
The specific mechanism of failure depends on the error reporting and handling scheme provided by a language or applied idiomatically by its users.
In languages that expect routines to report errors via status variables, return codes, or thread-local error indicators, the error indications need to be checked after each call. As these frequent checks cost execution time and clutter the code immensely to deal with situations that may occur rarely, programmers are reluctant to apply the scheme systematically and consistently. Failure to check for and handle an arising error condition continues execution as if the error never occurred. In most cases, this continued execution in an ill-defined program state will sooner or later fail, possibly catastrophically.
The raising and handling of exceptions was introduced into languages to address these problems. They bundle the exceptional code in exception handlers, they need not cost execution time if no error is present, and they will not allow the program to continue execution by default when an error occurs, since upon raising the exception, control of execution is automatically transferred to a handler for the exception found on the call stack. The risk and the failure mechanism is that there is no such handler (unless the language enforces restrictions that guarantees its existence), resulting in the termination of the current thread of control. Also, a handler that is found might not be geared to handle the multitude of error situations that are vectored to it. Exception handling is therefore in practice more complex for the programmer than, for example, the use of status parameters. Furthermore, different languages provide exception-handling mechanisms that differ in details of their design, which in turn may lead to misunderstandings by the programmer.
The cause for the failure might be simply laziness or ignorance on the part of the programmer, or, more commonly, a mismatch in the expectations of where fault detection and fault recovery is to be done. Particularly when components meet that employ different fault detection and reporting strategies, the opportunity for mishandling recognized errors increases and creates vulnerabilities.
Another cause of the failure is the scant attention that many library providers pay to describe all error situations that calls on their routines might encounter and report. In this case, the caller cannot possibly react sensibly to all error situations that might arise. As yet another cause, the error information provided when the error occurs may be insufficiently complete to allow recovery from the error.
Different error handling mechanisms have different strengths and weaknesses. Dealing with exception handling in some languages can stress the capabilities of static analysis tools and can, in some cases, reduce the effectiveness of their analysis. Inversely, the use of error status variables can lead to confusingly complicated control structures, particularly when recovery is not possible locally. Therefore, for situations where the highest of reliability is required, the decision for or against exception handling deserves careful thought. In any case, exception-handling mechanisms should be reserved for truly unexpected situations and other situations where no local recovery is possible. Situations which are merely unusual, like the end of file condition, should be treated by explicit testing—either prior to the call which might raise the error or immediately afterward. In general, error detection, reporting, correction, and recovery should not be a late opportunistic add-on, but should be an integral part of a system design.

6.38.4 Applicable language characteristics
Whether supported by the language or not, error reporting and handling is idiomatically present in all languages. Of course, vulnerabilities caused by exceptions require a language that supports exceptions.
6.38.5 Avoiding the vulnerability or mitigating its effects
 In general, error detection, reporting, correction, and recovery should not be a late opportunistic add-on, but should be an integral part of a system design.
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Reserve exception-handling mechanisms for truly unexpected situations and other situations where no local recovery is possible.
· Checking error return values or auxiliary status variables following a call to a subprogram is mandatory unless it can be demonstrated that the error condition is impossible.
· Equally, Handle exceptions need to be handled by the exception handlers of an enclosing construct as close as possible to the origin of the exception but as far out as necessary to be able to deal with the error.
· Equally, check error return values or auxiliary status variables following a call to a subprogram unless it can be demonstrated that the error condition is impossible.
· For each routine, document all error conditions, need to be documented and matching error detection and reporting needs needs to be implemented, and providing provide sufficient information for handling the error situation.
· Use static analysis tools to detect and report missing or ineffective error detection or handling.

· When execution within a particular context is abandoned due to an exception or error condition, it is important to finalize the context by closing open files, releasing resources and restoring any invariants associated with the context.
· Retreat to a context where the fault can be handled completely (after finalizing and terminating the current context) when it is not It is often not appropriate to repair an error situation and retry the operation. It is usually a better solution to finalize and terminate the current context and retreat to a context where the fault can be handled completely.
· Always enable eError checking provided by the language, the software system, or the hardware should never be disabled in the absence of a conclusive analysis that the error condition is rendered impossible.
· Carefully review all error handling mechanisms, bBecause of the complexity of error handling., careful review of all error handling mechanisms is appropriate.
· In applications with the highest requirements for reliability, use defense-in-depth approaches are often appropriate, for example, checking and handling errors even if thought to be impossible.

6.38.6 Implications for standardization
In future standardization activities, the following items should be considered:
· A standardized set of mechanisms for detecting and treating error conditions should be developed so that all languages to the extent possible could use them. This does not mean that all languages should use the same mechanisms as there should be a variety, but each of the mechanisms should be standardized.
[bookmark: _Ref313957101][bookmark: _Toc358896417]6.39 Termination Fault Tolerance and Failure Strategiesy [REU]
6.39.1 Description of application vulnerability
Expectations that a system will be dependable are based on the confidence that the system will operate as expected and not fail in normal use. The dependability of a system and its fault tolerance can be measured through the component part's reliability, availability, safety and security. Reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time [IEEE 1990 glossary]. Availability is how timely and reliable the system is to its intended users. Both of these factors matter highly in systems used for safety and security. In spite of the best intentions, systems may encounter a failure, either from internally poorly written software or external forces such as power outages/variations, floods, or other natural disasters. The reaction to a fault can affect the performance of a system and in particular, the safety and security of the system and its users.
When the software unexpectedly fails to render a requested service or terminates in an unspecified way does not terminate in the planned manner, safety or security is compromised, as such failureing in an unspecified way interferes with the alternative recovery features. In safety-related systems the results can be catastrophic: for other systems the result can mean failure of the complete system.
For termination issues associated with multiple threads, multiple processors or interrupts also see 6.59 Concurrency – Directed termination [CGT] and 6.61 Concurrency – Premature Termination [CGS]. Situations that cause an application to terminate unexpectedly or that cause an application to not terminate because of other vulnerabilities are covered in those vulnerabilities.
6.39.2 Cross reference
JSF AV Rule: 24
MISRA C 2012: 4.1
MISRA C++ 2008: 0-3-2, 15-5-2, 15-5-3, and 18-0-3
CERT C guidelines: ERR04-C, ERR06-C and ENV32-C
Ada Quality and Style Guide: 5.8 and 7.5
6.39.3 Mechanism of failure
The reaction to a fault in a system can depend on the criticality of the part in which the fault originates. When a program consists of several tasks, each task may be critical, or not. If a task is critical, it may or may not be restartable by the rest of the program. Ideally, a task that detects a fault within itself should be able to halt leaving its resources available for use by the rest of the program, halt clearing away its resources, or halt the entire program. The latency of task termination and whether tasks can ignore termination signals should be clearly specified. Considerable latency can arise from finalization and garbage collection caused by the termination of a task. Having inconsistent reactions to a fault can potentially be a vulnerability.
When a fault is detected, there are many ways in which a system can react. The quickest and most noticeable way is to fail hard, also known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the system. Alternatively, the reaction to a detected fault could be to fail soft. The system would keep working with the faults present, but the performance of the system would be degraded. Systems used in a high availability environment such as telephone switching centers, e-commerce, or other "always available" applications would likely use a fail soft approach. What is actually done in a fail soft approach can vary depending on whether the system is used for safety-critical or security critical purposes. For fail-safe systems, such as flight controllers, traffic signals, or medical monitoring systems, there would be no effort to meet normal operational requirements, but rather to limit the damage or danger caused by the fault. A system that fails securely, such as cryptologic systems, would maintain maximum security when a fault is detected, possibly through a denial of service.
For termination issues associated with multiple threads, multiple processors or interrupts also see 6.59 Concurrency – Directed termination [CGT] aAnd 6.61 Concurrency – Premature Termination [CGS] . Situations that cause an application to terminate unexpectedly or that cause an application to not terminate because of other vulnerabilities or that cause an application to terminate unexpectedly are covered in those vulnerabilities. The vulnerability at hand discusses the overall fault treatment strategy applicable to single- or multithreaded programs.
6.39.4 Applicable language characteristics
This vulnerability description is intended to be applicable to all languages.
6.39.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Decide on aA strategy for fault handling should be decided. Consistency in fault handling should be the same with respect to critically similar parts.
· Use aA multi-tiered approach of fault prevention, fault detection and fault reaction .should be used.
· Unambiguously describe the failure modes of each possibly failing task as fail-stop, fail-safe, fail-secure, or fail-soft.
· System-defined components that assist in uniformity of fault handling should be used when available. For one example, designing a "runtime constraint handler" (as described in Annex K of 9899:2012 [4]) permits the application to intercept various erroneous situations and perform one consistent response, such as flushing a previous transaction and re-starting at the next one.
· When there are multiple tasks, a fault-handling policy should be specified whereby a task may
· Halt, and keep its resources available for other tasks (perhaps permitting restarting of the faulting task).
· Halt, and remove release its resources (perhaps to allow other tasks to use the resources so freed, or to allow a recreation of the task).
· Halt, and signal the rest of the program to likewise halt.
6.39.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider providing a means to perform fault handling. Terminology and the means should be coordinated with other languages.
[bookmark: _Toc192557996][bookmark: _Ref313946079][bookmark: _Toc358896418]6.40 Type-breaking Reinterpretation of Data [AMV]
[bookmark: _Toc192557998]6.40.1 Description of application vulnerability
In most cases, objects in programs are assigned locations in processor storage to hold their value. If the same storage space is assigned to more than one object—either statically or temporarily—then a change in the value of one object will have an effect on the value of the other. Furthermore, if the representation of the value of an object is reinterpreted as being the representation of the value of an object with a different type, unexpected results may occur.
[bookmark: _Toc192557999]6.40.2 Cross reference
JSF AV Rules 153 and183
MISRA 2012: 19.1, and 19.2
MISRA C++ 2008: 4-5-1 to 4-5-3, 4-10-1, 4-10-2, and 5-0-3 to 5-0-9
CERT C guidelines: MEM08-C
Ada Quality and Style Guide: 7.6.7 and 7.6.8
[bookmark: _Toc192558001]6.40.3 Mechanism of failure
Sometimes there is a legitimate need for applications to place different interpretations upon the same stored representation of data. The most fundamental example is a program loader that treats a binary image of a program as data by loading it, and then treats it as a program by invoking it. Most programming languages permit type-breaking reinterpretation of data, however, some offer less error-prone alternatives for commonly encountered situations.
Type-breaking reinterpretation of representation presents obstacles to human understanding of the code, the ability of tools to perform effective static analysis, and the ability of code optimizers to do their job.
Examples include:
· Providing alternative mappings of objects into blocks of storage performed either statically (such as Fortran common) or dynamically (such as pointers).
· Union types, particularly unions that do not have a discriminant stored as part of the data structure.
· Operations that permit a stored value to be interpreted as a different type (such as treating the representation of a pointer as an integer).
In all of these cases accessing the value of an object may produce an unanticipated result.
A related problem, the aliasing of parameters, occurs in languages that permit call by reference because supposedly distinct parameters might refer to the same storage area, or a parameter and a non-local object might refer to the same storage area. That vulnerability is described in Passing Parameters and Return Values [CSJ].
[bookmark: _Toc192558002]6.40.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· A programming language that permits multiple interpretations of the same bit pattern.
[bookmark: _Toc192558003]6.40.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Programmers should Aavoid reinterpretation performed as a matter of convenience; for example, using avoid an integer pointer to manipulate character string data should be avoided. When type-breaking reinterpretation is necessary, document it should be carefully documented in the code. However this vulnerability cannot be completely avoided because some applications view stored data in alternative ways.
· When using union types, prefer the use of it is preferable to use discriminated unions. This is a type of a union where a stored value indicates which interpretation is to be placed upon the data. Some languages (such as variant records in Ada) enforce the view of data indicated by the value of the discriminant. If the language does not enforce the interpretation (for example, equivalence in Fortran and union in C and C++), then the code should implement an explicit discriminant and check its value before accessing the data in the union, or use some other mechanism to ensure that correct interpretation is placed upon the data value.
· Avoid oOperations that reinterpret the same stored value as representing a different type. should be avoided. It is easier to avoid such operations when the language clearly identifies them. For example, the name of Ada's Unchecked_Conversion function explicitly warns of the problem. A much more difficult situation occurs when pointers are used to achieve type reinterpretation. Some languages perform type-checking of pointers and place restrictions on the ability of pointers to access arbitrary locations in storage. Others permit the free use of pointers. In such cases, review the code must be carefully reviewed in a search for unintended reinterpretation of stored values. Therefore explicitly identify places in it is important to explicitly comment the source code where intended reinterpretations occur.
· Use sStatic analysis tools may be helpful in locating situations where unintended reinterpretation occurs. On the other hand,
· As the presence of reinterpretation greatly complicates static analysis for other problems, so it may be appropriate toconsider segregatinge intended reinterpretation operations into distinct subprograms.
[bookmark: _Toc192558004]6.40.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare, programming language designers might consider putting caution labels on operations that permit reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called Unchecked_Conversion.
· Because of the difficulties with undiscriminated unions, programming language designers might consider offering union types that include distinct discriminants with appropriate enforcement of access to objects.
[bookmark: _Toc192557891][bookmark: _Ref313957257][bookmark: _Toc358896419]6.41 Memory Leak [XYL]
[bookmark: _Toc192557893]6.41.1 Description of application vulnerability
A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated occurrences of a memory leak can consume considerable amounts of available memory. A memory leak can be exploited by attackers to generate denial-of-service by causing the program to execute repeatedly a sequence that triggers the leak. Moreover, a memory leak can cause any long-running critical program to shutdown prematurely.
[bookmark: _Toc192557894]6.41.2 Cross reference
CWE:
401. Failure to Release Memory Before Removing Last Reference (aka ‘Memory Leak’)
JSF AV Rule: 206
MISRA C 2012: 4.12
CERT C guidelines: MEM00-C and MEM31-C
Ada Quality and Style Guide: 5.4.5, 5.9.2, and 7.3.3
[bookmark: _Toc192557896]6.41.3 Mechanism of failure
As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by the runtime system or a garbage collector) after it ceases to be used, may result in future memory allocation requests failing for lack of free space. Alternatively, memory claimed and returned can cause the heap to fragment, which will eventually result in an inability to allocate the necessary size storage. Either condition will result in a memory exhaustion exception, and program termination or a system crash.
If an attacker can determine the cause of an existing memory leak, the attacker may be able to cause the application to leak quickly and therefore cause the application to crash.
[bookmark: _Toc192557897]6.41.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that support mechanisms to dynamically allocate memory and reclaim memory under program control.
[bookmark: _Toc192557898]6.41.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use of garbage collectors that reclaim memory that will never be used bynolonger accessible by the application again. Some garbage collectors are part of the language while others are add-ons.
· In systems with garbage collectors, set all non-local pointers or references to null, when the designated data is no longer needed, since the data will not be garbage-collected otherwise.
· In systems without garbage collectors, cause deallocation of the data before the last pointer or reference to the data is lost.
· Allocating and freeing memory in different modules and levels of abstraction may make it difficult for developers to match requests to free storage with the appropriate storage allocation request. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory leaks. To avoid these situations, it is recommended thatallocate and free memory be allocated and freed at the same level of abstraction, and ideally in the same code module.
· Use Storage pools when available in combination with strong typing. Storage pools are a specialized memory mechanism where all of the memory associated with a class of objects is allocated from a specific bounded region. When used with strong typing one can ensure a strong relationship between pointers and the space accessed such that storage exhaustion in one pool does not affect the code operating on other memory.
· Avoid Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely, or by allocate only during system initialization doing initial allocation exclusively and never allocateing once the main execution commences, particularly in . For safety-critical systems and long running systems., the use of dynamic memory is almost always prohibited, or restricted to the initialization phase of execution.
· Use static analysis, which can sometimes detect when allocated storage is no longer used and has not been freed.
[bookmark: _Toc192557899]6.41.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages can provide syntax and semantics to guarantee program-wide that dynamic memory is not used (such as the configuration pragmas feature offered by some programming languages).
· Languages can document or specify that implementations must document choices for dynamic memory management algorithms, to hope designers decide on appropriate usage patterns and recovery techniques as necessary
[bookmark: _Ref313957250][bookmark: _Toc358896420]6.42 Templates and Generics [SYM]
6.42.1 Description of application vulnerability
Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type and then instantiated for specific types. In C++ and related languages, these are referred to as “templates”, and in Ada and Java, “generics”. To avoid having to keep writing ‘templates/generics’, in this clause these will simply be referred to collectively as generics.
Used well, generics can make code clearer, more predictable and easier to maintain. Used badly, they can have the reverse effect, making code difficult to review and maintain, leading to the possibility of program error.
6.42.2 Cross reference
JSF AV Rules: 101, 102, 103, 104, and 105
MISRA C++ 2008: 14-6-1, 14-6-2, 14-7-1 to 14-7-3, 14-8-1, and 14-8-2
Ada Quality and Style Guide: 8.3.1 through 8.3.8, and 8.4.2
6.42.3 Mechanism of failure
The value of generics comes from having a single piece of code that supports some behaviour in a type independent manner. This simplifies development and maintenance of the code. It should also assist in the understanding of the code during review and maintenance, by providing the same behaviour for all types with which it is instantiated.
Problems arise when the use of a generic actually makes the code harder to understand during review and maintenance, by not providing consistent behaviour.
In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these assumptions are not met, the result is likely to be a compiler error. For example if the sort function is instantiated with a user defined type that doesn’t have a relational operator. Where ‘misuse’ of a generic leads to a compiler error, this can be regarded as a development issue, and not a software vulnerability.
Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently invalid, but doesn’t result in a compiler error. For example, a generic class defines a set of members, a subset of which rely on a particular property of the instantiation type (such as a generic container class with a sort member function, only the sort function relies on the instantiating type having a defined relational operator). In some languages, such as C++, if the generic is instantiated with a type that doesn’t meet all the requirements but the program never subsequently makes use of the subset of members that rely on the property of the instantiating type, the code will compile and execute (for example, the generic container is instantiated with a user defined class that doesn’t define a relational operator, but the program never calls the sort member of this instantiation). When the code is reviewed the generic class will appear to reference a member of the instantiating type that doesn’t exist.
The problem as described in the two prior paragraphs can be reduced by a language feature (such as the concepts language feature being designed by the C++ committee).
Similar confusion can arise if the language permits specific elements of a generic to be explicitly defined, rather than using the common code, so that behaviour is not consistent for all instantiations. For example, for the same generic container class, the sort member normally sorts the elements of the container into ascending order. In languages such as C++, a ‘special case’ can be created for the instantiation of the generic with a particular type. For example, the sort member for a ‘float’ container may be explicitly defined to provide different behaviour, say sorting the elements into descending order. Specialization that doesn’t affect the apparent behaviour of the instantiation is not an issue. Again, for C++, there are some irregularities in the semantics of arrays and pointers that can lead to the generic having different behaviour for different, but apparently very similar, types. In such cases, specialization can be used to enforce consistent behaviour.
6.42.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· Languages that permit definitions of objects or functions to be parameterized by type, for later instantiation with specific types, such as:
· Templates in C++
· Generics in Ada, Java.
6.42.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Document the properties of an instantiating type necessary for a generic to be valid.
· If an instantiating type has the required properties, the whole of the generic should be ensured to be valid, whether actually used in the program or not.
· Preferably avoid, but at least carefully document, any ‘special cases’ where a generic is instantiated with a specific type but doesn’t behave as it does for other types.
6.42.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language specifiers should standardize on a common, uniform terminology to describe generics/templates so that programmers experienced in one language can reliably learn and refer to the type system of another language that has the same concept, but with a different name.
· Language specifiers should design generics in such a way that any attempt to instantiate a generic with constructs that do not provide the required capabilities results in a compile-time error.
· Language specifiers should provide an assertion mechanism for checking properties at run-time, for those properties that cannot be checked at compile time. It should be possible to inhibit assertion checking if efficiency is a concern.
[bookmark: _Ref313957117][bookmark: _Toc358896421]6.43 Inheritance [RIP]
6.43.1 Description of application vulnerability
Inheritance, the ability to create enhanced and/or restricted object classes based on existing object classes can introduce a number of vulnerabilities, both inadvertent and malicious. Because Inheritance allows the overriding of methods of the parent class and because object oriented systems are designed to separate and encapsulate code and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. Also, since an overriding method does not need to call the method in the parent class that has been overridden, essential initialization and manipulation of class data may be bypassed. This can be especially dangerous during constructor and destructor methods.
Languages that allow multiple inheritance add additional complexities to the resolution of method invocations. Different object brokerage systems may resolve the method identity to different classes, based on how the inheritance tree is traversed.
6.43.2 Cross reference
JSF AV Rules: 86 to 97
MISRA C++ 2008: 0-1-12, 8-3-1, 10-1-1 to 10-1-3, and 10-3-1 to 10-3-3
Ada Quality and Style Guide: 9 (complete clause)
6.43.3 Mechanism of failure
The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in several ways:
· Execution of malicious redefinitions, this can occur through the insertion of a class into the class hierarchy that overrides commonly called methods in the parent classes.
· Accidental redefinition, where a method is defined that inadvertently overrides a method that has already been defined in a parent class.
· Accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined properly, and thus does not override a method in a parent class.
· Breaking of class invariants, this can be caused by redefining methods that initialize or validate class data without including that initialization or validation in the overriding methods.
These vulnerabilities can increase dramatically as the complexity of the hierarchy increases, especially in the use of multiple inheritance.
6.43.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow single and multiple inheritances.
6.43.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Avoid the use of multiple inheritance whenever possible.
· Provide complete documentation of all encapsulated data, and how each method affects that data for each object in the hierarchy.
· Inherit only from trusted sources, and, whenever possible, check the version of the parent classes during compilation and/or initialization.
· Provide a method that provides versioning information for each class.
6.43.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language specification should include the definition of a common versioning method.
· Compilers should provide an option to report the class in which a resolved method resides.
· Runtime environments should provide a trace of all runtime method resolutions.
[bookmark: _Ref313956950][bookmark: _Toc358896422][bookmark: _Toc192558125]6.44 Extra Intrinsics [LRM]
6.44.1 Description of application vulnerability
Most languages define intrinsic procedures, which are easily available, or always "simply available", to any translation unit. If a translator extends the set of intrinsics beyond those defined by the standard, and the standard specifies that intrinsics are selected before procedures of the same signature defined by the application, a different procedure may be unexpectedly used when switching between translators.
6.44.2 Cross reference
 [None]
6.44.3 Mechanism of failure
Most standard programming languages define a set of intrinsic procedures which may be used in any application. Some language standards allow a translator to extend this set of intrinsic procedures. Some language standards specify that intrinsic procedures are selected ahead of an application procedure of the same signature. This may cause a different procedure to be used when switching between translators.
For example, most languages provide a routine to calculate the square root of a number, usually named sqrt(). If a translator also provided, as an extension, a cube root routine, say named cbrt(), that extension may override an application defined procedure of the same signature. If the two different cbrt() routines chose different branch cuts when applied to complex arguments, the application could unpredictably go wrong.
If the language standard specifies that application defined procedures are selected ahead of intrinsic procedures of the same signature, the use of the wrong procedure may mask a linking error.
6.44.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Any language where translators may extend the set of intrinsic procedures and where intrinsic procedures are selected ahead of application defined (or external library defined) procedures of the same signature.
6.44.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use whatever language features are available to mark a procedure as language defined or application defined.
· Be aware of the documentation for every translator in use and avoid using procedure signatures matching those defined by the translator as extending the standard set.
6.44.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Clearly state whether translators can extend the set of intrinsic procedures or not.
· Clearly state what the precedence is for resolving collisions.
· Clearly provide ways to mark a procedure signature as being the intrinsic or an application provided procedure.
· Require that a diagnostic is issued when an application procedure matches the signature of an intrinsic procedure.
[bookmark: _Ref313957288][bookmark: _Toc358896423]6.45 Argument Passing to Library Functions [TRJ]
[bookmark: _Toc192558127]6.45.1 Description of application vulnerability
Libraries that supply objects or functions are in most cases not required to check the validity of parameters passed to them. In those cases where parameter validation is required there might not be adequate parameter validation.
[bookmark: _Toc192558128]6.45.2 Cross reference
CWE:
114. Process Control
JSF AV Rules 16, 18, 19, 20, 21, 22, 23, 24, and 25
MISRA C 2012: 1.3, 4.11, 21.2-21.8, and 21.10
MISRA C++ 2008: 17-0-1, 17-0-5, 18-0-2, 18-0-3, 18-0-4, 18-2-1, 18-7-1 and 27-0-1
CERT C guidelines: INT03-C and STR07-C
[bookmark: _Toc192558130]6.45.3 Mechanism of failure
When calling a library, either the calling function or the library may make assumptions about parameters. For example, it may be assumed by a library that a parameter is non-zero so division by that parameter is performed without checking the value. Sometimes some validation is performed by the calling function, but the library may use the parameters in ways that were unanticipated by the calling function resulting in a potential vulnerability. Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and can cause unanticipated results.
[bookmark: _Toc192558131]6.45.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages providing or using libraries that do not validate the parameters accepted by functions, methods and objects.
[bookmark: _Toc192558132]6.45.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Libraries should be defined to validate any values passed to the library before the value is used.
· Develop wrappers around library functions that check the parameters before calling the function.
· Demonstrate statically that the parameters are never invalid.
· Use only libraries known to have been developed with consistent and validated interface requirements.
It is noted that several approaches can be taken, some work best if used in conjunction with each other.
[bookmark: _Toc192558133]6.45.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Ensure that all library functions defined operate as intended over the specified range of input values and react in a defined manner to values that are outside the specified range.
· Languages should define libraries that provide the capability to validate parameters during compilation, during execution or by static analysis.
[bookmark: _Ref313948677][bookmark: _Toc358896424]6.46 Inter-language Calling [DJS]
6.46.1 Description of application vulnerability
When an application is developed using more than one programming language, complications arise. The calling conventions, data layout, error handing and return conventions all differ between languages; if these are not addressed correctly, stack overflow/underflow, data corruption, and memory corruption are possible.
In multi-language development environments it is also difficult to reuse data structures and object code across the languages.
6.46.2 Cross reference
[None]
6.46.3 Mechanism of failure
When calling a function that has been developed using a language different from the calling language, the call convention and the return convention used must be taken into account. If these conventions are not handled correctly, there is a good chance the calling stack will be corrupted, see 6.36 Subprogram Signature Mismatch [OTR]. The call convention covers how the language invokes the call; see 6.34 Passing Parameters and Return Values [CSJ], and how the parameters are handled.
Many languages restrict the length of identifiers, the type of characters that can be used as the first character, and the case of the characters used. All of these need to be taken into account when invoking a routine written in a language other than the calling language. Otherwise the identifiers might bind in a manner different than intended.
Character and aggregate data types require special treatment in a multi-language development environment. The data layout of all languages that are to be used must be taken into consideration; this includes padding and alignment. If these data types are not handled correctly, the data could be corrupted, the memory could be corrupted, or both may become corrupt. This can happen by writing/reading past either end of the data structure, see 6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]. For example, a Pascal STRING data type
VAR str: STRING(10);
corresponds to a C structure
struct {
 int length;
 char str [10];
};
and not to the C structure
char str [10]
where length contains the actual length of STRING. The second C construct is implemented with a physical length that is different from physical length of the Pascal STRING and assumes a null terminator.
Most numeric data types have counterparts across languages, but again the layout should be understood, and only those types that match the languages should be used. For example, in some implementations of C++ a
signed char
would match a Fortran
integer(1)
and would match a Pascal
PACKED -128..127
These correspondences can be implementation-defined and should be verified.
6.46.4 Applicable language characteristics
The vulnerability is applicable to languages with the following characteristics:
· All high level programming languages and low level programming languages are susceptible to this vulnerability when used in a multi-language development environment.
6.46.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use the inter-language methods and syntax specified by the applicable language standard(s). For example, Fortran and Ada specify how to call C functions.
· Understand the calling conventions of all languages used.
· For items comprising the inter-language interface:
· Understand the data layout of all data types used.
· Understand the return conventions of all languages used.
· Ensure that the language in which error check occurs is the one that handles the error.
· Avoid assuming that the language makes a distinction between upper case and lower case letters in identifiers.
· Avoid using a special character as the first character in identifiers.
· Avoid using long identifier names.
6.46.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Standards committees should consider developing standard provisions for inter-language calling with languages most often used with their programming language.
[bookmark: _Toc192558085][bookmark: _Ref313957040][bookmark: _Toc358896425]6.47 Dynamically-linked Code and Self-modifying Code [NYY]
[bookmark: _Toc192558087]6.47.1 Description of application vulnerability
Code that is dynamically linked may be different from the code that was tested. This may be the result of replacing a library with another of the same name or by altering an environment variable such as LD_LIBRARY_PATH on UNIX platforms so that a different directory is searched for the library file. Executing code that is different than that which was tested may lead to unanticipated errors or intentional malicious activity.
On some platforms, and in some languages, instructions can modify other instructions in the code space. Historically self-modifying code was needed for software that was required to run on a platform with very limited memory. It is now primarily used (or misused) to hide functionality of software and make it more difficult to reverse engineer or for specialty applications such as graphics where the algorithm is tuned at runtime to give better performance. Self-modifying code can be difficult to write correctly and even more difficult to test and maintain correctly leading to unanticipated errors.
[bookmark: _Toc192558088]6.47.2 Cross reference
JSF AV Rule: 2
[bookmark: _Toc192558090]6.47.3 Mechanism of failure
Through the alteration of a library file or environment variable, the code that is dynamically linked may be different from the code which was tested resulting in different functionality.
On some platforms, a pointer-to-data can erroneously be given an address value that designates a location in the instruction space. If subsequently a modification is made through that pointer, then an unanticipated behaviour can result.
[bookmark: _Toc192558091]6.47.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow a pointer-to-data to be assigned an address value that designates a location in the instruction space.
· Languages that allow execution of code that exists in data space.
· Languages that permit the use of dynamically linked or shared libraries.
· Languages that execute on an OS that permits program memory to be both writable and executable.
[bookmark: _Toc192558092]6.47.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Verify that the dynamically linked or shared code being used is the same as that which was tested.
· Do not write self-modifying code except in extremely rare instances. Most software applications should never have a requirement for self-modifying code.
· In those extremely rare instances where its use is justified, self-modifying code should be very limited and heavily documented.
[bookmark: _Toc192558093]6.47.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should consider providing a means so that a program can either automatically or manually check that the digital signature of a library matches the one in the compile/test environment.
[bookmark: _Ref313957032][bookmark: _Toc358896426]6.48 Library Signature [NSQ]
6.48.1 Description of application vulnerability
Programs written in modern languages may use libraries written in other languages than the program implementation language. If the library is large, the effort of adding signatures for all of the functions use by hand may be tedious and error-prone. Portable cross-language signatures will require detailed understanding of both languages, which a programmer may lack.
Integrating two or more programming languages into a single executable relies upon knowing how to interface the function calls, argument list and global data structures so the symbols match in the object code during linking.
Byte alignment can be a source of data corruption if memory boundaries between the programming languages are different. Each language may also align structure data differently.
6.48.2 Cross reference
MISRA C 2012: 1.1
MISRA C++ 2008: 1-0-2
6.48.3 Mechanism of failure
When the library and the application in which it is to be used are written in different languages, the specification of signatures is complicated by inter-language issues.
As used in this vulnerability description, the term library includes the interface to the operating system, which may be specified only for the language used to code the operating system itself. In this case, any program written in any other language faces the inter-language interoperability issue of creating a fully-functional signature.
When the application language and the library language are different, then the ability to specify signatures according to either standard may not exist, or be very difficult. Thus, a translator-by-translator solution may be needed, which maximizes the probability of incorrect signatures (since the solution must be recreated for each translator pair). Incorrect signatures may or may not be caught during the linking phase.
6.48.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that do not specify how to describe signatures for subprograms written in other languages.
6.48.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use tools to create the signatures.
· Avoid using translator options or language features to reference library subprograms without proper signatures.
6.48.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Provide correct linkage even in the absence of correctly specified procedure signatures. (Note that this may be very difficult where the original source code is unavailable.)
· Provide specified means to describe the signatures of subprograms.
[bookmark: _Ref313956837][bookmark: _Toc358896427]6.49 Unanticipated Exceptions from Library Routines [HJW]
6.49.1 Description of application vulnerability
A library in this context is taken to mean a set of software routines produced outside the control of the main application developer, usually by a third party, and where the application developer may not have access to the source. In such circumstances the application developer has limited knowledge of the library functions, other than from their behavioural interface.
Whilst the use of libraries can present a number of vulnerabilities, the focus of this vulnerability is any undesirable behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions.
6.49.2 Cross reference
JSF AV Rule: 208
MISRA C 2012: 4.11
MISRA C++ 2008: 15-3-1, 15-3-2, 17-0-4
Ada Quality and Style Guide: 5.8 and 7.5
6.49.3 Mechanism of failure
In some languages, unhandled exceptions lead to implementation-defined behaviour. This can include immediate termination, without for example, releasing previously allocated resources. If a library routine raises an unanticipated exception, this undesirable behaviour may result.
It should be noted that the considerations of [OYB], Ignored Error Status and Unhandled Exceptions, are also relevant here.
6.49.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that can link previously developed library code (where the developer and compiler don’t have access to the library source).
· Languages that permit exceptions to be thrown but do not require handlers for them.
6.49.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· All library calls should be wrapped within a ‘catch-all’ exception handler (if the language supports such a construct), so that any unanticipated exceptions can be caught and handled appropriately. This wrapping may be done for each library function call or for the entire behaviour of the program, for example, having the exception handler in main for C++. However, note that the latter isn’t a complete solution, as static objects are constructed before main is entered and are destroyed after it has been exited. Consequently, MISRA C++ [16] bars class constructors and destructors from throwing exceptions (unless handled locally).
· An alternative approach would be to use only library routines for which all possible exceptions are specified.
6.49.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages that provide exceptions should provide a mechanism for catching all possible exceptions (for example, a ‘catch-all’ handler). The behaviour of the program when encountering an unhandled exception should be fully defined.
· Languages should provide a mechanism to determine which exceptions might be thrown by a called library routine.
[bookmark: _Ref313957019][bookmark: _Toc358896428]6.50 Pre-processor Directives [NMP]
6.50.1 Description of application vulnerability
Pre-processor replacements happen before any source code syntax check, therefore there is no type checking – this is especially important in function-like macro parameters.
If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In many cases if explicit delimiters are not added around the macro text and around all macro arguments within the macro text, unexpected expansion is the result.
Source code that relies heavily on complicated pre-processor directives may result in obscure and hard to maintain code since the syntax they expect may be different from the expressions programmers regularly expect in a given programming language.
6.50.2 Cross reference
Holzmann-8
JSF AV Rules: 26, 27, 28, 29, 30, 31, and 32
MISRA C 2012: 1.3, 4.9, 20.5, and 20.6
MISRA C++ 2008: 16-0-3, 16-0-4, and 16-0-5
CERT C guidelines: PRE01-C, PRE02-C, PRE10-C, and PRE31-C
6.50.3 Mechanism of failure
Readability and maintainability may be greatly decreased if pre-processing directives are used instead of language features.
While static analysis can identify many problems early; heavy use of the pre-processor can limit the effectiveness of many static analysis tools, which typically work on the pre-processed source code.
In many cases where complicated macros are used, the program does not do what is intended. For example:
define a macro as follows,
	
	#define CD(x, y) (x + y - 1) / y

whose purpose is to divide. Then suppose it is used as follows
	
	a = CD (b & c, sizeof (int));

which expands into
	
	a = (b & c + sizeof (int) - 1) / sizeof (int);

which most times will not do what is intended. Defining the macro as
	
	#define CD(x, y) ((x) + (y) - 1) / (y)

will provide the desired result.
6.50.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that have a lexical-level pre-processor.
· Languages that allow unintended groupings of arithmetic statements.
· Languages that allow cascading macros.
· Languages that allow duplication of side effects.
· Languages that allow macros that reference themselves.
· Languages that allow nested macro calls.
· Languages that allow complicated macros.
6.50.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Where it is possible to achieve the desired functionality without the use of pre-processor directives, this should be done in preference to the use of pre-processor directives.
6.50.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Standards should reduce or eliminate dependence on lexical-level pre-processors for essential functionality (such as conditional compilation).
· Standards should consider providing capabilities to inline functions and procedure calls, to reduce the need for pre-processor macros.
[bookmark: _Ref313956978][bookmark: _Toc358896429]6.51 Suppression of Language-defined Run-time Checking [MXB]
6.51.1 Description of application vulnerability
Some languages include the provision for runtime checking to prevent vulnerabilities to arise. Canonical examples are bounds or length checks on array operations or null-value checks upon dereferencing pointers or references. In most cases, the reaction to a failed check is the raising of a language-defined exception.
As run-time checking requires execution time and as some project guidelines exclude the use of exceptions, languages may define a way to optionally suppress such checking for regions of the code or for the entire program. Analogously, compiler options may be used to achieve this effect.
6.51.2 Cross reference
[None]
6.51.3 Mechanism of Failure
Vulnerabilities that could have been prevented by the run-time checks are undetected, resulting in memory corruption, propagation of incorrect values or unintended execution paths.
6.51.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that define runtime checks to prevent certain vulnerabilities and
· Languages that allow the above checks to be suppressed,
· Languages or compilers that suppress checking by default, or whose compilers or interpreters provide options to omit the above checks
6.51.5 Avoiding the vulnerability
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Do not suppress checks at all or restrict the suppression of checks to regions of the code that have been proved to be performance-critical.
· If the default behaviour of the compiler or the language is to suppress checks, then enable them.
· Where checks are suppressed, verify that the suppressed checks could not have failed.
· Clearly identify code sections where checks are suppressed.
· Do not assume that checks in code verified to satisfy all checks could not fail nevertheless due to hardware faults.
6.51.6 Implications for standardization
[None]
[bookmark: _Ref313957192][bookmark: _Toc358896430]6.52 Provision of Inherently Unsafe Operations [SKL]
6.52.1 Description of application vulnerability
Languages define semantic rules to be obeyed by conforming programs. Compilers enforce these rules and diagnose violating programs.
A canonical example are the rules of type checking, intended among other reasons to prevent semantically incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, real numbers to booleans, or complex numbers to two-dimensional coordinates.
Occasionally there arises a need to step outside the rules of the type model to achieve needed functionality. One such situation is the casting explicit type conversion of memory as part of the implementation of a heap allocator to the type of object for which the memory is allocated. A type-safe assignment is impossible for this functionality. Thus, a capability for unchecked explicit “type casting”conversion between arbitrary types to interpret the bits in a different fashion is a necessary but inherently unsafe operation, without which the type-safe allocator cannot be programmed.
Another example is the provision of operations known to be inherently unsafe, such as the deallocation of heap memory without prevention of dangling references.
A third example is any interfacing with another language, since the checks ensuring type-safeness rarely extend across language boundaries.
These inherently unsafe operations constitute a vulnerability, since they can (and will) be used by programmers in situations where their use is neither necessary nor appropriate.
The vulnerability is eminently exploitable to violate program security.
6.52.2 Cross reference
[None]
6.52.3 Mechanism of Failure
The use of inherently unsafe operations or the suppression of checking circumvents the features that are normally applied to ensure safe execution. Control flow, data values, and memory accesses can be corrupted as a consequence. See the respective vulnerabilities resulting from such corruption.
6.52.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that allow compile-time checks for the prevention of vulnerabilities to be suppressed by compiler or interpreter options or by language constructs, or
· Languages that provide inherently unsafe operations
6.52.5 Avoiding the vulnerability
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Restrict the suppression of compile-time checks to where the suppression is functionally essential.
· Use inherently unsafe operations only when they are functionally essential.
· Clearly identify program code that suppresses checks or uses unsafe operations. This permits the focusing of review effort to examine whether the function could be performed in a safer manner.
[bookmark: _Ref313945804][bookmark: _Toc358896431]6.53 Obscure Language Features [BRS]
6.53.1 Description of application vulnerability
Every programming language has features that are obscure, difficult to understand or difficult to use correctly. The problem is compounded if a software design must be reviewed by people who may not be language experts, such as, hardware engineers, human-factors engineers, or safety officers. Even if the design and code are initially correct, maintainers of the software may not fully understand the intent. The consequences of the problem are more severe if the software is to be used in trusted applications, such as safety or mission-critical ones.
Misunderstood language features or misunderstood code sequences can lead to application vulnerabilities in development or in maintenance.
6.53.2 Cross reference
JSF AV Rules: 84, 86, 88, and 97
MISRA C 2012: 1.1, 10.4, 13.4, 13.6, 18.5, and 21.4-21.8
MISRA C++ 2008: 0-2-1, 2-3-1, and 12-1-1
CERT C guidelines: FIO03-C, MSC05-C, MSC30-C, and MSC31-C.
ISO/IEC TR 15942:2000: 5.4.2, 5.6.2 and 5.9.3
6.53.3 Mechanism of failure
The use of obscure language features can lead to an application vulnerability in several ways:
· The original programmer may misunderstand the correct usage of the feature and could utilize it incorrectly in the design or code it incorrectly.
· Reviewers of the design and code may misunderstand the intent or the usage and overlook problems.
· Maintainers of the code cannot fully understand the intent or the usage and could introduce problems during maintenance.
6.53.4 Applicable language characteristics
This vulnerability description is intended to be applicable to any language.
6.53.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Individual programmers should avoid the use of language features that are obscure or difficult to use, especially in combination with other difficult language features. Organizations should adopt coding standards that discourage use of such features or show how to use them correctly.
· Organizations developing software with critically important requirements should adopt a mechanism to monitor which language features are correlated with failures during the development process and during deployment.
· Organizations should adopt or develop stereotypical idioms for the use of difficult language features, codify them in organizational standards, and enforce them via review processes.
· Avoid the use of complicated features of a language.
· Avoid the use of rarely used constructs that could be difficult for entry-level maintenance personnel to understand.
· Static analysis can be used to find incorrect usage of some language features.
It should be noted that consistency in coding is desirable for each of review and maintenance. Therefore, the desirability of the particular alternatives chosen for inclusion in a coding standard does not need to be empirically proven.
6.53.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language designers should consider removing or deprecating obscure, difficult to understand, or difficult to use features.
· Language designers should provide language directives that optionally disable obscure language features.
[bookmark: _Ref313906240][bookmark: _Toc358896432]6.54 Unspecified Behaviour [BQF]
6.54.1 Description of application vulnerability
The external behaviour of a program whose source code contains one or more instances of constructs having unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.
6.54.2 Cross reference
JSF AV Rules: 17-25
MISRA C 2012: 1.1, 1.3, 19.1, and 20.2
MISRA C++ 2008: 5-0-1, 5-2-6, 7-2-1, and 16-3-1
CERT C guidelines: MSC15-C
See: 6.55 Undefined Behaviour [EWF] and 6.56 Implementation-defined Behaviour [FAB].
6.54.3 Mechanism of failure
Language specifications do not always uniquely define the behaviour of a construct. When an instance of a construct that is not uniquely defined is encountered (this might be at any of compile, link, or run time) implementations are permitted to choose from the set of behaviours allowed by the language specification. The term 'unspecified behaviour' is sometimes applied to such behaviours, (language specific guidelines need to analyze and document the terms used by their respective language).
A developer may use a construct in a way that depends on a subset of the possible behaviours occurring. The behaviour of a program containing such a usage is dependent on the translator used to build it always selecting the 'expected' behaviour.
Many language constructs may have unspecified behaviour and unconditionally recommending against any use of these constructs may be impractical. For instance, in many languages the order of evaluation of the operands appearing on the left- and right-hand side of an assignment is unspecified, but in most cases the set of possible behaviours always produce the same result.
The appearance of unspecified behaviour in a language specification is recognition by the language designers that in some cases flexibility is needed by software developers and provides a worthwhile benefit for language translators; this usage is not a defect in the language.
The important characteristic is not the internal behaviour exhibited by a construct (such as the sequence of machine code generated by a translator) but its external behaviour (that is, the one visible to a user of a program). If the set of possible unspecified behaviours permitted for a specific use of a construct all produce the same external effect when the program containing them is executed, then rebuilding the program cannot result in a change of behaviour for that specific usage of the construct.
For instance, while the following assignment statement contains unspecified behaviour in many languages (that is, it is possible to evaluate either the A or B operand first, followed by the other operand):
A = B;
in most cases the order in which A and B are evaluated does not affect the external behaviour of a program containing this statement.
6.54.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· Languages whose specification allows a finite set of more than one behaviour for how a translator handles some construct, where two or more of the behaviours can result in differences in external program behaviour.
6.54.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use language constructs that have specified behaviour.
· Ensure that a specific use of a construct having unspecified behaviour produces a result that is the same for all of the possible behaviours permitted by the language specification.
· When developing coding guidelines for a specific language all constructs that have unspecified behaviour should be documented and for each construct the situations where the set of possible behaviours can vary should be enumerated.
6.54.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Languages should minimize the amount of unspecified behaviours, minimize the number of possible behaviours for any given "unspecified" choice, and document what might be the difference in external effect associated with different choices.
[bookmark: _Ref313948728][bookmark: _Toc358896433]6.55 Undefined Behaviour [EWF]
6.55.1 Description of application vulnerability
The external behaviour of a program containing an instance of a construct having undefined behaviour, as defined by the language specification, is not predictable.
6.55.2 Cross reference
JSF AV Rules: 17-25
MISRA C 2012: 1.1, 1.3, 5.4, 18.2, 18.3, and 20.2
MISRA C++ 2008: 2-13-1, 5-2-2, 16-2-4, and 16-2-5
CERT C guidelines: MSC15-C
See: 6.54 Unspecified Behaviour [BQF] and 6.56 Implementation-defined Behaviour [FAB].
6.55.3 Mechanism of failure
Language specifications may categorize the behaviour of a language construct as undefined rather than as a semantic violation (that is, an erroneous use of the language) because of the potentially high implementation cost of detecting and diagnosing all occurrences of it. In this case no specific behaviour is required and the translator or runtime system is at liberty to do anything it pleases (which may include issuing a diagnostic).
The behaviour of a program built from successfully translated source code containing a construct having undefined behaviour is not predictable. For example, in some languages the value of a variable is undefined before it is initialized.
6.55.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· Languages that do not fully define the extent to which the use of a particular construct is a violation of the language specification.
· Languages that do not fully define the behaviour of constructs during compile, link and program execution.
6.55.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Ensuring that undefined language constructs are not used.
· Ensuring that a use of a construct having undefined behaviour does not operate within the domain in which the behaviour is undefined. When it is not possible to completely verify the domain of operation during translation a runtime check may need to be performed.
· When developing coding guidelines for a specific language all constructs that have undefined behaviour should be documented. The items on this list might be classified by the extent to which the behaviour is likely to have some critical impact on the external behaviour of a program (the criticality may vary between different implementations, for example, whether conversion between object and function pointers has well defined behaviour).
6.55.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Language designers should minimize the amount of undefined behaviour to the extent possible and practical.
· Language designers should enumerate all the cases of undefined behaviour.
· Language designers should provide mechanisms that permit the disabling or diagnosing of constructs that may produce undefined behaviour.
[bookmark: _Ref313948823][bookmark: _Toc358896434]6.56 Implementation-defined Behaviour [FAB]
6.56.1 Description of application vulnerability
Some constructs in programming languages are not fully defined (see 6.54 Unspecified Behaviour [BQF]) and thus leave compiler implementations to decide how the construct will operate. The behaviour of a program, whose source code contains one or more instances of constructs having implementation-defined behaviour, can change when the source code is recompiled or relinked.
6.56.2 Cross reference
JSF AV Rules: 17-25
MISRA C 2012: 1.1, 1.3, 5.4, 18.2, 18.3, and 20.2
MISRA C++ 2008: 5-2-9, 5-3-3, 7-3-2, and 9-5-1
CERT C guidelines: MSC15-C
ISO/IEC TR 15942:2000: 5.9
Ada Quality and Style Guide: 7.1.5 and 7.1.6
See: 6.54 Unspecified Behaviour [BQF] and 6.55 Undefined Behaviour [EWF].
6.56.3 Mechanism of failure
Language specifications do not always uniquely define the behaviour of a construct. When an instance of a construct that is not uniquely defined is encountered (this might be at any of translation, link-time, or program execution) implementations are permitted to choose from a set of behaviours. The only difference from unspecified behaviour is that implementations are required to document how they behave.
A developer may use a construct in a way that depends on a particular implementation-defined behaviour occurring. The behaviour of a program containing such a usage is dependent on the translator used to build it always selecting the 'expected' behaviour.
Some implementations provide a mechanism for changing an implementation's implementation-defined behaviour (for example, use of pragmas in source code). Use of such a change mechanism creates the potential for additional human error in that a developer may be unaware that a change of behaviour was requested earlier in the source code and may write code that depends on the implementation-defined behaviour that occurred prior to that explicit change of behaviour.
Many language constructs may have implementation-defined behaviour and unconditionally recommending against any use of these constructs may be completely impractical. For instance, in many languages the number of significant characters in an identifier is implementation-defined. Developers need to choose a minimum number of characters and require that only translators supporting at least that number, N, of characters be used.
The appearance of implementation-defined behaviour in a language specification is recognition by the language designers that in some cases implementation flexibility provides a worthwhile benefit for language translators; this usage is not a defect in the language.
6.56.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· Languages whose specification allows some variation in how a translator handles some construct, where reliance on one form of this variation can result in differences in external program behaviour.
· Language implementations may not be required to provide a mechanism for controlling implementation-defined behaviour.
6.56.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Document the set of implementation-defined features an application depends upon, so that upon a change of translator, development tools, or target configuration it can be ensured that those dependencies are still met.
· Ensure that a specific use of a construct having implementation-defined behaviour produces an external behaviour that is the same for all of the possible behaviours permitted by the language specification.
· Only use a language implementation whose implementation-defined behaviours are within a known subset of implementation-defined behaviours. The known subset should be chosen so that the 'same external behaviour' condition described above is met.
· Create highly visible documentation (perhaps at the start of a source file) that the default implementation-defined behaviour is changed within the current file.
· When developing coding guidelines for a specific language all constructs that have implementation-defined behaviour shall be documented and for each construct, the situations where the set of possible behaviours can vary shall be enumerated.
· When applying this guideline on a project the functionality provided by and for changing its implementation-defined behaviour shall be documented.
· Verify code behaviour using at least two different compilers with two different technologies.
6.56.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Portability guidelines for a specific language should provide a list of common implementation-defined behaviours.
· Language specifiers should enumerate all the cases of implementation-defined behaviour.
· Language designers should provide language directives that optionally disable obscure language features.
[bookmark: _Ref313956968][bookmark: _Toc358896435]6.57 Deprecated Language Features [MEM]
6.57.1 Description of application vulnerability
Ideally all code should conform to the current standard for the respective language. In reality though, a language standard may change during the creation of a software system or suitable compilers and development environments may not be available for the new standard for some period of time after the standard is published. To smooth the process of evolution, features that are no longer needed or which serve as the root cause of or contributing factor for safety or security problems are often deprecated to temporarily allow their continued use but to indicate that those features may be removed in the future. The deprecation of a feature is a strong indication that it should not be used. Other features, although not formally deprecated, are rarely used and there exist other more common ways of expressing the same function. Use of these rarely used features can lead to problems when others are assigned the task of debugging or modifying the code containing those features.
6.57.2 Cross reference
JSF AV Rules: 8 and 11
MISRA C 2012: 1.1 and 4.2
MISRA C++ 2008: 1-0-1, 2-3-1, 2-5-1, 2-7-1, 5-2-4, and 18-0-2
Ada Quality and Style Guide: 7.1.1
6.57.3 Mechanism of failure
Most languages evolve over time. Sometimes new features are added making other features extraneous. Languages may have features that are frequently the basis for security or safety problems. The deprecation of these features indicates that there is a better way of accomplishing the desired functionality. However, there is always a time lag between the acknowledgement that a particular feature is the source of safety or security problems, the decision to remove or replace the feature and the generation of warnings or error messages by compilers that the feature shouldn’t be used. Given that software systems can take many years to develop, it is possible and even likely that a language standard will change causing some of the features used to be suddenly deprecated. Modifying the software can be costly and time consuming to remove the deprecated features. However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from leaving the deprecated features in the code. Ultimately the deprecated features will likely need to be removed when the features are removed.
6.57.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
· All languages that have standards, though some only have defacto standards.
· All languages that evolve over time and as such could potentially have deprecated features at some point.
6.57.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Adhere to the latest published standard for which a suitable complier and development environment is available.
· Avoid the use of deprecated features of a language.
· Stay abreast of language discussions in language user groups and standards groups on the Internet. Discussions and meeting notes will give an indication of problem prone features that should not be used or should be used with caution.
6.57.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Obscure language features for which there are commonly used alternatives should be considered for removal from the language standard.
· Obscure language features that have routinely been found to be the root cause of safety or security vulnerabilities, or that are routinely disallowed in software guidance documents should be considered for removal from the language standard.
· Language designers should provide language mechanisms that optionally disable deprecated language features.
[bookmark: _Toc358896436]6.58 Concurrency – Activation [CGA]
6.58.1 Description of application vulnerability
A vulnerability can occur if an attempt has been made to activate a thread, but a programming error or the lack of some resource prevents the activation from completing. The activating thread may not have sufficient visibility or awareness into the execution of the activated thread to determine if the activation has been successful. The unrecognized activation failure can cause a protocol failure in the activating thread or in other threads that rely upon some action by the unactivated thread. This may cause the other thread(s) to wait forever for some event from the unactivated thread, or may cause an unhandled event or exception in the other threads.
6.58.2 Cross References
CWE:
364. Signal Handler Race Condition
Hoare A., "Communicating Sequential Processes", Prentice Hall, 1985
Holzmann G., "The SPIN Model Checker: Principles and Reference Manual", Addison Wesley Professional. 2003
UPPAAL, available from www.uppaal.com,
Larsen, Peterson, Wang, "Model Checking for Real-Time Systems", Proceedings of the 10th International Conference on Fundamentals of Computation Theory, 1995
Ravenscar Tasking Profile, specified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007
6.58.3 Mechanism of Failure
The context of the problem is that all threads except the main thread are activated by program steps of another thread. The activation of each thread requires that dedicated resources be created for that thread, such as a thread stack, thread attributes, and communication ports. If insufficient resources remain when the activation attempt is made, the activation will fail. Similarly, if there is a program error in the activated thread or if the activated thread detects an error that causes it to terminate before beginning its main work, then it may appear to have failed during activation. When the activation is “static”, resources have been preallocated, so activation failure because of a lack of resources will not occur. However errors may occur for reasons other than resource allocation and the results of an activation failure will be similar.
If the activating thread waits for each activated thread, then the activating thread will likely be notified of activation failures (if the particular construct or capability supports activation failure notification) and can be programmed to take alternate action. If notification occurs but alternate action is not programmed, then the program will execute erroneously. If the activating thread is loosely coupled with the activated threads, and the activating thread does not receive notification of a failure to activate, then it may wait indefinitely for the unactivated thread to do its work, or may make wrong calculations because of incomplete data.
Activation of a single thread is a special case of activations of collections of threads simultaneously. This paradigm (activation of collections of threads) can be used in languages that parallelise calculations and create anonymous threads to execute each slice of data. In such situations the activating thread is unlikely to individually monitor each activated thread, so a failure of some to activate without explicit notification to the activating thread can result in erroneous calculations.
If the rest of the application is unaware that an activation has failed, an incorrect execution of the application algorithm may occur, such as deadlock of threads waiting for the activated thread, or possibly causing errors or incorrect calculations.
6.58.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· All languages that permit concurrency within the language, or that use support libraries and operating systems (such as POSIX or Windows) that provide concurrency control mechanisms. In essence all traditional languages on fully functional operating systems (such as POSIX-compliant OS or Windows) can access the OS-provided mechanisms.
6.58.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Always check return codes on operating system command, library provided or language thread activation mechanisms.
· Handle errors and exceptions that occur on activation.
· Create explicit synchronization protocols, to ensure that all activations have occurred before beginning the parallel algorithm, if not provided by the language or by the threading subsystem.
· Use programming language provided features that couple the activated thread with the activating thread to detect activation errors so that errors can be reported and recovery made.
· Use static activation in preference to dynamic activation so that static analysis can guarantee correct activation of threads.
6.58.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Consider including automatic synchronization of thread initiation as part of the concurrency model.
· Provide a mechanism permitting query of activation success.
[bookmark: _Toc358896437][bookmark: _Ref411808169][bookmark: _Ref411809401]6.59 Concurrency – Directed termination [CGT]
6.59.1 Description of application vulnerability
This discussion is associated with the effects of unsuccessful or late termination of a thread. For a discussion of premature termination, see .
When a thread is working cooperatively with other threads and is directed to terminate, there are a number of error situations that may occur that can lead to compromise of the system. The termination directing thread may request that one or more other threads abort or terminate, but the terminated thread(s) may not be in a state such that the termination can occur, may ignore the direction, or may take longer to abort or terminate than the application can tolerate. In any case, on most systems, the thread will not terminate until it is next scheduled for execution.
Unexpectedly delayed termination or the consumption of resources by the termination itself may cause a failure to meet deadlines, which, in turn, may lead to other failures.
6.59.2 Cross references
CWE:
364. Signal Handler Race Condition
Hoare C.A.R., "Communicating Sequential Processes", Prentice Hall, 1985
Holzmann G., "The SPIN Model Checker: Principles and Reference Manual", Addison Wesley Professional. 2003
Larsen, Peterson, Wang, "Model Checking for Real-Time Systems", Proceedings of the 10th International Conference on Fundamentals of Computation Theory, 1995
The Ravenscar Tasking Profile, specified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007
6.59.3 Mechanism of failure
The abort of a thread may not happen if a thread is in an abort-deferred region and does not leave that region (for whatever reason) after the abort directive is given. Similarly, if abort is implemented as an event sent to a thread and it is permitted to ignore such events, then the abort will not be obeyed.
The termination of a thread may not happen if the thread ignores the directive to terminate, or if the finalization of the thread to be terminated does not complete.
If the termination directing thread continues on the false assumption that termination has completed, then any sort of failure may occur.
6.59.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· All languages that permit concurrency within the language, or support libraries and operating systems (such as POSIX-compliant or Windows operating systems) that provide hooks for concurrency control.
6.59.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use mechanisms of the language or system to determine that aborted threads or threads directed to terminate have successfully terminated. Such mechanisms may include direct communication, runtime-level checks, explicit dependency relationships, or progress counters in shared communication code to verify progress.
· Provide mechanisms to detect and/or recover from failed termination.
· Use static analysis techniques, such as CSP or model-checking to show that thread termination is safely handled.
· Where appropriate, use scheduling models where threads never terminate.
6.59.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Provide a mechanism (either a language mechanism or a service call) to signal either another thread or an entity that can be queried by other threads when a thread terminates.
[bookmark: _Toc358896438][bookmark: _Ref358977270]6.60 Concurrent Data Access [CGX]
6.60.1 Description of application vulnerability
Concurrency presents a significant challenge to program correctly, and has a large number of possible ways for failures to occur, quite a few known attack vectors, and many possible but undiscovered attack vectors. In particular, data visible from more than one thread and not protected by a sequential access lock can be corrupted by out-of-order accesses. This, in turn, can lead to incorrect computation, premature program termination, livelock, or system corruption.
6.60.2 Cross references
CWE:
214. Information Exposure Through Process Environment
362. Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
366. Race Condition Within a Thread
368. Context Switching Race Conditions
413. Improper Resource Locking
764. Multiple Locks of a Critical Resource
765. Multiple Unlocks of a Critical Resource
820. Missing Synchronization
821. Incorrect Synchronization
ISO IEC 8692 Programming Language Ada, with TC 1:2001 and AM 1:2007.
Burns A. and Wellings A., Language Vulnerabilities - Let’s not forget Concurrency, IRTAW 14, 2009.
C.A.R Hoare, A model for communicating sequential processes, 1980
6.60.3 Mechanism of failure
Shared data can be monitored or updated directly by more than one thread, possibly circumventing any access lock protocol in operation. Some concurrent programs do not use access lock mechanisms but rely upon other mechanisms such as timing or other program state to determine if shared data can be read or updated by a thread. Regardless, direct visibility to shared data permits direct access to such data concurrently. Arbitrary behaviour of any kind can result.
6.60.4 Applicable language characteristics
The vulnerability is intended to be applicable to
· All languages that provide concurrent execution and data sharing, whether as part of the language or by use of underlying operation system facilities, including facilities such as event handlers and interrupt handlers.
6.60.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effects in the following ways.
· Place all data in memory regions accessible to only one thread at a time.
· Use languages and those language features that provide a robust sequential protection paradigm to protect against data corruption. For example, Ada's protected objects and Java's Protected class, provide a safe paradigm when accessing objects that are exclusive to a single program.
· Use operating system primitives, such as the POSIX locking primitives for synchronization to develop a protocol equivalent to the Ada “protected” and Java “Protected” paradigm.
· Where order of access is important for correctness, implement blocking and releasing paradigms, or provide a test in the same protected region to check for correct order and generate errors if the test fails.
6.60.6 Implications for standardization
In future standardisation activities, the following items should be considered:
· Languages that do not presently consider concurrency should consider creating primitives that let applications specify regions of sequential access to data. Mechanisms such as protected regions, Hoare monitors or synchronous message passing between threads result in significantly fewer resource access mistakes in a program.
Provide the possibility of selecting alternative concurrency models that support static analysis, such as one of the models that are known to have safe properties. For examples, see [9], [10], and [17].
[bookmark: _Toc358896439][bookmark: _Ref411808187][bookmark: _Ref411808224][bookmark: _Ref411809438]6.61 Concurrency – Premature Termination [CGS]
6.61.1 Description of application vulnerability
When a thread is working cooperatively with other threads and terminates prematurely for whatever reason but unknown to other threads, then the portion of the interaction protocol between the terminated thread and other threads is damaged. This may result in:
· indefinite blocking of the other threads as they wait for the terminated thread if the interaction protocol was synchronous;
· other threads receiving wrong or incomplete results if the interaction was asynchronous; or
· deadlock if all other threads were depending upon the terminated thread for some aspect of their computation before continuing.
6.61.2 Cross references
CWE:
364. Signal Handler Race Condition
Hoare C.A.R., "Communicating Sequential Processes", Prentice Hall, 1985
Holzmann G., "The SPIN Model Checker: Principles and Reference Manual", Addison Wesley Professional. 2003
Larsen, Peterson, Wang, "Model Checking for Real-Time Systems", Proceedings of the 10th International Conference on Fundamentals of Computation Theory, 1995
The Ravenscar Tasking Profile, specified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007
6.61.3 Mechanism of failure
If a thread terminates prematurely, threads that depend upon services from the terminated thread (in the sense of waiting exclusively for a specific action before continuing) may wait forever since held locks may be left in a locked state resulting in waiting threads never being released or messages or events expected from the terminated thread will never be received.
If a thread depends on the terminating thread and receives notification of termination, but the dependent thread ignores the termination notification, then a protocol failure will occur in the dependent thread. For asynchronous termination events, an unexpected event may cause immediate transfer of control from the execution of the dependent thread to another (possible unknown) location, resulting in corrupted objects or resources; or may cause termination in the master thread6F[footnoteRef:5]. [5: This may cause the failure to propagate to other threads.]

These conditions can result in
· premature shutdown of the system;
· corruption or arbitrary execution of code;
· livelock;
· deadlock;
depending upon how other threads handle the termination errors.
If the thread termination is the result of an abort and the abort is immediate, there is nothing that can be done within the aborted thread to prepare data for return to master tasks, except possibly the management thread (or operating system) notifying other threads that the event occurred. If the aborted thread was holding resources or performing active updates when aborted, then any direct access by other threads to such locks, resources or memory may result in corruption of those threads or of the complete system, up to and including arbitrary code execution.
6.61.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
· Languages that permit concurrency within the language, or support libraries and operating systems (such as POSIX-compliant or Windows operating systems) that provide hooks for concurrency control.
6.61.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use concurrency mechanisms that are known to be robust.
· At appropriate times use mechanisms of the language or system to determine that necessary threads are still operating. Such mechanisms may be direct communication, runtime-level checks, explicit dependency relationships, or progress counters in shared communication code to verify progress.
· Handle events and exceptions from termination.
· Provide manager threads to monitor progress and to collect and recover from improper terminations or abortions of threads.
· Use static analysis techniques, such as model checking, to show that thread termination is safely handled.
6.61.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Provide a mechanism to preclude the abort of a thread from another thread during critical pieces of code. Some languages (for example, Ada or Real-Time Java) provide a notion of an abort-deferred region.
· Provide a mechanism to signal another thread (or an entity that can be queried by other threads) when a thread terminates.
· Provide a mechanism that, within critical pieces of code, defers the delivery of asynchronous exceptions or asynchronous transfers of control.
[bookmark: _Toc358896440]6.62 Protocol Lock Errors [CGM]
6.62.1 Description of application vulnerability
Concurrent programs use protocols to control
· The way that threads interact with each other,
· How to schedule the relative rates of progress,
· How threads participate in the generation and consumption of data,
· The allocation of threads to the various roles,
· The preservation of data integrity, and
· The detection and correction of incorrect operations.
When protocols are not correct, or when a vulnerability lets an exploit destroy a protocol, then the concurrent portions fail to work co-operatively and the system behaves incorrectly.
This vulnerability is related to 6.60 Concurrent Data Access [CGX], which discusses situations where the protocol to control access to resources is explicitly visible to the participating partners and makes use of visible shared resources. In comparison, this vulnerability discusses scenarios where such resources are protected by protocols, and considers ways that the protocol itself may be misused.
6.62.2 Cross references
CWE:
413. Improper Resource Locking
414. Missing Lock Check
609. Double Checked Locking
667. Improper Locking
821. Incorrect Synchronization
833. Deadlock
C.A.R. Hoare, A model for communicating sequential processes, 1980
Larsen, K.G., Petterssen, P, Wang, Y, UPPAAL in a nutshell, 1997
6.62.3 Mechanism of failure
Threads use locks and protocols to schedule their work, control access to resources, exchange data, and to effect communication with each other. Protocol errors occur when the expected rules for co-operation are not followed, or when the order of lock acquisitions and release causes the threads to quit working together. These errors can be as a result of:
· deliberate termination of one or more threads participating in the protocol,
· disruption of messages or interactions in the protocol,
· errors or exceptions raised in threads participating in the protocol, or
· errors in the programming of one or more threads participating in the protocol.
In such situations, there are a number of possible consequences:
· deadlock, where every thread eventually quits computing as it waits for results from another thread, no further progress in the system is made,
· livelock, where one or more threads commandeer all of the computing resource and effectively lock out the other portions, no further progress in the system is made,
· data may be corrupted or lack currency (timeliness), or
· one or more threads detect an error associated with the protocol and terminate prematurely, leaving the protocol in an unrecoverable state.
The potential damage from attacks on protocols depends upon the nature of the system using the protocol and the protocol itself. Self-contained systems using private protocols can be disrupted, but it is highly unlikely that predetermined executions (including arbitrary code execution) can be obtained. On the other extreme, threads communicating openly between systems using well-documented protocols can be disrupted in any arbitrary fashion with effects such as the destruction of system resources (such as a database), the generation of wrong but plausible data, or arbitrary code execution. In fact, many documented client-server based attacks consist of some abuse of a protocol such as SQL transactions.
6.62.4 Applicable language characteristics
The vulnerability is intended to be applicable to languages with the following characteristics:
· Languages that support concurrency directly.
· Languages that permit calls to operating system primitives to obtain concurrent behaviours.
· Languages that permit IO or other interaction with external devices or services.
· Languages that support interrupt handling directly or indirectly (via the operating system).
6.62.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effects in the following ways:
· Consider the use of synchronous protocols, such as defined by CSP, Petri Nets or by the Ada rendezvous protocol since these can be statically shown to be free from protocol errors such as deadlock and livelock.
· Consider the use of simple asynchronous protocols that exclusively use concurrent threads and protected regions, such as defined by the Ravenscar Tasking Profile, which can also be shown statically to have correct behaviour using model checking technologies, as shown by [46].
· When static verification is not possible, consider the use of detection and recovery techniques using simple mechanisms and protocols that can be verified independently from the main concurrency environment. Watchdog timers coupled with checkpoints constitute one such approach.
· Use high-level synchronization paradigms, for example monitors, rendezvous, or critical regions.
· Design the architecture of the application to ensure that some threads or tasks never block, and can be available for detection of concurrency error conditions and for recovery initiation.
· Use model checkers to model the concurrent behaviour of the complete application and check for states where progress fails. Place all locks and releases in the same subprograms, and ensure that the order of calls and releases of multiple locks are correct.
6.62.6 Implications for standardization
In future standardization activities, the following items should be considered:
· Raise the level of abstraction for concurrency services.
· Provide services or mechanisms to detect and recover from protocol lock failures.
· Design concurrency services that help to avoid typical failures such as deadlock.
[bookmark: _Toc358896441]6.63 Inadequately Secure Communication of Shared Resources [CGY]
6.63.1 Description of application vulnerability
A resource that is directly visible from more than one process (at the same approximate time) and is not protected by access locks can be hijacked or used to corrupt, control or change the behaviour of other processes in the system. Many vulnerabilities that are associated with concurrent access to files, shared memory or shared network resources fall under this vulnerability, including resources accessed via stateless protocols such as HTTP and remote file protocols.
6.63.2 Cross references
CWE:
15. External Control of System or Configuration Setting
311. Missing Encryption of Sensitive Data
642. External Control of Critical State Data
Burns A. and Wellings A., Language Vulnerabilities - Let’s not forget Concurrency, IRTAW 14, 2009.
6.63.3 Mechanism of failure
Any time that a shared resource is open to general inspection, the resource can be monitored by a foreign process to determine usage patterns, timing patterns, and access patterns to determine ways that a planned attack can succeed7F[footnoteRef:6]. Such monitoring could be, but is not limited to: [6: Such monitoring is almost always possible by a process executing with system privilege, but even small slips in access controls and permissions let such resources be seen from other (non system level) processes. Even the existence of the resource, its size, or its access dates/times and history (such as “last accessed time”) can give valuable information to an observer.]

· Reading resource values to obtain information of value to the applications.
· Monitoring access time and access thread to determine when a resource can be accessed undetected by other threads (for example, Time-of-Check-Time-Of-Use attacks rely upon a determinable amount of time between the check on a resource and the use of the resource when the resource could be modified to bypass the check).
· Monitoring a resource and modification patterns to help determine the protocols in use.
· Monitoring access times and patterns to determine quiet times in the access to a resource that could be used to find successful attack vectors.
This monitoring can then be used to construct a successful attack, usually in a later attack.
Any time that a resource is open to general update, the attacker can plan an attack by performing experiments to:
· Discover how changes affect patterns of usage, timing, and access.
· Discover how application threads detect and respond to forged values.
Any time that a shared resource is open to shared update by a thread, the resource can be changed in ways to further an attack once it is initiated. For example, in a well-known attack, a process monitors a certain change to a known file and then immediately replaces a virus free file with an infected file to bypass virus checking software.
With careful planning, similar scenarios can result in the foreign process determining a weakness of the attacked process leading to an exploit consisting of anything up to and including arbitrary code execution.
6.63.4 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effects in the following ways.
· Place all shared resources in memory regions accessible to only one process at a time.
· Protect resources that must be visible with encryption or with checksums to detect unauthorized modifications.
· Protect access to shared resources using permissions, access control, or obfuscation.
· Have and enforce clear rules with respect to permissions to change shared resources.
· Detect attempts to alter shared resources and take immediate action.
[bookmark: _Toc358896442]6.64 Use of unchecked data from an uncontrolled or tainted source [EFS]
6.64.1 Description of application vulnerability
This vulnerability covers a general class of behaviours, the identification of which is referred to as ‘taint analysis’.
Whenever a program gets data from an external source, there is a possibility that that data may have been tampered with by an attacker attempting to induce the program into performing some damaging action, or may have been corrupted accidently leading to the same result. Such data is called ‘tainted’.
The general principle should be that before tainted data is used, it should be checked to ensure that it is within acceptable bounds or has an appropriate structure, or otherwise can be accepted as untainted, and so safe to use.
6.64.2 Cross reference
[C language reference] C secure coding rules annex
TBD
6.64.3 Mechanism of failure
The principle mechanisms of failure are:
Use of the data in an arithmetic expression, causing the one of the problems described in section 6.
Use of the data in a call to a function that executes a system command.
Use of the data in a call to a function that establishes a communications connection.
6.64.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its effects in the following ways.
Different mechanisms of failure require different mitigations, which also may depend on how the tainted data is to be used:
Tainted data used in an arithmetic expression may need to be tested to ensure that it doesn’t cause arithmetic overflow, divide by zero or buffer overflow
Integer data used to allocate memory or other resources should be checked to ensure that it won’t cause resource exhaustion
Strings passed to system functions should be checked to ensure that they are well formed and have an expected structure (for example see 7.12 Injection [RST])
This vulnerability is described as ‘data from an uncontrolled source’, as a distinction may need to be drawn between data from outside the program, but which is still trustworthy, and data that comes from a source that could credibly be modified by an attacker, or otherwise corrupted. For example, data read from a file may be regarded as trustworthy (untainted) if the file is read-only and inside a firewall, but potentially tainted if it is from a more generally accessible location.
[bookmark: _Toc358896443]6.65 Uncontrolled Format String [SHL]
6.65.1 Description of application vulnerability
The software uses externally controlled format strings in input/output functions, which can lead to buffer overflows or data representation problems.
6.65.2 Cross reference
CWE:
134. Uncontrolled Format String
6.65.3 Mechanism of failure
The programmer rarely intends for a format string to be user-controlled at all. This weakness frequently occurs in code that constructs log messages, where a constant format string is omitted.
In cases such as localization and internationalization, the language-specific message repositories could be an avenue for exploitation, but the format string issue would be resultant, since attacker control of those repositories would also allow modification of message length, format, and content.
6.65.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:
Languages that support format strings for input/ouput functions.
6.65.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
Ensure that all format string functions are passed as static string which cannot be controlled by the user and that the proper number of arguments is always sent to that function.
Ensure all specifiers used match the associated parameter.
Avoid format strings that will write to a memory location that is pointed to by its argument.
6.65.6 Implications for standardization
In future standardization activities, the following items should be considered:
Ensure all format strings are verified to be correct in regard to the associated argument or parameter.

[bookmark: _Toc358896444]7. Application Vulnerabilities
[bookmark: _Toc358896445]7.1 General
This clause provides descriptions of selected application vulnerabilities which have been found and exploited in a number of applications and which have well known mitigation techniques, and which result from design decisions made by coders in the absence of suitable language library routines or other mechanisms. For these vulnerabilities, each description provides:
· a summary of the vulnerability,
· typical mechanisms of failure, and
· techniques that programmers can use to avoid the vulnerability
[bookmark: _Toc358896446]7.2 Terminology
These vulnerabilities are application-related rather than language-related. They are written in a language-independent manner, and there are no corresponding sections in the annexes.
[bookmark: _Ref313945823][bookmark: _Toc358896447]7.3 Unspecified Functionality [BVQ]
7.3.1 Description of application vulnerability
Unspecified functionality is code that may be executed, but whose behaviour does not contribute to the requirements of the application. While this may be no more than an amusing ‘Easter Egg’, like the flight simulator in a spreadsheet, it does raise questions about the level of control of the development process.
In a security-critical environment particularly, the developer of an application could include a ‘trap-door’ to allow illegitimate access to the system on which it is eventually executed, irrespective of whether the application has obvious security requirements.
7.3.2 Cross reference
JSF AV Rule: 127
MISRA C 2012: 1.2, 2.1, 3.1, and 4.4
XYQ: Dead and Deactivated code.
7.3.3 Mechanism of failure
Unspecified functionality is not a software vulnerability per se, but more a development issue. In some cases, unspecified functionality may be added by a developer without the knowledge of the development organization. In other cases, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody buys a spreadsheet expecting to find it includes a flight simulator), but is specified by the development organization. In effect they only reveal a subset of the program’s behaviour to the users.
In the first case, one would expect a well-managed development environment to discover the additional functionality during validation and verification. In the second case, the user is relying on the supplier not to release harmful code.
In effect, a program’s requirements are ‘the program should behave in the following manner and do nothing else’. The ‘and do nothing else’ clause is often not explicitly stated, and can be difficult to demonstrate.
7.3.4 Avoiding the vulnerability or mitigating its effects
End users can avoid the vulnerability or mitigate its ill effects in the following ways:
· Programs and development tools that are to be used in critical applications should come from a developer who uses a recognized and audited development process for the development of those programs and tools.
· The development process should generate documentation showing traceability from source code to requirements, in effect answering ‘why is this unit of code in this program?’. Where unspecified functionality is there for a legitimate reason (such as diagnostics required for developer maintenance or enhancement), the documentation should also record this. It is not unreasonable for customers of bespoke critical code to ask to see such traceability as part of their acceptance of the application.
[bookmark: _Ref313956903][bookmark: _Toc358896448]7.4 Distinguished Values in Data Types [KLK]
7.4.1 Description of application vulnerability
Sometimes, in a type representation, certain values are distinguished as not being members of the type, but rather as providing auxiliary information. Examples include special characters used as string terminators, distinguished values used to indicate out of type entries in SQL (Structured Query Language) database fields, and sentinels used to indicate the bounds of queues or other data structures. When the usage pattern of code containing distinguished values is changed, it may happen that the distinguished value happens to coincide with a legitimate in-type value. In such a case, the value is no longer distinguishable from an in-type value and the software will no longer produce the intended results.
7.4.2 Cross reference
CWE:
20. Improper input validation
137. Representation errors
JSF AV Rule: 151
7.4.3 Mechanism of failure
A “distinguished value” or a "magic number" in the representation of a data type might be used to represent out-of-type information. Some examples include the following:
· The use of a special code, such as “00”, to indicate the termination of a coded character string.
· The use of a special value, such as “999…9”, as the indication that the actual value is either not known or is invalid.
If the use of the software is later generalized, the once-special value can become indistinguishable from valid data. Note that the problem may occur simply if the pattern of usage of the software is changed from that anticipated by the software’s designers. It may also occur if the software is reused in other circumstances.
An example of a change in the pattern of usage is this: An organization logs visitors to its buildings by recording their names and national identity numbers or social security numbers in a database. Of course, some visitors legitimately don’t have or don’t know their social security number, so the receptionists enter numbers to “make the computer happy.” Receptionists at one building have adopted the convention of using the code “555-55-5555” to designate children of employees. Receptionists at another building have used the same code to designate foreign nationals. When the databases are merged, the children are reclassified as foreign nationals or vice-versa depending on which set of receptionists are using the newly merged database.
An example of an unanticipated change due to reuse is this: Suppose a software component analyzes radar data, recording data every degree of azimuth from 0 to 359. Packets of data are sent to other components for processing, updating displays, recording, and so on. Since all degree values are non-negative, a distinguished value of -1 is used as a signal to stop processing, compute summary data, close files, and so on. Many of the components are to be reused in a new system with a new radar analysis component. However the new component represents direction by numbers in the range -180 degrees to 179 degrees. When an azimuth value of -1 is provided, the downstream components will interpret that as the indication to stop processing. If the magic value is changed to, say, -999, the software is still at risk of failing when future enhancements (say, counting accumulated degrees on complete revolutions) bring -999 into the range of valid data.
Distinguished values should be avoided. Instead, the software should be designed to use distinct variables to encode the desired out-of-type information. For example, the length of a character string might be encoded in a dope vector and validity of data entries might be encoded in distinct Boolean values.
7.4.4 Avoiding the vulnerability or mitigating its effects
End users can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use auxiliary variables (perhaps enclosed in variant records) to encode out-of-type information.
· Use enumeration types to convey category information. Do not rely upon large ranges of integers, with distinguished values having special meanings.
· Use named constants to make it easier to change distinguished values.
[bookmark: _Ref313957593][bookmark: _Toc358896449]7.5 Adherence to Least Privilege [XYN]
7.5.1 Description of application vulnerability
Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.
7.5.2 Cross reference
CWE:
250. Design Principle Violation: Failure to Use Least Privilege
CERT C guidelines: POS02-C
7.5.3 Mechanism of failure
This vulnerability type refers to cases in which an application grants greater access rights than necessary. Depending on the level of access granted, this may allow a user to access confidential information. For example, programs that run with root privileges have caused innumerable UNIX security disasters. It is imperative that you carefully review privileged programs for all kinds of security problems, but it is equally important that privileged programs drop back to an unprivileged state as quickly as possible to limit the amount of damage that an overlooked vulnerability might be able to cause. Privilege management functions can behave in some less-than-obvious ways, and they have different quirks on different platforms. These inconsistencies are particularly pronounced if you are transitioning from one non-root user to another. Signal handlers and spawned processes run at the privilege of the owning process, so if a process is running as root when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage these elevated privileges to do further damage. To grant the minimum access level necessary, first identify the different permissions that an application or user of that application will need to perform their actions, such as file read and write permissions, network socket permissions, and so forth. Then explicitly allow those actions while denying all else.
7.5.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones in the software.
· Follow the principle of least privilege when assigning access rights to entities in a software system.
[bookmark: _Ref313957600][bookmark: _Toc358896450]7.6 Privilege Sandbox Issues [XYO]
7.6.1 Description of application vulnerability
A variety of vulnerabilities occur with improper handling, assignment, or management of privileges. These are especially present in sandbox environments, although it could be argued that any privilege problem occurs within the context of some sort of sandbox.
7.6.2 Cross reference
CWE:
266. Incorrect Privilege Assignment
267. Privilege Defined With Unsafe Actions
268. Privilege Chaining
269. Privilege Management Error
270. Privilege Context Switching Error
272. Least Privilege Violation
273. Failure to Check Whether Privileges were Dropped Successfully
274. Failure to Handle Insufficient Privileges
276. Insecure Default Permissions
732. Incorrect Permission Assignment for Critical Resource
CERT C guidelines: POS36-C
7.6.3 Mechanism of failure
The failure to drop system privileges when it is reasonable to do so is not an application vulnerability by itself. It does, however, serve to significantly increase the severity of other vulnerabilities. According to the principle of least privilege, access should be allowed only when it is absolutely necessary to the function of a given system, and only for the minimal necessary amount of time. Any further allowance of privilege widens the window of time during which a successful exploitation of the system will provide an attacker with that same privilege.
Many situations could lead to a mechanism of failure:
· A product could incorrectly assign a privilege to a particular entity.
· A particular privilege, role, capability, or right could be used to perform unsafe actions that were not intended, even when it is assigned to the correct entity. (Note that there are two separate sub-categories here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly accessible to entities with a given privilege.)
· Two distinct privileges, roles, capabilities, or rights could be combined in a way that allows an entity to perform unsafe actions that would not be allowed without that combination.
· The software may not properly manage privileges while it is switching between different contexts that cross privilege boundaries.
· A product may not properly track, modify, record, or reset privileges.
· In some contexts, a system executing with elevated permissions will hand off a process/file or other object to another process/user. If the privileges of an entity are not reduced, then elevated privileges are spread throughout a system and possibly to an attacker.
· The software may not properly handle the situation in which it has insufficient privileges to perform an operation.
· A program, upon installation, may set insecure permissions for an object.
7.6.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· The principle of least privilege when assigning access rights to entities in a software system should be followed. The setting, management and handling of privileges should be managed very carefully. Upon changing security privileges, one should ensure that the change was successful.
· Consider following the principle of separation of privilege. Require multiple conditions to be met before permitting access to a system resource.
· Trust zones in the software should be explicitly managed. If at all possible, limit the allowance of system privilege to small, simple sections of code that may be called atomically.
· As soon as possible after acquiring elevated privilege to call a privileged function such as chroot(), the program should drop root privilege and return to the privilege level of the invoking user.
· In newer Windows implementations, make sure that the process token has the SeImpersonatePrivilege.
[bookmark: _Ref313957584][bookmark: _Toc358896451]7.7 Executing or Loading Untrusted Code [XYS]
7.7.1 Description of application vulnerability
Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands (and payloads) on behalf of an attacker.
7.7.2 Cross reference
CWE:
114. Process Control
306. Missing Authentication for Critical Function
CERT C guidelines: PRE09-C, ENV02-C, and ENV03-C
7.7.3 Mechanism of failure
Process control vulnerabilities take two forms:
· An attacker can change the command that the program executes so that the attacker explicitly controls what the command is.
· An attacker can change the environment in which the command executes so that the attacker implicitly controls what the command means.
Considering only the first scenario, the possibility that an attacker may be able to control the command that is executed, process control vulnerabilities occur when:
· Data enters the application from a source that is not trusted.
· The data is used as or as part of a string representing a command that is executed by the application.
· By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.
7.7.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Libraries that are loaded should be well understood and come from a trusted source with a digital signature. The application can execute code contained in native libraries, which often contain calls that are susceptible to other security problems, such as buffer overflows or command injection.
· All native libraries should be validated.
· Determine if the application requires the use of the native library. It can be very difficult to determine what these libraries actually do, and the potential for malicious code is high.
· To help prevent buffer overflow attacks, validate all input to native calls for content and length.
· If the native library does not come from a trusted source, review the source code of the library. The library should be built from the reviewed source before using it.
7.7.5 Implications for standardization
In future standardization activities, the following items should be considered:
· Language independent APIs for code signing and data signing should be defined, allowing each Programming Language to define a binding.
[bookmark: _Ref313957562][bookmark: _Toc358896452]7.8 Memory Locking [XZX]
7.8.1 Description of application vulnerability
Sensitive data stored in memory that was not locked or that has been improperly locked may be written to swap files on disk by the virtual memory manager.
7.8.2 Cross reference
CWE:
591. Sensitive Data Storage in Improperly Locked Memory
CERT C guidelines: MEM06-C
7.8.3 Mechanism of failure
Sensitive data that is not kept cryptographically secure may become visible to an attacker by any of several mechanisms. Some operating systems may write memory to swap or page files that may be visible to an attacker. Some operating systems may provide mechanisms to examine the physical memory of the system or the virtual memory of another application. Application debuggers may be able to stop the target application and examine or alter memory.
7.8.4 Avoiding the vulnerability or mitigating its effects
In almost all cases, these attacks require elevated or appropriate privilege.
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Remove debugging tools from production systems.
· Log and audit all privileged operations.
· Identify data that needs to be protected and use appropriate cryptographic and other data obfuscation techniques to avoid keeping plaintext versions of this data in memory or on disk.
· If the operating system allows, clear the swap file on shutdown.
Note: Several implementations of the POSIX mlock() and the Microsoft Windows VirtualLock() functions will prevent the named memory region from being written to a swap or page file. However, such usage is not portable.
Systems that provide a "hibernate" facility (such as laptops) will write all of physical memory to a file that may be visible to an attacker on resume.
7.8.5 Implications for standardization
In future standardization activities, the following items should be considered:
· Language independent APIs for memory locking should be defined, allowing each Programming Language to define a binding.
[bookmark: _Toc192558225][bookmark: _Ref313957574][bookmark: _Toc358896453]7.9 Resource Exhaustion [XZP]
[bookmark: _Toc192558227]7.9.1 Description of application vulnerability
The application is susceptible to generating and/or accepting an excessive number of requests that could potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, or CPU. This could ultimately lead to a denial of service that could prevent any other applications from accessing these resources.
[bookmark: _Toc192558228]7.9.2 Cross reference
CWE:
400. Resource Exhaustion
[bookmark: _Toc192558230]7.9.3 Mechanism of failure
There are two primary failures associated with resource exhaustion. The most common result of resource exhaustion is denial of service. In some cases an attacker or a defect may cause a system to fail in an unsafe or insecure fashion by causing an application to exhaust the available resources.
Resource exhaustion issues are generally understood but are far more difficult to prevent. Taking advantage of various entry points, an attacker could craft a wide variety of requests that would cause the site to consume resources. Database queries that take a long time to process are good DoS (Denial of Service) targets. An attacker would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to keep up. This would effectively prevent authorized users from using the site at all.
Resources can be exhausted simply by ensuring that the target machine must do much more work and consume more resources to service a request than the attacker must do to initiate a request. Prevention of these attacks requires that the target system either recognizes the attack and denies that user further access for a given amount of time or uniformly throttles all requests to make it more difficult to consume resources more quickly than they can again be freed. The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, he may be able to prevent the user from accessing the server in question. The second solution is simply difficult to effectively institute and even when properly done, it does not provide a full solution. It simply makes the attack require more resources on the part of the attacker.
The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail open." This means that in the event of resource consumption, the system fails in such a way that the state of the system — and possibly the security functionality of the system — are compromised. A prime example of this can be found in old switches that were vulnerable to "macof" attacks (so named for a tool developed by Dugsong). These attacks flooded a switch with random IP(Internet Protocol) and MAC(Media Access Control) address combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to which MAC addresses. Once this cache was exhausted, the switch would fail in an insecure way and would begin to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks.
[bookmark: _Toc192558231]7.9.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Implement throttling mechanisms into the system architecture. The best protection is to limit the amount of resources that an application can cause to be expended. A strong authentication and access control model will help prevent such attacks from occurring in the first place. The authentication application should be protected against denial of service attacks as much as possible. Limiting the database access, perhaps by caching result sets, can help minimize the resources expended. To further limit the potential for a denial of service attack, consider tracking the rate of requests received from users and blocking requests that exceed a defined rate threshold.
· Ensure that applications have specific limits of scale placed on them, and ensure that all failures in resource allocation cause the application to fail safely.
[bookmark: _Toc267483391][bookmark: _Ref313948270][bookmark: _Toc358896454]7.10 Unrestricted File Upload [CBF]
7.10.1 Description of application vulnerability
A first step often used to attack is to get an executable on the system to be attacked. Then the attack only needs to execute this code. Many times this first step is accomplished by unrestricted file upload. In many of these attacks, the malicious code can obtain the same privilege of access as the application, or even administrator privilege.
7.10.2 Cross reference
CWE:
434. Unrestricted Upload of File with Dangerous Type
7.10.3 Mechanism of failure
There are several failures associated with an uploaded file:
· Executing arbitrary code.
· Phishing page added to a website.
· Defacing a website.
· Creating a vulnerability for other attacks.
· Browsing the file system.
· Creating a denial of service.
· Uploading a malicious executable to a server, which could be executed with administrator privilege.
7.10.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Allow only certain file extensions, commonly known as a white-list.
· Disallow certain file extensions, commonly known as a black-list.
· Use a utility to check the type of the file.
· Check the content-type in the header information of all files that are uploaded. The purpose of the content-type field is to describe the data contained in the body completely enough that the receiving agent can pick an appropriate agent or mechanism to present the data to the user, or otherwise deal with the data in an appropriate manner.
· Use a dedicated location, which does not have execution privileges, to store and validate uploaded files, and then serve these files dynamically.
· Require a unique file extension (named by the application developer), so only the intended type of the file is used for further processing. Each upload facility of an application could handle a unique file type.
· Remove all Unicode characters and all control characters4F[footnoteRef:7] from the filename and the extensions. [7: See http://www.ascii.cl/control-characters.htm]

· Set a limit for the filename length; including the file extension. In an NTFS (New Technology File System) partition, usually a limit of 255 characters, without path information will suffice.
· Set upper and lower limits on file size. Setting these limits can help in denial of service attacks.
All of the above have some short comings, for example, a GIF (.gif) file may contain a free-form comment field, and therefore a sanity check of the file’s contents is not always possible. An attacker can hide code in a file segment that will still be executed by the application or server. In many cases it will take a combination of the techniques from the above list to avoid this vulnerability.
7.10.5 Implications for standardization
In future standardization activities, the following items should be considered:
· Language independent APIs for file identification should be defined, allowing each Programming Language to define a binding.
[bookmark: _Ref313956850][bookmark: _Toc358896455]7.11 Resource Names [HTS]
7.11.1 Description of application vulnerability
Interfacing with the directory structure or other external identifiers on a system on which software executes is very common. Differences in the conventions used by operating systems can result in significant changes in behaviour when the same program is executed under different operating systems. For instance, the directory structure, permissible characters, case sensitivity, and so forth can vary among operating systems and even among variations of the same operating system. For example, Microsoft prohibits “/?:&*”<>|#%”; but UNIX, Linux, and OS X operating systems allow any character except for the reserved character ‘/’ to be used in a filename.
Some operating systems are case sensitive while others are not. On non-case sensitive operating systems, depending on the software being used, the same filename could be displayed, as “filename”, “Filename” or “FILENAME” and all would refer to the same file.
Some operating systems, particularly older ones, only rely on the significance of the first n characters of the file name. n can be unexpectedly small, such as the first 8 characters in the case of Win16 architectures which would cause “filename1”, “filename2” and “filename3” to all map to the same file.
Variations in the filename, named resource or external identifier being referenced can be the basis for various kinds of problems. Such mistakes or ambiguity can be unintentional, or intentional, and in either case they can be potentially exploited, if surreptitious behaviour is a goal.
7.11.2 Cross reference
JSF AV Rules: 46, 51, 53, 54, 55, and 56
MISRA C 2012: 1.1
CERT C guidelines: MSC09-C and MSC10-C
7.11.3 Mechanism of Failure
The wrong named resource, such as a file, may be used within a program in a form that provides access to a resource that was not intended to be accessed. Attackers could exploit this situation to intentionally misdirect access of a named resource to another named resource.
7.11.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Where possible, use an API that provides a known common set of conventions for naming and accessing external resources, such as POSIX, ISO/IEC 9945:2003 (IEEE Std 1003.1-2001).
· Analyze the range of intended target systems, develop a suitable API for dealing with them, and document the analysis.
· Ensure that programs adapt their behaviour to the platform on which they are executing, so that only the intended resources are accessed. The means that information on such characteristics as the directory separator string and methods of accessing parent directories need to be parameterized and not exist as fixed strings within a program.
· Avoid creating resource names that are longer than the guaranteed unique length of all potential target platforms.
· Avoid creating resources, which are differentiated only by the case in their names.
· Avoid all Unicode characters and all control characters5F[footnoteRef:8] in filenames and the extensions. [8: See http://www.ascii.cl/control-characters.htm]

7.11.5 Implications for standardization
In future standardization activities, the following items should be considered:
· Language independent APIs for interfacing with external identifiers should be defined, allowing each Programming Language to define a binding.
[bookmark: _Ref313957130][bookmark: _Toc358896456]7.12 Injection [RST]
7.12.1 Description of application vulnerability
Injection problems span a wide range of instantiations. The basic form of this weakness involves the software allowing injection of additional data in input data to alter the control flow of the process. Command injection problems are a subset of injection problems, in which the process can be tricked into calling external processes of an attacker’s choice through the injection of command syntax into the input data. Multiple leading/internal/trailing special elements injected into an application through input can be used to compromise a system. As data is parsed, improperly handled multiple leading special elements may cause the process to take unexpected actions that result in an attack. Software may allow the injection of special elements that are non-typical but equivalent to typical special elements with control implications. This frequently occurs when the product has protected itself against special element injection. Software may allow inputs to be fed directly into an output file that is later processed as code, such as a library file or template. Line or section delimiters injected into an application can be used to compromise a system.
Many injection attacks involve the disclosure of important information — in terms of both data sensitivity and usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a remote vulnerability. Injection attacks are characterized by the ability to significantly change the flow of a given process, and in some cases, to the execution of arbitrary code. Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data injected is always incidental to data recall or writing. Often the actions performed by injected control code are not logged.
SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into input to effect the execution of predefined SQL commands. Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem with SQL injection vulnerabilities. If poorly implemented SQL commands are used to check user names and passwords, it may be possible to connect to a system as another user with no previous knowledge of the password. If authorization information is held in a SQL database, it may be possible to change this information through the successful exploitation of the SQL injection vulnerability. Just as it may be possible to read sensitive information, it is also possible to make changes or even delete this information with a SQL injection attack.
Injection problems encompass a wide variety of issues — all mitigated in very different ways. The most important issue to note is that all injection problems share one thing in common — they allow for the injection of control data into the user controlled data. This means that the execution of the process may be altered by sending code in through legitimate data channels, using no other mechanism. While buffer overflows and many other flaws involve the use of some further issue to gain execution, injection problems need only for the data to be parsed. Many injection attacks involve the disclosure of important information in terms of both data sensitivity and usefulness in further exploitation. In some cases injectable code controls authentication, this may lead to a remote vulnerability.
7.12.2 Cross reference
CWE:
74. Failure to Sanitize Data into a Different Plane ('Injection')
76. Failure to Resolve Equivalent Special Elements into a Different Plane
78. Failure to Sanitize Data into an OS Command (aka ‘OS Command Injection’)
89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
90. Failure to Sanitize Data into LDAP Queries (aka ‘LDAP Injection’)
91. XML Injection (aka Blind XPath Injection)
92. Custom Special Character Injection
95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka 'Eval Injection')
97. Failure to Sanitize Server-Side Includes (SSI) Within a Web Page
98. Insufficient Control of Filename for Include/Require Statement in PHP Program (aka ‘PHP File Inclusion’)
99. Insufficient Control of Resource Identifiers (aka ‘Resource Injection’)
144. Failure to Sanitize Line Delimiters
145. Failure to Sanitize Section Delimiters
161. Failure to Sanitize Multiple Leading Special Elements
163. Failure to Sanitize Multiple Trailing Special Elements
165. Failure to Sanitize Multiple Internal Special Elements
166. Failure to Handle Missing Special Element
167. Failure to Handle Additional Special Element
168. Failure to Resolve Inconsistent Special Elements
564. SQL Injection: Hibernate
CERT C guidelines: FIO30-C
7.12.3 Mechanism of failure
A software system that accepts and executes input in the form of operating system commands (such as system(), exec(), open()) could allow an attacker with lesser privileges than the target software to execute commands with the elevated privileges of the executing process. Command injection is a common problem with wrapper programs. Often, parts of the command to be run are controllable by the end user. If a malicious user injects a character (such as a semi-colon) that delimits the end of one command and the beginning of another, he may then be able to insert an entirely new and unrelated command to do whatever he pleases.
Dynamically generating operating system commands that include user input as parameters can lead to command injection attacks. An attacker can insert operating system commands or modifiers in the user input that can cause the request to behave in an unsafe manner. Such vulnerabilities can be very dangerous and lead to data and system compromise. If no validation of the parameter to the exec command exists, an attacker can execute any command on the system the application has the privilege to access.
There are two forms of command injection vulnerabilities. An attacker can change the command that the program executes (the attacker explicitly controls what the command is). Alternatively, an attacker can change the environment in which the command executes (the attacker implicitly controls what the command means). The first scenario where an attacker explicitly controls the command that is executed can occur when:
· Data enters the application from an untrusted source.
· The data is part of a string that is executed as a command by the application.
· By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.
Eval injection occurs when the software allows inputs to be fed directly into a function (such as "eval") that dynamically evaluates and executes the input as code, usually in the same interpreted language that the product uses. Eval injection is prevalent in handler/dispatch procedures that might want to invoke a large number of functions, or set a large number of variables.
A PHP file inclusion occurs when a PHP product uses require or include statements, or equivalent statements, that use attacker-controlled data to identify code or HTML (HyperText Markup Language) to be directly processed by the PHP interpreter before inclusion in the script.
A resource injection issue occurs when the following two conditions are met:
· An attacker can specify the identifier used to access a system resource. For example, an attacker might be able to specify part of the name of a file to be opened or a port number to be used.
· By specifying the resource, the attacker gains a capability that would not otherwise be permitted. For example, the program may give the attacker the ability to overwrite the specified file, run with a configuration controlled by the attacker, or transmit sensitive information to a third-party server. Note: Resource injection that involves resources stored on the file system goes by the name path manipulation and is reported in separate category. See the 7.18 Path Traversal [EWR] description for further details of this vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or modify otherwise protected system resources.
Line or section delimiters injected into an application can be used to compromise a system. As data is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack. One example of a section delimiter is the boundary string in a multipart MIME (Multipurpose Internet Mail Extensions) message. In many cases, doubled line delimiters can serve as a section delimiter.
7.12.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Assume all input is malicious. Use an appropriate combination of black-lists and white-lists to ensure only valid, expected and appropriate input is processed by the system.
· Narrowly define the set of safe characters based on the expected values of the parameter in the request.
· Developers should anticipate that delimiters and special elements would be injected/removed/manipulated in the input vectors of their software system and appropriate mechanisms should be put in place to handle them.
· Implement SQL strings using prepared statements that bind variables. Prepared statements that do not bind variables can be vulnerable to attack.
· Use vigorous white-list style checking on any user input that may be used in a SQL command. Rather than escape meta-characters, it is safest to disallow them entirely since the later use of data that have been entered in the database may neglect to escape meta-characters before use.
· Follow the principle of least privilege when creating user accounts to a SQL database. Users should only have the minimum privileges necessary to use their account. If the requirements of the system indicate that a user can read and modify their own data, then limit their privileges so they cannot read/write others' data.
· Assign permissions to the software system that prevents the user from accessing/opening privileged files.
· Restructure code so that there is not a need to use the eval() utility.
[bookmark: _Ref313957550][bookmark: _Toc358896457]7.13 Cross-site Scripting [XYT]
7.13.1 Description of application vulnerability
Cross-site scripting (XSS) occurs when dynamically generated web pages display input, such as login information that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then execute the script on the machine of any user that views the site. If successful, cross-site scripting vulnerabilities can be exploited to manipulate or steal cookies, create requests that can be mistaken for those of a valid user, compromise confidential information, or execute malicious code on the end user systems for a variety of nefarious purposes.
7.13.2 Cross reference
CWE:
79. Failure to Preserve Web Page Structure ('Cross-site Scripting')
80. Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS)
81. Failure to Sanitize Directives in an Error Message Web Page
82. Failure to Sanitize Script in Attributes of IMG Tags in a Web Page
83. Failure to Sanitize Script in Attributes in a Web Page
84. Failure to Resolve Encoded URI Schemes in a Web Page
85. Doubled Character XSS Manipulations
86. Invalid Characters in Identifiers
87. Alternate XSS Syntax
7.13.3 Mechanism of failure
Cross-site scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code, generally JavaScript, to a different end user. When a web application uses input from a user in the output it generates without filtering it, an attacker can insert an attack in that input and the web application sends the attack to other users. The end user trusts the web application, and the attacks exploit that trust to do things that would not normally be allowed. Attackers frequently use a variety of methods to encode the malicious portion of the tag, such as using Unicode, so the request looks less suspicious to the user.
XSS attacks can generally be categorized into two categories: stored and reflected. Stored attacks are those where the injected code is permanently stored on the target servers in a database, message forum, visitor log, and so forth. Reflected attacks are those where the injected code takes another route to the victim, such as in an email message, or on some other server. When a user is tricked into clicking a link or submitting a form, the injected code travels to the vulnerable web server, which reflects the attack back to the user's browser. The browser then executes the code because it came from a 'trusted' server. For a reflected XSS attack to work, the victim must submit the attack to the server. This is still a very dangerous attack given the number of possible ways to trick a victim into submitting such a malicious request, including clicking a link on a malicious Web site, in an email, or in an inter-office posting.
XSS flaws are very common in web applications, as they require a great deal of developer discipline to avoid them in most applications. It is relatively easy for an attacker to find XSS vulnerabilities. Some of these vulnerabilities can be found using scanners, and some exist in older web application servers. The consequence of an XSS attack is the same regardless of whether it is stored or reflected.
The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end user that range in severity from an annoyance to complete account compromise. The most severe XSS attacks involve disclosure of the user's session cookie, which allows an attacker to hijack the user's session and take over their account. Other damaging attacks include the disclosure of end user files, installation of Trojan horse programs, redirecting the user to some other page or site, and modifying presentation of content.
Cross-site scripting (XSS) vulnerabilities occur when:
· Data enters a Web application through an untrusted source, most frequently a web request. The data is included in dynamic content that is sent to a web user without being validated for malicious code.
· The malicious content sent to the web browser often takes the form of a segment of JavaScript, but may also include HTML, Flash or any other type of code that the browser may execute. The variety of attacks based on XSS is almost limitless, but they commonly include transmitting private data like cookies or other session information to the attacker, redirecting the victim to web content controlled by the attacker, or performing other malicious operations on the user's machine under the guise of the vulnerable site.
Cross-site scripting attacks can occur wherever an untrusted user has the ability to publish content to a trusted web site. Typically, a malicious user will craft a client-side script, which — when parsed by a web browser — performs some activity (such as sending all site cookies to a given e–mail address). If the input is unchecked, this script will be loaded and run by each user visiting the web site. Since the site requesting to run the script has access to the cookies in question, the malicious script does also. There are several other possible attacks, such as running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy; cookie theft is however by far the most common. All of these attacks are easily prevented by ensuring that no script tags — or for good measure, HTML tags at all — are allowed in data to be posted publicly.
Specific instances of XSS are:
· 'Basic' XSS involves a complete lack of cleansing of any special characters, including the most fundamental XSS elements such as "<", ">", and "&".
· A web developer displays input on an error page (such as a customized 403 Forbidden page). If an attacker can influence a victim to view/request a web page that causes an error, then the attack may be successful.
· A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks. Attackers can embed XSS exploits into the values for IMG attributes (such as SRC) that is streamed and then executed in a victim's browser. Note that when the page is loaded into a user's browser, the exploit will automatically execute.
· The software does not filter "JavaScript:" or other URI's (Uniform Resource Identifier) from dangerous attributes within tags, such as onmouseover, onload, onerror, or style.
· The web application fails to filter input for executable script disguised with URI encodings.
· The web application fails to filter input for executable script disguised using doubling of the involved characters.
· The software does not strip out invalid characters in the middle of tag names, schemes, and other identifiers, which are still rendered by some web browsers that ignore the characters.
· The software fails to filter alternate script syntax provided by the attacker.
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated material to a trusted web site for the consumption of other valid users. The most common example can be found in bulletin-board web sites that provide web based mailing list-style functionality. The most common attack performed with cross-site scripting involves the disclosure of information stored in user cookies. In some circumstances it may be possible to run arbitrary code on a victim's computer when cross-site scripting is combined with other flaws.
7.13.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Carefully check each input parameter against a rigorous positive specification (white-list) defining the specific characters and format allowed.
· All input should be sanitized, not just parameters that the user is supposed to specify, but all data in the request, including hidden fields, cookies, headers, the URL (Uniform Resource Locator) itself, and so forth.
· A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.
· Data is frequently encountered from the request that is reflected by the application server or the application that the development team did not anticipate. Also, a field that is not currently reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP (Hypertext Transfer Protocol) request is recommended.
[bookmark: _Toc192558234][bookmark: _Ref313957498][bookmark: _Toc358896458]7.14 Unquoted Search Path or Element [XZQ]
[bookmark: _Toc192558236]7.14.1 Description of application vulnerability
Strings injected into a software system that are not quoted can permit an attacker to execute arbitrary commands.
[bookmark: _Toc192558237]7.14.2 Cross reference
CWE:
428. Unquoted Search Path or Element
CERT C guidelines: ENV04-C
[bookmark: _Toc192558239]7.14.3 Mechanism of failure
The mechanism of failure stems from missing quoting of strings injected into a software system. By allowing white-spaces in identifiers, an attacker could potentially execute arbitrary commands. This vulnerability covers "C:\Program Files" and space-in-search-path issues. Theoretically this could apply to other operating systems besides Windows, especially those that make it easy for spaces to be in filenames or folders names.
[bookmark: _Toc192558240]7.14.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Software should quote the input data that can be potentially executed on a system.
· Use a programming language that enforces the quoting of strings.
[bookmark: _Ref313957504][bookmark: _Toc358896459]7.15 Improperly Verified Signature [XZR]
7.15.1 Description of application vulnerability
The software does not verify, or improperly verifies, the cryptographic signature for data. By not adequately performing the verification step, the data being received should not be trusted and may be corrupted or made intentionally incorrect by an adversary.
7.15.2 Cross reference
CWE:
347. Improperly Verified Signature
7.15.3 Mechanism of failure
Data is signed using techniques that assure the integrity of the data. There are two ways that the integrity can be intentionally compromised. The exchange of the cryptologic keys may have been compromised so that an attacker could provide encrypted data that has been altered. Alternatively, the cryptologic verification could be flawed so that the encryption of the data is flawed which again allows an attacker to alter the data.
7.15.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use data signatures to the extent possible to help ensure trust in data.
· Use built-in verifications for data.
7.15.5 Implications for standardization
In future standardization activities, the following items should be considered:
· Language independent APIs for data signing should be defined, allowing each Programming Language to define a binding.
[bookmark: _Toc192558243][bookmark: _Ref313957511][bookmark: _Toc358896460]7.16 Discrepancy Information Leak [XZL]
[bookmark: _Toc192558245]7.16.1 Description of application vulnerability
A discrepancy information leak is an information leak in which the product behaves differently, or sends different responses, in a way that reveals security-relevant information about the state of the product, such as whether a particular operation was successful or not.
[bookmark: _Toc192558246]7.16.2 Cross reference
CWE:
203. Discrepancy Information Leaks
204. Response Discrepancy Information Leak
206. Internal Behavioural Inconsistency Information Leak
207. External Behavorial Inconsistency Information Leak
208. Timing Discrepancy Information Leak
[bookmark: _Toc192558248]7.16.3 Mechanism of failure
A response discrepancy information leak occurs when the product sends different messages in direct response to an attacker's request, in a way that allows the attacker to learn about the inner state of the product. The leaks can be inadvertent (bug) or intentional (design).
A behavioural discrepancy information leak occurs when the product's actions indicate important differences based on (1) the internal state of the product or (2) differences from other products in the same class. Attacks such as OS fingerprinting rely heavily on both behavioural and response discrepancies. An internal behavioural inconsistency information leak is the situation where two separate operations in a product cause the product to behave differently in a way that is observable to an attacker and reveals security-relevant information about the internal state of the product, such as whether a particular operation was successful or not. An external behavioural inconsistency information leak is the situation where the software behaves differently than other products like it, in a way that is observable to an attacker and reveals security-relevant information about which product is being used, or its operating state.
A timing discrepancy information leak occurs when two separate operations in a product require different amounts of time to complete, in a way that is observable to an attacker and reveals security-relevant information about the state of the product, such as whether a particular operation was successful or not.
[bookmark: _Toc192558249]7.16.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn.
· Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
[bookmark: _Ref313957516][bookmark: _Toc358896461]7.17 Sensitive Information Uncleared Before Use [XZK]
7.17.1 Description of application vulnerability
The software does not fully clear previously used information in a data structure, file, or other resource, before making that resource available to another party that did not have access to the original information.
7.17.2 Cross reference
CWE:
226. Sensitive Information Uncleared Before Release
CERT C guidelines: MEM03-C
7.17.3 Mechanism of failure
This typically involves memory in which the new data occupies less memory than the old data, which leaves portions of the old data still available ("memory disclosure"). However, equivalent errors can occur in other situations where the length of data is variable but the associated data structure is not. This can overlap with cryptographic errors and cross-boundary cleansing information leaks.
Dynamic memory managers are not required to clear freed memory and generally do not because of the additional runtime overhead. Furthermore, dynamic memory managers are free to reallocate this same memory. As a result, it is possible to accidentally leak sensitive information if it is not cleared before calling a function that frees dynamic memory. Programmers should not and can’t rely on memory being cleared during allocation.
7.17.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use library functions and or programming language features (such as destructors or finalization procedures) that provide automatic clearing of freed buffers or the functionality to clear buffers.
[bookmark: _Ref313948741][bookmark: _Toc358896462]7.18 Path Traversal [EWR]
7.18.1 Description of application vulnerability
The software constructs a path that contains relative traversal sequence such as ".." or an absolute path sequence such as "/path/here." Attackers run the software in a particular directory so that the hard link or symbolic link used by the software accesses a file that the attacker has under their control. In doing this, the attacker may be able to escalate their privilege level to that of the running process.
7.18.2 Cross reference
CWE:
22. Path Traversal
24. Path Traversal: - '../filedir'
25. Path Traversal: '/../filedir'
26. Path Traversal: '/dir/../filename’
27. Path Traversal: 'dir/../../filename'
28. Path Traversal: '..\filename'
29. Path Traversal: '\..\filename'
30. Path Traversal: '\dir\..\filename'
31. Path Traversal: 'dir\..\filename'
32. Path Traversal: '...' (Triple Dot)
33. Path Traversal: '....' (Multiple Dot)
34. Path Traversal: '....//'
35. Path Traversal: '.../...//'
37. Path Traversal: ‘/absolute/pathname/here’
38. Path Traversal: ‘ \absolute\pathname\here’
39. Path Traversal: 'C:dirname'
40. Path Traversal: '\\UNC\share\name\' (Windows UNC Share)
61. UNIX Symbolic Link (Symlink) Following
62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link
CERT C guidelines: FIO02-C
7.18.3 Mechanism of failure
There are two primary ways that an attacker can orchestrate an attack using path traversal. In the first, the attacker alters the path being used by the software to point to a location that the attacker has control over. Alternatively, the attacker has no control over the path, but can alter the directory structure so that the path points to a location that the attacker does have control over.
For instance, a software system that accepts input in the form of: '..\filename', '\..\filename', '/directory/../filename', 'directory/../../filename', '..\filename', '\..\filename', '\directory\..\filename', 'directory\..\..\filename', '...', '....' (multiple dots), '....//', or '.../...//' without appropriate validation can allow an attacker to traverse the file system to access an arbitrary file. Note that '..' is ignored if the current working directory is the root directory. Some of these input forms can be used to cause problems for systems that strip out '..' from input in an attempt to remove relative path traversal.
There are several common ways that an attacker can point a file access to a file the attacker has under their control. A software system that accepts input in the form of '/absolute/pathname/here' or '\absolute\pathname\here' without appropriate validation can also allow an attacker to traverse the file system to unintended locations or access arbitrary files. An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software system to potentially redirect access to an unintended location or arbitrary file. A software system that accepts input in the form of a backslash absolute path without appropriate validation can allow an attacker to traverse the file system to unintended locations or access arbitrary files. An attacker can inject a Windows UNC (Universal Naming Convention or Uniform Naming Convention) share ('\\UNC\share\name') into a software system to potentially redirect access to an unintended location or arbitrary file. A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they originally did not have permissions to access. Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to a sensitive file, for example, etc/passwd. When the process opens the file, the attacker can assume the privileges of that process.
A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The shortcut (file with the .lnk extension) can permit an attacker to read/write a file that they originally did not have permissions to access.
Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to a sensitive file (such as etc/passwd). When the process opens the file, the attacker can assume the privileges of that process or possibly prevent a program from accurately processing data in a software system.
7.18.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file system.
· Use an appropriate combination of black-lists and white-lists to ensure only valid and expected input is processed by the system.
· A sanitizing mechanism can remove characters such as ‘.' and ‘;' which may be required for some exploits. An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects a ‘.' inside a filename (say, "sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then the file may be compromised.
· Files can often be identified by other attributes in addition to the file name, for example, by comparing file ownership or creation time. Information regarding a file that has been created and closed can be stored and then used later to validate the identity of the file when it is reopened. Comparing multiple attributes of the file improves the likelihood that the file is the expected one.
· Follow the principle of least privilege when assigning access rights to files.
· Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file.
· Ensure good compartmentalization in the system to provide protected areas that can be trusted.
· When two or more users, or a group of users, have write permission to a directory, the potential for sharing and deception is far greater than it is for shared access to a few files. The vulnerabilities that result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared directories.
· Securely creating temporary files in a shared directory is error-prone and dependent on the version of the runtime library used, the operating system, and the file system. Code that works for a locally mounted file system, for example, may be vulnerable when used with a remotely mounted file system.
· The mitigation should be centered on converting relative paths into absolute paths and then verifying that the resulting absolute path makes sense with respect to the configuration and rights or permissions. This may include checking white-lists and black-lists, authorized super user status, access control lists, or other fully trusted status.
[bookmark: _Ref313957468][bookmark: _Toc358896463]7.19 Missing Required Cryptographic Step [XZS]
7.19.1 Description of application vulnerability
Cryptographic implementations should follow the algorithms that define them exactly, otherwise encryption can be faulty.
7.19.2 Cross reference
CWE:
325. Missing Required Cryptographic Step
327. Use of a Broken or Risky Cryptographic Algorithm
7.19.3 Mechanism of failure
Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption. This could be the result of many factors such as a programmer missing a required cryptographic step or using weak randomization algorithms.
7.19.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Implement cryptographic algorithms precisely.
· Use system functions and libraries rather than writing the function.
[bookmark: _Ref313957528][bookmark: _Toc358896464]7.20 Insufficiently Protected Credentials [XYM]
7.20.1 Description of application vulnerability
This weakness occurs when the application transmits or stores authentication credentials and uses an insecure method that is susceptible to unauthorized interception and/or retrieval.
7.20 .2 Cross reference
CWE:
256. Plaintext Storage of a Password
257. Storing Passwords in a Recoverable Format
7.20.3 Mechanism of failure
Storing a password in plaintext may result in a system compromise. Password management issues occur when a password is stored in plaintext in an application's properties or configuration file. A programmer can attempt to remedy the password management problem by obscuring the password with an encoding function, such as Base64 encoding, but this effort does not adequately protect the password. Storing a plaintext password in a configuration file allows anyone who can read the file access to the password-protected resource. Developers sometimes believe that they cannot defend the application from someone who has access to the configuration, but this attitude makes an attacker's job easier. Good password management guidelines require that a password never be stored in plaintext.
The storage of passwords in a recoverable format makes them subject to password reuse attacks by malicious users. If a system administrator can recover the password directly or use a brute force search on the information available to him, he can use the password on other accounts.
The use of recoverable passwords significantly increases the chance that passwords will be used maliciously. In fact, it should be noted that recoverable encrypted passwords provide no significant benefit over plain-text passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders.
7.20.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Avoid storing passwords in easily accessible locations.
· Never store a password in plaintext.
· Ensure that strong, non-reversible encryption is used to protect stored passwords.
· Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.
[bookmark: _Toc192558252][bookmark: _Ref313957476][bookmark: _Toc358896465]7.21 Missing or Inconsistent Access Control [XZN]
[bookmark: _Toc192558254]7.21.1 Description of application vulnerability
The software does not perform access control checks in a consistent manner across all potential execution paths.
[bookmark: _Toc192558255]7.21.2 Cross reference
CWE:
285. Missing or Inconsistent Access Control
352. Cross-Site Request Forgery (CSRF)
807. Reliance on Untrusted Inputs in a Security Decision
862. Missing Authorization
CERT C guidelines: FIO06-C
[bookmark: _Toc192558257]7.21.3 Mechanism of failure
For web applications, attackers can issue a request directly to a page (URL) that they may not be authorized to access. If the access control policy is not consistently enforced on every page restricted to authorized users, then an attacker could gain access to and possibly corrupt these resources.
[bookmark: _Toc192558258]7.21.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· For web applications, make sure that the access control mechanism is enforced correctly at the server side on every page. Users should not be able to access any information simply by requesting direct access to that page, if they do not have authorization. Ensure that all pages containing sensitive information are not cached, and that all such pages restrict access to requests that are accompanied by an active and authenticated session token associated with a user who has the required permissions to access that page.
[bookmark: _Ref313957482][bookmark: _Toc358896466][bookmark: _Toc192558270]7.22 Authentication Logic Error [XZO]
7.22.1 Description of application vulnerability
The software does not properly ensure that the user has proven their identity.
7.22.2 Cross reference
CWE:
287. Improper Authentication
288. Authentication Bypass by Alternate Path/Channel
289. Authentication Bypass by Alternate Name
290. Authentication Bypass by Spoofing
294. Authentication Bypass by Capture-replay
301. Reflection Attack in an Authentication Protocol
302. Authentication Bypass by Assumed-Immutable Data
303. Improper Implementation of Authentication Algorithm
305. Authentication Bypass by Primary Weakness
7.22.3 Mechanism of failure
There are many ways that an attacker can potentially bypass the validation of a user. Some of the ways are means of impersonating a legitimate user while others are means of bypassing the authentication mechanisms that are in place. In either case, a user who should not have access to the software system gains access.
Authentication bypass by alternate path or channel occurs when a product requires authentication, but the product has an alternate path or channel that does not require authentication. Note that this is often seen in web applications that assume that access to a particular CGI (Common Gateway Interface) program can only be obtained through a "front" screen, but this problem is not just in web applications.

Authentication bypass by alternate name occurs when the software performs authentication based on the name of the resource being accessed, but there are multiple names for the resource, and not all names are checked.

Authentication bypass by capture-replay occurs when it is possible for a malicious user to sniff network traffic and bypass authentication by replaying it to the server in question to the same effect as the original message (or with minor changes). Messages sent with a capture-relay attack allow access to resources that are not otherwise accessible without proper authentication. Capture-replay attacks are common and can be difficult to defeat without cryptography. They are a subset of network injection attacks that rely on listening in on previously sent valid commands, then changing them slightly if necessary and resending the same commands to the server. Since any attacker who can listen to traffic can see sequence numbers, it is necessary to sign messages with some kind of cryptography to ensure that sequence numbers are not simply doctored along with content.

Reflection attacks capitalize on mutual authentication schemes to trick the target into revealing the secret shared between it and another valid user. In a basic mutual-authentication scheme, a secret is known to both a valid user and the server; this allows them to authenticate. In order that they may verify this shared secret without sending it plainly over the wire, they utilize a Diffie-Hellman-style scheme in which they each pick a value, then request the hash of that value as keyed by the shared secret. In a reflection attack, the attacker claims to be a valid user and requests the hash of a random value from the server. When the server returns this value and requests its own value to be hashed, the attacker opens another connection to the server. This time, the hash requested by the attacker is the value that the server requested in the first connection. When the server returns this hashed value, it is used in the first connection, authenticating the attacker successfully as the impersonated valid user.

Authentication bypass by assumed-immutable data occurs when the authentication scheme or implementation uses key data elements that are assumed to be immutable, but can be controlled or modified by the attacker, for example, if a web application relies on a cookie "Authenticated=1".

Authentication logic error occurs when the authentication techniques do not follow the algorithms that define them exactly and so authentication can be jeopardized. For instance, a malformed or improper implementation of an algorithm can weaken the authorization technique.

An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the implemented mechanism can be bypassed as the result of a separate weakness that is primary to the authentication error.
7.22.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Funnel all access through a single choke point to simplify how users can access a resource. For every access, perform a check to determine if the user has permissions to access the resource. Avoid making decisions based on names of resources (for example, files) if those resources can have alternate names.
· Canonicalize the name to match that of the file system's representation of the name. This can sometimes be achieved with an available API (for example, in Win32 the GetFullPathName function).
· Utilize some sequence or time stamping functionality along with a checksum that takes this into account to ensure that messages can be parsed only once.
· Use different keys for the initiator and responder or of a different type of challenge for the initiator and responder.
[bookmark: _Ref313957538][bookmark: _Toc358896467][bookmark: _Toc192558279]7.23 Hard-coded Password [XYP]
7.23.1 Description of application vulnerability
Hard coded passwords may compromise system security in a way that cannot be easily remedied. It is never a good idea to hardcode a password. Not only does hard coding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult. Once the code is in production, the password cannot be changed without patching the software. If the account protected by the password is compromised, the owners of the system will be forced to choose between security and availability.
7.23.2 Cross reference
CWE:
259. Hard-Coded Password
798. Use of Hard-coded Credentials
7.23.3 Mechanism of failure
The use of a hard-coded password has many negative implications – the most significant of these being a failure of authentication measures under certain circumstances. On many systems, a default administration account exists which is set to a simple default password that is hard-coded into the program or device. This hard-coded password is the same for each device or system of this type and often is not changed or disabled by end users. If a malicious user comes across a device of this kind, it is a simple matter of looking up the default password (which is likely freely available and public on the Internet) and logging in with complete access. In systems that authenticate with a back-end service, hard-coded passwords within closed source or drop-in solution systems require that the back-end service use a password that can be easily discovered. Client-side systems with hard-coded passwords present even more of a threat, since the extraction of a password from a binary is exceedingly simple. If hard-coded passwords are used, it is almost certain that unauthorized users will gain access through the account in question.
7.23.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Rather than hard code a default username and password for first time logins, utilize a "first login" mode that requires the user to enter a unique strong password.
· For front-end to back-end connections, there are three solutions that may be used.
1. Use of generated passwords that are changed automatically and must be entered at given time intervals by a system administrator. These passwords will be held in memory and only be valid for the time intervals.
2. The passwords used should be limited at the back end to only performing actions for the front end, as opposed to having full access.
3. The messages sent should be tagged and checksummed with time sensitive values so as to prevent replay style attacks.
[bookmark: _Ref353451574][bookmark: _Toc358896468]7.24 Download of Code Without Integrity Check [DLB]
7.24.1 Description of application vulnerability
Some applications download source code or executables from a remote, and implicitly trusted, location (such as the application author) and use the source code or invoke the executables without sufficiently verifying the integrity of the downloaded files.
7.24.2 Cross reference
CWE:
494. Download of Code Without Integrity Check
7.24.3 Mechanism of failure
An attacker can execute malicious code by compromising the host server used to download code or executables, performing DNS spoofing, or modifying the code in transit.
7.24.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
Perform proper forward and reverse DNS lookups to detect DNS spoofing. Encrypt the code with a reliable encryption scheme before transmitting.
This is only a partial solution since it will not prevent your code from being modified on the hosting site or in transit.
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Specifically, it may be helpful to use tools or frameworks to perform integrity checking on the transmitted code.
If providing code that is to be downloaded, such as for automatic updates of software, then use cryptographic signatures for the code and modify the download clients to verify the signatures.
[bookmark: _Ref353451425][bookmark: _Toc358896469]7.25 Incorrect Authorization [BJE]
7.25.1 Description of application vulnerability
The software performs a flawed authorization check when an actor attempts to access a resource or perform an action. This allows attackers to bypass intended access restrictions.
7.25.2 Cross reference
CWE:
863. Incorrect Authorization
7.25.3 Mechanism of failure
Authorization is the process of determining whether that user can access a given resource, based on the user's privileges and any permissions or other access-control specifications that apply to the resource.
When access control checks are incorrectly applied, users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information exposures, denial of service, and arbitrary code execution.
7.25.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
Ensure that you perform access control checks related to your business needs. These checks may be different and more detailed than those applied to more generic resources such as files, connections, processes, memory, and database records. For example, a database may restrict access for medical records to a specific database user, but each record might only be intended to be accessible to the patient and the patient's doctor.
[bookmark: _Ref353452214][bookmark: _Toc358896470]7.26 Inclusion of Functionality from Untrusted Control Sphere [DHU]
7.26.1 Description of application vulnerability
The software imports, requires, or includes executable functionality (such as a library) from a source that is unknown to the user, unexpected or otherwise. Any call or use of the included functionally can result in unexpected behaviour, up to and including arbitrary execution.
7.26.2 Cross reference
CWE:
98. Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File Inclusion')
829. Inclusion of Functionality from Untrusted Control Sphere
7.26.3 Mechanism of failure
When including third-party functionality, such as a web widget, library, or other source of functionality, the software must effectively trust that functionality. Without sufficient protection mechanisms, the functionality could be malicious in nature (either by coming from an untrusted source, being spoofed, or being modified in transit from a trusted source). The functionality might also contain its own weaknesses, or grant access to additional functionality and state information that should be kept private to the base system, such as system state information, sensitive application data, or the DOM of a web application.
This might lead to many different consequences depending on the included functionality, but some examples include injection of malware, information exposure by granting excessive privileges or permissions to the untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies, or open redirect to malware.
7.26.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI AccessReferenceMap provide this capability.
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
[bookmark: _Ref353452471][bookmark: _Toc358896471]7.27 Improper Restriction of Excessive Authentication Attempts [WPL]
7.27.1 Description of application vulnerability
The software does not implement sufficient measures to prevent multiple failed authentication attempts within in a short time frame, making it more susceptible to brute force attacks.
7.27.2 Cross reference
CWE:
307. Improper Restriction of Excessive Authentication Attempts
7.27.3 Mechanism of failure
In a recent incident an attacker targeted a member of a popular social networking sites support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. Once the attacker gained access as the member of the support staff, he used the administrator panel to gain access to a number of accounts that belonged to celebrities and politicians. Ultimately, fake messages were sent that appeared to come from the compromised accounts.
7.27.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following way:
Disconnecting the user after a small number of failed attempts
Implementing a timeout
Locking out a targeted account
Requiring a computational task on the user's part.
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Consider using libraries with authentication capabilities such as OpenSSL or the ESAPIAuthenticator.
[bookmark: _Ref353452702][bookmark: _Toc358896472]7.28 URL Redirection to Untrusted Site ('Open Redirect') [PYQ]
7.28.1 Description of application vulnerability
A web application accepts a user-controlled input that specifies a link to an external site, and uses that link in a redirect without checking that the URL points to a trusted location. This simplifies phishing attacks.
7.28.2 Cross reference
CWE:
601. URL Redirection to Untrusted Site ('Open Redirect')
7.28.3 Mechanism of failure
An http parameter may contain a URL value and could cause the web application to redirect the request to the specified URL. By modifying the URL value to a malicious site, an attacker may successfully launch a phishing scam and steal user credentials. Because the server name in the modified link is identical to the original site, phishing attempts have a more trustworthy appearance.
7.28.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, for example, use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (for example, do not rely on a blacklist). However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if a color such as "red" or "blue" was expected. Use a whitelist of approved URLs or domains to be used for redirection.
[bookmark: _Ref353452941][bookmark: _Toc358896473]7.29 Use of a One-Way Hash without a Salt [MVX]
7.29.1 Description of application vulnerability
The software uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the software does not also use a salt[footnoteRef:9] as part of the input. [9: In cryptography, a salt consists of random bits, early systems used a 12-bit salt, modern implementations use 48 to 128 bits.]

7.28.2 Cross reference
CWE:
327. Use of a Broken or Risky Cryptographic Algorithm
759. Use of a One-Way Hash without a Salt
7.29.3 Mechanism of failure
This makes it easier for attackers to pre-compute the hash value using dictionary attack techniques such as rainbow tables.
7.29.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
Generate a random salt each time you process a new password. Add the salt to the plaintext password before hashing it. When you store the hash, also store the salt. Do not use the same salt for every password that you process.
Use one-way hashing techniques that allow you to configure a large number of rounds, such as bcrypt. This may increase the expense when processing incoming authentication requests, but if the hashed passwords are ever stolen, it significantly increases the effort for conducting a brute force attack, including rainbow tables. With the ability to configure the number of rounds, one can increase the number of rounds whenever CPU speeds or attack techniques become more efficient.
When industry-approved techniques are used, they must be used correctly. Never skip resource-intensive steps (CWE-325). These steps are often essential for preventing common attacks.

[bookmark: _Toc358896482]Annex B
(informative)
Language Specific Vulnerability Template
Each language-specific annex should have the following heading information and initial sections:
	Annex <language>
(Informative)
Vulnerability descriptions for language <language>
<language>.1 Identification of standards
[This sub-clause should list the relevant language standards and other documents that describe the language treated in the annex. It need not be simply a list of standards. It should do whatever is required to describe the language that is the baseline.]
<language>.2 General terminology and concepts
[This sub-clause should provide an overview of general terminology and concepts that are utilized throughout the annex.]

Every vulnerability description of Clause 6 of the main document should be addressed in the annex in the same order even if there is simply a notation that it is not relevant to the language in question. Each vulnerability description should have the following format:
	<language>.<x> <Vulnerability Name> [<3 letter tag>]
<language>.<x>.0 Status, history, and bibliography
[Revision history. This clause will eventually be removed.]
<language>.<x>.1 Applicability to language
[This section describes what the language does or does not do in order to deal with the vulnerability.]
<language>.<x>.2 Guidance to language users
[This section describes what the programmer or user should do regarding the vulnerability.]

In those cases where a vulnerability is simply not applicable to the language, the following format should be used instead:
	<language>.<x> <Vulnerability Name> [<3 letter tag>]
This vulnerability is not applicable to <language>.

Following the final vulnerability description, there should be a single sub-clause as follows:
	<language>.<x> Implications for standardization
[This section provides the opportunity to discuss changes anticipated for future versions of the language specification.]

[bookmark: _Python.3_Type_System][bookmark: _Python.19_Dead_Store][bookmark: I3468][bookmark: _Toc358896894]Index

	Technical Report
	ISO/IEC TR 24772:2013(E)

	© ISO/IEC 2013 – All rights reserved
			1

	146
	© ISO/IEC 2013 – All rights reserved

	© ISO/IEC 2013 – All rights reserved
	147

Ada, 13, 59, 63, 73, 76
AMV – Type-breaking Reinterpretation of Data, 72
API
Application Programming Interface, 16
APL, 48
Apple
OS X, 120
application vulnerabilities, 9
Application Vulnerabilities
Adherence to Least Privilege [XYN], 113
Authentication Logic Error [XZO], 135
Cross-site Scripting [XYT], 125
Discrepancy Information Leak [XZL], 129
Distinguished Values in Data Types [KLK], 112
Download of Code Without Integrity Check [DLB], 137
Executing or Loading Untrusted Code [XYS], 116
Hard-coded Password [XYP], 136
Improper Restriction of Excessive Authentication Attempts [WPL], 140
Improperly Verified Signature [XZR], 128
Inclusion of Functionality from Untrusted Control Sphere [DHU], 139
Incorrect Authorization [BJE], 138
Injection [RST], 122
Insufficiently Protected Credentials [XYM], 133
Memory Locking [XZX], 117
Missing or Inconsistent Access Control [XZN], 134
Missing Required Cryptographic Step [XZS], 133
Path Traversal [EWR], 130
Privilege Sandbox Issues [XYO], 114
Resource Exhaustion [XZP], 118
Resource Names [HTS], 120
Sensitive Information Uncleared Before Use [XZK], 130
Unquoted Search Path or Element [XZQ], 127
Unrestricted File Upload [CBF], 119
Unspecified Functionality [BVQ], 111
URL Redirection to Untrusted Site ('Open Redirect') [PYQ], 140
Use of a One-Way Hash without a Salt [MVX], 141
application vulnerability, 5
Ariane 5, 21

bitwise operators, 48
BJE – Incorrect Authorization, 138
BJL – Namespace Issues, 43
black-list, 120, 124
BQF – Unspecified Behaviour, 92, 94, 95
break, 60
BRS – Obscure Language Features, 91
buffer boundary violation, 23
buffer overflow, 23, 26
buffer underwrite, 23
BVQ – Unspecified Functionality, 111

C, 22, 48, 50, 51, 58, 60, 63, 73
C++, 48, 51, 58, 63, 73, 76, 86
C11, 192
call by copy, 61
call by name, 61
call by reference, 61
call by result, 61
call by value, 61
call by value-result, 61
CBF – Unrestricted File Upload, 119
CCB – Enumerator Issues, 18
CGA – Concurrency – Activation, 98
CGM – Protocol Lock Errors, 105
CGS – Concurrency – Premature Termination, 103
CGT - Concurrency – Directed termination, 100
CGX – Concurrent Data Access, 101
CGY – Inadequately Secure Communication of Shared Resources, 107
CJM – String Termination, 22
CLL – Switch Statements and Static Analysis, 54
concurrency, 2
continue, 60
cryptologic, 71, 128
CSJ – Passing Parameters and Return Values, 61, 82

dangling reference, 31
DCM – Dangling References to Stack Frames, 63
Deactivated code, 53
Dead code, 53
deadlock, 106
DHU – Inclusion of Functionality from Untrusted Control Sphere, 139
Diffie-Hellman-style, 136
digital signature, 84
DJS – Inter-language Calling, 81
DLB – Download of Code Without Integrity Check, 137
DoS
Denial of Service, 118
dynamically linked, 83

EFS – Use of unchecked data from an uncontrolled or tainted source, 109
encryption, 128, 133
endian
big, 15
little, 15
endianness, 14
Enumerations, 18
EOJ – Demarcation of Control Flow, 56
EWD – Structured Programming, 60
EWF – Undefined Behaviour, 92, 94, 95
EWR – Path Traversal, 124, 130
exception handler, 86

FAB – Implementation-defined Behaviour, 92, 94, 95
FIF – Arithmetic Wrap-around Error, 34, 35
FLC – Numeric Conversion Errors, 20
Fortran, 73

GDL – Recursion, 67
generics, 76
GIF, 120
goto, 60

HCB – Buffer Boundary Violation (Buffer Overflow), 23, 82
HFC – Pointer Casting and Pointer Type Changes, 28
HJW – Unanticipated Exceptions from Library Routines, 86
HTML
Hyper Text Markup Language, 124
HTS – Resource Names, 120
HTTP
Hypertext Transfer Protocol, 127

IEC 60559, 16
IEEE 754, 16
IHN –Type System, 12
inheritance, 78
IP address, 119

Java, 18, 50, 52, 76
JavaScript, 125, 126, 127
JCW – Operator Precedence/Order of Evaluation, 47

KLK – Distinguished Values in Data Types, 112
KOA – Likely Incorrect Expression, 50

language vulnerabilities, 9
Language Vulnerabilities
Argument Passing to Library Functions [TRJ], 80
Arithmetic Wrap-around Error [FIF], 34
Bit Representations [STR], 14
Buffer Boundary Violation (Buffer Overflow) [HCB], 23
Choice of Clear Names [NAI], 37
Concurrency – Activation [CGA], 98
Concurrency – Directed termination [CGT], 100
Concurrency – Premature Termination [CGS], 103
Concurrent Data Access [CGX], 101
Dangling Reference to Heap [XYK], 31
Dangling References to Stack Frames [DCM], 63
Dead and Deactivated Code [XYQ], 52
Dead Store [WXQ], 39
Demarcation of Control Flow [EOJ], 56
Deprecated Language Features [MEM], 97
Dynamically-linked Code and Self-modifying Code [NYY], 83
Enumerator Issues [CCB], 18
Extra Intrinsics [LRM], 79
Floating-point Arithmetic [PLF], xvii, 16
Identifier Name Reuse [YOW], 41
Ignored Error Status and Unhandled Exceptions [OYB], 68
Implementation-defined Behaviour [FAB], 95
Inadequately Secure Communication of Shared Resources [CGY], 107
Inheritance [RIP], 78
Initialization of Variables [LAV], 45
Inter-language Calling [DJS], 81
Library Signature [NSQ], 84
Likely Incorrect Expression [KOA], 50
Loop Control Variables [TEX], 57
Memory Leak [XYL], 74
Namespace Issues [BJL], 43
Null Pointer Dereference [XYH], 30
Numeric Conversion Errors [FLC], 20
Obscure Language Features [BRS], 91
Off-by-one Error [XZH], 58
Operator Precedence/Order of Evaluation [JCW], 47
Passing Parameters and Return Values [CSJ], 61, 82
Pointer Arithmetic [RVG], 29
Pointer Casting and Pointer Type Changes [HFC], 28
Pre-processor Directives [NMP], 87
Protocol Lock Errors [CGM], 105
Provision of Inherently Unsafe Operations [SKL], 90
Recursion [GDL], 67
Side-effects and Order of Evaluation [SAM], 49
Sign Extension Error [XZI], 36
String Termination [CJM], 22
Structured Programming [EWD], 60
Subprogram Signature Mismatch [OTR], 65
Suppression of Language-defined Run-time Checking [MXB], 89
Switch Statements and Static Analysis [CLL], 54
Templates and Generics [SYM], 76
Termination Strategy [REU], 70
Type System [IHN], 12
Type-breaking Reinterpretation of Data [AMV], 72
Unanticipated Exceptions from Library Routines [HJW], 86
Unchecked Array Copying [XYW], 27
Unchecked Array Indexing [XYZ], 25
Uncontrolled Fromat String [SHL], 110
Undefined Behaviour [EWF], 94
Unspecified Behaviour [BFQ], 92
Unused Variable [YZS], 40
Use of unchecked data from an uncontrolled or tainted source [EFS], 109
Using Shift Operations for Multiplication and Division [PIK], 35
language vulnerability, 5
LAV – Initialization of Variables, 45
LHS (left-hand side), 241
Linux, 120
livelock, 106
longjmp, 60
LRM – Extra Intrinsics, 79

MAC address, 119
macof, 118
MEM – Deprecated Language Features, 97
memory disclosure, 130
Microsoft
Win16, 121
Windows, 117
Windows XP, 120
MIME
Multipurpose Internet Mail Extensions, 124
MISRA C, 29
MISRA C++, 87
mlock(), 117
MVX – Use of a One-Way Hash without a Salt, 141
MXB – Suppression of Language-defined Run-time Checking, 89

NAI – Choice of Clear Names, 37
name type equivalence, 12
NMP – Pre-Processor Directives, 87
NSQ – Library Signature, 84
NTFS
New Technology File System, 120
NULL, 31, 58
NULL pointer, 31
null-pointer, 30
NYY – Dynamically-linked Code and Self-modifying Code, 83

OTR – Subprogram Signature Mismatch, 65, 82
OYB – Ignored Error Status and Unhandled Exceptions, 68, 163

Pascal, 82
PHP, 124
PIK – Using Shift Operations for Multiplication and Division, 34, 35, 197
PLF – Floating-point Arithmetic, xvii, 16
POSIX, 99
pragmas, 75, 96
predictable execution, 4, 8
PYQ – URL Redirection to Untrusted Site ('Open Redirect'), 140

real numbers, 16
Real-Time Java, 105
resource exhaustion, 118
REU – Termination Strategy, 70
RIP – Inheritance, xvii, 78
rsize_t, 22
RST – Injection, 109, 122
runtime-constraint handler, 191
RVG – Pointer Arithmetic, 29

safety hazard, 4
safety-critical software, 5
SAM – Side-effects and Order of Evaluation, 49
security vulnerability, 5
SeImpersonatePrivilege, 115
setjmp, 60
SHL – Uncontrolled Format String, 110
size_t, 22
SKL – Provision of Inherently Unsafe Operations, 90
software quality, 4
software vulnerabilities, 9
SQL
Structured Query Language, 112
STR – Bit Representations, 14
strcpy, 23
strncpy, 23
structure type equivalence, 12
switch, 54
SYM – Templates and Generics, 76
symlink, 131

tail-recursion, 68
templates, 76, 77
TEX – Loop Control Variables, 57
thread, 2
TRJ – Argument Passing to Library Functions, 80
type casts, 20
type coercion, 20
type safe, 12
type secure, 12
type system, 12

UNC
Uniform Naming Convention, 131
Universal Naming Convention, 131
Unchecked_Conversion, 73
UNIX, 83, 114, 120, 131
unspecified functionality, 111
Unspecified functionality, 111
URI
Uniform Resource Identifier, 127
URL
Uniform Resource Locator, 127

VirtualLock(), 117

white-list, 120, 124, 127
Windows, 99
WPL – Improper Restriction of Excessive Authentication Attempts, 140
WXQ – Dead Store, 39, 40, 41

XSS
Cross-site scripting, 125
XYH – Null Pointer Deference, 30
XYK – Dangling Reference to Heap, 31
XYL – Memory Leak, 74
XYM – Insufficiently Protected Credentials, 9, 133
XYN –Adherence to Least Privilege, 113
XYO – Privilege Sandbox Issues, 114
XYP – Hard-coded Password, 136
XYQ – Dead and Deactivated Code, 52
XYS – Executing or Loading Untrusted Code, 116
XYT – Cross-site Scripting, 125
XYW – Unchecked Array Copying, 27
XYZ – Unchecked Array Indexing, 25, 28
XZH – Off-by-one Error, 58
XZI – Sign Extension Error, 36
XZK – Senitive Information Uncleared Before Use, 130
XZL – Discrepancy Information Leak, 129
XZN – Missing or Inconsistent Access Control, 134
XZO – Authentication Logic Error, 135
XZP – Resource Exhaustion, 118
XZQ – Unquoted Search Path or Element, 127
XZR – Improperly Verified Signature, 128
XZS – Missing Required Cryptographic Step, 133
XZX – Memory Locking, 117

YOW – Identifier Name Reuse, 41, 44
YZS – Unused Variable, 39, 40

