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Notes on this document
This document is an early draft of a Guidance to avoiding programming language vulnerabilities in C++. It started its existence as a direct copy from the equivalent C language document, with the intention to replace the C subclauses with ones that are relevant to C++. 
At this point in time, only clausesthe following clauses are essentially completed first pass. 
· 6.3 Bit representation
· 6.4 Floating Point
· 6.5 Enumerator issues [CCB], 
· 6.6 Conversion errors
· 6.7 String termination
· 6.8 Buffer boundary violation
· 6.9 Unchecked array indexing
· 6.10 Unchecked array copying (needs to be revisited)
· 6.11 Pointer type conversions
· 6.12 Pointer arithmetic
· 6.13 Null pointer dereference [XYH], 
· 6.14 Dangling reference to heap
· 6.15 Arithmetic wrap-around error 
· 6.16 Using shift operations for multiplication and division 
· 6.17 Choice of clear names [NAI]
· 6.18 Dead Store
· 6.19 Unused variables
· 6.20 Identifier name reuse
· 6.21 Namespace Issues
· 6.22 Initialization of variables [LAV] 
· 6.23 Operator precedence and associativity
· 6.25 Likely incorrect expression
· 6.23 (not done)
· 6.24 not done)
· 6.25 not done)
· 6.26 Dead store,
· 6.27 Switch statements and static analysis
· 6.28 Demarcation of control flow
· 6.29 Loop control variables
· 6.30 Off-by-one errors
· 6.31 Structured programming
· 6.32 Passing parameters and return values
· 6.33 Dangling references to stack frames
· 6.34 Subprogram signature mismatch
· 6.35 Recursion
· 6.36 Ignored error status and unhandled exceptions
· 6.37 Type breaking reinterpretation of data
· 6.38  Deep vs shallow copying [YAN]
· 6.39 Memory leak and heap fragmentation
· 6.40 Templates and generics   (1/2 done)
· 6.41 Inheritance
· 6.42 Violations of the Liskov substitution principle
· 6.43 Redispatching
· 6.44 Polymorphic variables
· 6.45 Extra intrinsics
· 6.46 Argument passing to library functions
· 6.47 Inter-language calling
· 6.48 Dynamically-linked code and self-modifying code [NYY] 
· 6.49 Library Signature
· 6.50 Unanticipated exceptions from library routines 
· 6.51 Pre-processor directives 
· 6.52 Suppression of language-defined run-time checking 
· 6.53 Provision of inherently unsafe operations 
· 6.54 Obscure language features
· 6.55 Unspecified behaviour
· 6.56 Undefined behaviour
· 6.57 Implementation-defined behaviour 
· 6.58 Deprecated language features 
· 6.59 Concurrency -- Activation
· 6.60 Concurrency – Directed termination
TBD
· 6.2 Type System
· 6.4 Floating point
· 6.20 Identifier name reuse
· 6.24 Side effects and order of evaluation
· 6.40 Templates and generics
· 6.61 Concurrent data access
· 6.62 Concurrency – Premature termination
· 6.63 Protocol lock errors
· 6.64 Uncontrolled format string


are relevant. 
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ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
In exceptional circumstances, when the joint technical committee has collected data of a different kind from that which is normally published as an International Standard (“state of the art”, for example), it may decide to publish a Technical Report.   A Technical Report is entirely informative in nature and shall be subject to review every five years in the same manner as an International Standard.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC TR 24772-10X, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.
[bookmark: _Toc443470359][bookmark: _Toc450303209]

[bookmark: _Toc1165220]Introduction
This Technical Report provides guidance for the programming language C++, so that application developers considering C++ or using or considering C++ will be better able to avoid the programming constructs that lead to vulnerabilities in software written in the C++ language and their attendant consequences.  This guidance can also be used by developers to select source code evaluation tools that can discover and eliminate some constructs that could lead to vulnerabilities in their software. This report can also be used in comparison with companion Technical Reports and with the language-independent report, TR 24772–1, to select a programming language that provides the appropriate level of confidence that anticipated problems can be avoided. 
This technical report part is intended to be used with TR 24772–1, which discusses programming language vulnerabilities in a language independent fashion. It is also intended to be used with TR 24772-3, which discusses how the vulnerabilities introduced in TR 24772-1 are manifested in C, which is a subset of C++.

WG 23/N 08380866	
Baseline Edition 	TR 24772–109
It should be noted that this Technical Report is inherently incomplete.  It is not possible to provide a complete list of programming language vulnerabilities because new weaknesses are discovered continually.  Any such report can only describe those that have been found, characterized, and determined to have sufficient probability and consequence.
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Information Technology — Programming Languages — Guidance to avoiding vulnerabilities in programming languages — Vulnerability descriptions for the programming language C++
[bookmark: _Toc1165221][bookmark: _Toc443461091][bookmark: _Toc443470360][bookmark: _Toc450303210][bookmark: _Toc192557820][bookmark: _Toc336348220]1. Scope
This Technical Report specifies software programming language vulnerabilities to be avoided in the development of systems where assured behaviour is required for security, safety, mission-critical and business-critical software.  In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.
Vulnerabilities described in this Technical Report document the way that the vulnerability described in the language-independent TR 24772–1 are manifested in C++.
[bookmark: _Toc1165222][bookmark: _Toc443461093][bookmark: _Toc443470362][bookmark: _Toc450303212][bookmark: _Toc192557830]2. Normative references
The following referenced documents are indispensable for the application of this document.  For dated references, only the edition cited applies.  For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 14882:2014 — Programming Languages—C ++
ISO/IEC TR24772–3   -- Information Technology — Programming Languages — Guidance to avoiding vulnerabilities in programming languages — Vulnerability descriptions for the programming language C
[bookmark: _Toc1165223][bookmark: _Toc443461094][bookmark: _Toc443470363][bookmark: _Toc450303213][bookmark: _Toc192557831]3. Terms and definitions, symbols and conventions
[bookmark: _Toc1165224]3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 2382, in TR 24772–1, in 14882:2014 and the following apply.  Other terms are defined where they appear in italic type.
The following terms are in alphabetical order, with general topics referencing the relevant specific terms.
Abstract
Access protection
Concrete
Class
Dynamic dispatch
Encapsulation
Inheritance
Namespace
Overload
Override
Protected
Private
Public
Pure
Static
STL
Template
Virtual


[bookmark: _Toc192316172][bookmark: _Toc192325324][bookmark: _Toc192325826][bookmark: _Toc192326328][bookmark: _Toc192326830][bookmark: _Toc192327334][bookmark: _Toc192557387][bookmark: _Toc192557888][bookmark: _Toc192316222][bookmark: _Toc192325374][bookmark: _Toc192325876][bookmark: _Toc192326378][bookmark: _Toc192326880][bookmark: _Toc192327384][bookmark: _Toc192557437][bookmark: _Toc192557938]3.1.1	Comment by Clive Pygott: All these C definitions need to be reviewed to decide which are still needed
abstract	Comment by Clive Pygott: Suggest there C++ terms need definitions
		TBD

3.1.2 access: An execution-time action, to read or modify the value of an object.  
Note 1: Where only one of two actions is meant, read or modify.  Modify includes the case where the new value being stored is the same as the previous value.  Expressions that are not evaluated do not access objects

3.1.32
access protection

alignment 
The requirement that objects of a particular type be located on storage boundaries with addresses that are particular multiples of a byte address.

3.1.3
argument
The expression in the comma-separated list bounded by the parentheses in a function call expression, or a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like macro invocation
Note 1: Also called actual argument
Note 2: An argument replaces a formal parameter as the call is realized.

3.1.4
behaviour 
An external appearance or action.
Note 13:   See: implementation-defined behavior, locale-specific behavior, undefined behavior, unspecified behaviour
3.1.5
bit
The unit of data storage in the execution environment large enough to hold an object that may have one of two values. 
Note 4: It need not be possible to express the address of each individual bit of an object.

3.1.6
byte
the addressable unit of data storage large enough to hold any member of the basic character set of the execution environment.  
Note 15: It is possible to express the address of each individual byte of an object uniquely.  A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.1.7
character
 An abstract member of a set of elements used for the organization, control, or representation of data. 
Note 6: See: single-byte character, multibyte character, wide character
correctly rounded result: The representation in the result format that is nearest in value, subject to the current rounding mode, to what the result would be given unlimited range and precision.

3.1.8
class
TBD

3.1.9
concrete
TBD

3.1.10 
diagnostic message: 
The message belonging to an implementation-defined subset of the implementation’s message output.  Note 7: The C Standard requires diagnostic messages for all constraint violations.

3.1.11
dynamic dispatch
TBD

3.1.12
encapsulation
TBD

3.1.13
formal parameter
: Tthe object declared as part of a function declaration or definition that acquires a value on entry to the function, or an identifier from the comma-separated list bounded by the parentheses immediately following the macro name in a function-like macro definition.

3.1.14
Implementation
:a A particular set of software, running in a particular translation environment under particular control options, that performs translation of programs for, and supports execution of functions in, a particular execution environment.
I
3.1.15
implementation-defined behaviour
t:	The unspecified behaviour where each implementation documents how the choice is made.  
Note 8: An example of implementation-defined behaviour is the propagation of the high-order bit when a signed integer is shifted right.

3.1.16
implementation-defined value:
a An unspecified value where each implementation documents how the choice for the value is selected.

3.1.17
implementation limit
t: The restriction imposed upon programs by the implementation.

3.1.18
indeterminate value
: Is either an unspecified value or a trap representation.

3.1.19
Inheritance
TBD

3.1.20
lLanguage type
s: See block-structured language, comb-structured language   (Non-responsive)

3.1.21
locale-specific behaviour
: The behaviour that depends on local conventions of nationality, culture, and language that each implementation documents.  
Note 8: An example, locale-specific behaviour is whether the islower() function returns true for characters other than the 26 lower case Latin letters.

3.1.22
memory location
:	Eeither an object of scalar[footnoteRef:1] type, or a maximal sequence of adjacent bit-fields  all having nonzero width.   [1:  Integer types, Floating types and Pointer types are collectively called scalar types in the C Standard] 

Note 1: A bit-field and an adjacent non-bit-field member are in separate memory locations. The same applies to two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the two are separated by a zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It is not safe to concurrently update two bit-fields in the same structure if all members declared between them are also bit-fields, no matter what the sizes of those intervening bit-fields  happen to be.  For example a structure declared as
       struct {
        char a;
        int b:5, c:11, :0, d:8;
        struct { int ee:8; } e;
       }

contains four separate memory locations: The member a, and bit-fields d and e.ee are separate memory locations, and can be modified concurrently without interfering with each other.  The bit-fields b and c together constitute the fourth memory location.  The bit-fields b and c can’t be concurrently modified, but b and a, can be concurrently modified.

3.23
multibyte character
: The sequence of one or more bytes representing a member of the extended character set of either the source or the execution environment.   
Note 9: The extended character set is a superset of the basic character set.

3.1.24
namespace
TBD

3.25
oObject
: The region of data storage in the execution environment, the contents of which can represent values.   
Note 10: When referenced, an object may be interpreted as having a particular type.

3.1.26
overload
TBD

3.1.27
override
TBD

3.1.28
pParameter
(rewrite): See actual argument, argument, formal parameter

3.1.29
protected

3.1.30
private
TBD

3.1.31
Public
TBD

3.1.32
Pure
TBD

3.1.33
recommended practice
a: A specification that is strongly recommended as being in keeping with the intent of the languageC sStandard, but that may be impractical for some implementations.

3.1.34
runtime-constraint
a: A requirement on a program when calling a library function.

3.1.35
single-byte character
t: The bit representation that fits in a byte.

3.1.36
static
TBD

3.1.37
STL
standard library

3.1.38

template
TBD

3.1.39
virtual
TBD

3.1.40
trap representation
a: An object representation that need not represent a value of the object type.

3.1.41
undefined behaviour
:	Tthe use of a non-portable or erroneous program construct or of erroneous data, for which the language C standard imposes no requirements.  
Note 11: Undefined behaviour ranges from ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).  An example of, undefined behaviour is the behaviour on integer overflow.

3.1.42
unspecified behaviour
t: The use of an unspecified value, or other behaviour where the language sC Standard provides two or more possibilities and imposes no further requirements on which is chosen in any instance.  
Note 12: For example, unspecified behaviour is the order in which the arguments to a function are evaluated.

3.1.43
unspecified value
t: The valid value of the relevant type where the language sC Standard imposes no requirements on which value is chosen in any instance.   
Note 13: An unspecified value cannot be a trap representation.

3.1.44
vValue
t: The precise meaning of the contents of an object when interpreted as having a specific type. 
Note 14: See implementation-defined value, indeterminate value, unspecified value, trap representation

3.1.45
wide character
: A bit representation capable of representing any character in the current locale.  The C Standard uses the name wchar_t for objects of this type.




[bookmark: _Ref336413302][bookmark: _Ref336413340][bookmark: _Ref336413373][bookmark: _Ref336413480][bookmark: _Ref336413504][bookmark: _Ref336413544][bookmark: _Ref336413835][bookmark: _Ref336413845][bookmark: _Ref336414000][bookmark: _Ref336414024][bookmark: _Ref336414050][bookmark: _Ref336414084][bookmark: _Ref336422881][bookmark: _Toc358896485][bookmark: _Toc310518156][bookmark: _Toc1165225][bookmark: _Toc310518157]4. Language concepts
This clause requires a rewrite.  See C++ Core Guidelines CPL for a good explanation of the differences.


C++ has a rich type system with many nuances. In addition to the C base types, int, long, float, double, Boolean, char, and arrays with their C-style vulnerabilities, C++ provides . . .

Many vulnerabilities can be mitigated more easily by using library facilities rather than the base language types. (e.g. std::string rather than char*) 
· Use of the “explicit” keyword for constructors and conversion operators
· operator bool()  discussion
· many built-in implicit conversions, refer to TR 24772-3 clause 6.2 and other clauses (C)
· conversion to bool and null pointer conversions
· legacy code operator void* - change to explicit operator bool
· C-style casts break type safety. 
· static_cast 
· explicit casts highlight mismatches between the design and implementation.
· const and volatile
· constexpr – needs a writeup – (in C++:11 , encouraged heavy stack use and possible exhaustion).

Narrowly tailored number-like class types, such as time_point and duration, improve safety by providing only safe and appropriate operations. User-defined types tailored to a particular use case can provide additional safety. 

This clause requires a rewrite.  See C++ Core Guidelines CPL for a good explanation of the differences.
C++ was initially defined as a syntactic superset of the C programming language: adding object oriented features such as classes, encapsulation, dynamic dispatch, namespaces and templates. It was a “syntactic superset” because whilst there is a core of C++ that is syntactically identical to C, it has always been the case that there are subtle semantic differences between the two, for example:
· Historically, C permitted the use of a function before its declaration (though this is now deprecated in C) . This is illegal in C++
· Where a struct is defined within another struct, in C the inner declaration is in effect made at file scope, so the definition is available for use later in the program. In C++, the inner declaration name is qualified by that of the parent, so without qualification, the inner struct cannot be used later in the program, as in the following example
 struct S1 {
                   struct S2 {…} m1;
                   …
 };

           struct S2 v1;  /* legal in C not C++ */
           S1::S2    v2   //  legal in C++ not C

Subsequently, the two languages have diverged, both adding features not present in the other. Not withstanding that, there is still a significant syntactic and semantic overlap between C and C++. So the starting point for this report has been the equivalent for C. However, in many cases, the additional features of C++ provide mechanisms for avoiding the vulnerabilities inherited from C, and these are reflected in the following sections.

Include discussions of Object orientation, static, and const,  scoped enumerations
[bookmark: _Toc1165226]5. Avoiding programming language vulnerabilities in C++
In addition to the generic programming rules from TR 24772-1 clause 5.4, additional rules from this section apply specifically to the C++ programming language. The recommendations of this section are restatements of recommendations from clause 6, but represent ones stated frequently, or that are considered as particularly noteworthy by the authors. Clause 6 of this document contains the full set of recommendations, as well as explanations of the problems that led to the recommendations made.

Every guidance provided in this section, and in the corresponding Part section, is supported by material in Clause 6 of this document, as well as other important recommendations.
TBD

	Index	Comment by Clive Pygott: Needs to be reworked for C++, once section 6 is complete
	
	Reference

	1
	
	

	2
	 
	

	3
	
	


	4
	
	


	5
	
	

	6
	
	




Need to consider C++-11, 14 and 17. 


[bookmark: _Toc1165227]6. Specific Guidance for C++ Vulnerabilities
[bookmark: _Toc1165228]6.1 General 
[bookmark: _Ref420411525]This clause contains specific advice for C++ about the possible presence of vulnerabilities as described in TR 24772-1, and provides specific guidance on how to avoid them in C++ code. This section mirrors TR 24772-1 clause 6 in that the vulnerability “Type System [IHN]” is found in 6.2 of TR 24772–1, and C++ specific guidance is found in clause 6.2 and subclauses in this TR. 
[bookmark: _Toc1165229]6.2 Type System [IHN]
6.2.1 Applicability to language


C++ is a strongly- and statically-typed language: all variables and expressions must have a type. C++ also permits implicit and explicit conversions between types. Implicit, i.e., automatic, conversions to a type T can be performed:

a) If the declaration, T t=e;, is defined for some expression, e, and some invented variable, t [C++17, Clause 7 [conv], para 3];
b) In expressions involving operands of operators (e.g., +, -, *, /, etc.) subject to the requirements of each operators' operands [C++17, Clause 7 [conv], para 2.1];
c) For example, the expression, 5 + 6.5, has operands of type int and double. Per language rules, the int will be implicitly cast to double, i.e., the expression implicitly becomes double(5) + 6.5, i.e., 5.0 + 6.5.
d) In the condition of an if, for, do..while, or while statement: the implicit cast will be to the type bool [C++17, Clause 7 [conv], para 2.2];
e) In the expression of a switch statement: the implicit cast will be to an integral type [C++17, Clause 7 [conv], para 2.3];
f) In an expression that initializes an object (e.g., an argument to a function call, the expression in a return statement) [C++17, Clause 7 [conv], para 2.4];
g) When a non-explicit class/struct/union constructor can be invoked on an object resulting in some desired type, T, from initial objects passed to the constructor; and
h) When a non-explicit cast operator can be invoked on an object resulting in some desired type, T, from an initial type.

Explicit conversions are conversions that occur:

· when a C-style cast, i.e., (T), is used [C++17 Clause 7 [conv], para. 1]; and
· when functional cast notation is used, i.e., when any of const_cast, static_cast, static_cast followed by a const_cast, reinterpret_cast, reinterpret_cast followed by a const_cast are used [C++17 Clause 7 [conv], para. 2], or, dynamic_cast.

Unlike C++'s other functional cast notations, dynamic_cast relies on run-time type information generated by the compiler to ensure the requested conversion is legal. If it is not legal, then nullptr is returned if the result is a pointer type, otherwise an exception is thrown. [C++17, Clause 8.2.7 [expr.dynamic.cast]] Thus, dynamic_cast is safe to use to convert between two different types: if the conversion is not legal, the result is a null pointer or an exception.

All other conversions are not necessarily "safe" as they can sometimes yield unexpected results. This is likely more of an issue with implicit conversions since they are automatic: the programmer does not explicitly write code to do the conversion. For example, a common problem is mixing signed and unsigned integral types in arithmetic expressions. This can become a problem since the ranges of signed and unsigned integer types differ; unsigned integers are permitted to overflow and wrap (modulo arithmetic) whereas signed integers should never overflow and will not wrap; and, unsigned integers are represented using ones' complement whereas signed integers are represented using one of two's complement or signed magnitude. This further implies:

· compilers will treat signed overflow as undefined behaviour --but since unsigned overflow is well-defined this can result in coding mistakes, e.g., signed expressions that overflow;
· signed negative values might not have a positive counterpart (using the same signed integer type) –a non-issue with unsigned values since there are no negatives; but, unsigned values using modulo arithmetic might lead to programming mistakes since there are no negative values.





AI –  63-3 Paul Preney – Write 6.2.1 to justify the guidance in 6.2.2
Ideas  (Much of this can go to language concepts)
· C++ is a rich language (rich type system) with many nuances. Many vulnerabilities can be mitigated more easily by using library facilities rather than the base language types. (e.g. std::string rather than char*) 
· Use of the “explicit” keyword for constructors and conversion operators
· operator bool()  discussion
· many built-in implicit conversions, refer to TR 24772-3 clause 6.2 and other clauses (C)
· conversion to bool and null pointer conversions
· legacy code operator void* - change to explicit operator bool
· C-style casts break type safety. 
· static_cast 
· explicit casts highlight mismatches between the design and implementation.
· const and volatile
· constexpr – needs a writeup – (in C++:11 , encouraged heavy stack use and possible exhaustion).
The primitive numeric types of C++, for historical reasons, allow a variety of implicit conversions, some of which are unsafe. C++ class types, in contrast, have strictly limited implicit operations and conversions, and may practically be used in place of primitive numeric types. Narrowly tailored number-like class types, such as time_point and duration, improve safety by providing only safe and appropriate operations. User-defined types tailored to a particular use case can provide additional safety.
The primitive numeric types of C++, for historical reasons, allow a variety of implicit conversions, some of which are unsafe. C++ class types, in contrast, have strictly limited implicit operations and conversions, and may practically be used in place of primitive numeric types.

C++ Dynamic cast and the use of it during construction and deconstruction needs further exposition. The this pointer type can have surprising effects.

References
· CERT section OOP (AI – Aaron to provide others), (note that some of these will likely migrate to other vulnerabilities)x	
· DCL52-CPP. Never qualify a reference type with const or volatile
(this one is odd because the language makes this an error, but some
compilers like MSVC only warn on it, but will still translate the
source somehow)
· DCL60-CPP. Obey the one-definition rule
· DCL40-C. Do not create incompatible declarations of the same function or object
· EXP51-CPP. Do not delete an array through a pointer of the incorrect type
· EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type
· EXP56-CPP. Do not call a function with a mismatched language linkage
· EXP57-CPP. Do not cast or delete pointers to incomplete classes
· EXP60-CPP. Do not pass a nonstandard-layout type object across
execution boundaries
· EXP36-C. Do not cast pointers into more strictly aligned pointer types
· EXP47-C. Do not call va_arg with an argument of the incorrect type
· OOP51-CPP. Do not slice derived objects
· OOP52-CPP. Do not delete a polymorphic object without a virtual destructor
· AI – Lisa – look at C++ Core Guidelines for “casts” 
· ES48 avoid casts
· ES49 if using a cast, use a named cast
· ES50 don’t cast away const
· C++ Core guidelines for conversions
· ES23 prefer {} 
· ES46 Avoid narrowing conversions
· ES64 use T{e} notation for construction
· ES100 don’t mix signed and unsigned arithmetic
· ES103 Don’t overflow
· ES104 Don’t underflow (really overflow negatively) 
· AUTOSAR (AI Peter to work with AUTOSAR to provide references)


6.2.2 Guidance to language users
For specific types discussed in this document, such as floating point types, see the respective clauses.
(FROM PAUL PRENEY)
* Be aware if the rules for typing and conversions with fundamental types (i.e.,  built-in language types) and operators to avoid vulnerabilities.

i) * For any user-defined types (e.g., struct, class, union types), consider making all cast operator overloads explicit to avoid them being used implicitly in perhaps
  unexpected ways.

* For any user-defined types (e.g., struct, class, union types), consider making  constructors explicit to avoid them being used in implicit casts in perhaps unexpected ways.

* Be aware that STL containers' size() member functions return unsigned integral  type(s), but, when using std::distance(), std::advance(), or when performing iterator subtraction, a signed integral result will be returned. Thus, avoid mixing expressions using size()'s unsigned integral result with other values that are signed --unless one has ensured there are no issues (e.g., by using std::numeric_limits<T>, etc.) in the code (e.g., by using a loop to iterate through values beyond the range of the signed number).

* When manipulating integral values' bits, use unsigned integral types.

* To help avoid programming mistakes, consistently use one of (not both!) unsigned or signed integral types within expressions.

* Treat explicit casts as candidates for code refactoring, i.e., ideally explicit casts should not be required in the code.

* Never cast away const: doing so can result in undefined behaviour that may not be detectable by the compiler or other tools. Refactor code so that it handles const and non-const types properly.

* To help aid correctness of code, couple all scalar values (e.g., double, complex, int, etc.) that have units (e.g., metres, grams, litres, etc.) with suitable types representing those units. This will allow the compiler to generate errors with scalar-with-unit-type-values when they are used with operations that are incompatible.

[+ the guidance already in the document as WG23 decides (or moves to another section or otherwise edits) --there are a lot of items listed]
From Part 1. The Part 1 guidelines were accepted but are left here for review.
· Take advantage of any facility offered by the programming language to declare distinct types and use any mechanism provided by the language processor and related tools to check for or enforce type compatibility. 
· Use available language and tools facilities to preclude or detect the occurrence of implicit type conversions, such as those in mixed type arithmetic. If it is not possible, use human review to assist in searching for implicit conversions. 
· Avoid explicit type conversion of data values except when there is no alternative. Document such occurrences so that the justification is made available to maintainers. 
· Use the most restricted data type that suffices to accomplish the job. For example, use an enumeration type to select from a limited set of choices (such as, a switch statement or the discriminant of a union type) rather than a more general type, such as integer. This will make it possible for tooling to check if all possible choices have been covered. 
· Always respect the implied unit systems, when converting explicitly from one numeric type to another. 
(Explicit C++ guidance for unit-based types. 
· Follow the guidance of TR 24772-1 clause 6.2.
· Use distinct C++ types for unit systems if available or define explicit unit-based types.)
· Treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue. Do not resolve the problem by modifying the code to include an explicit conversion, without further analysis; instead examine the underlying design to determine if the type error is a symptom of a deeper problem. 
· Never ignore instances of implicit type conversion; if the conversion is necessary, change it to an explicit conversion and document the rationale for use by maintainers. – narrowing conversions and loss of precision	Comment by Stephen Michell: Arguable
· Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed as auxiliary variables, partial results and final results. 
· Create types that more accurately model the problem domain, with corresponding safe operations and conversions in lieu of using primitive types. 
· Minimize use of predefined numeric types whose ranges and precisions are implementation defined. Instead, use types whose ranges and precision are guaranteed. 
· C++ Issue – Use syntax that forces the compiler to Issue diagnostics on narrowing – need example.
· Follow the guidance of TR 24772-1 clause 6.2.5.
· Treat every explicit cast as a candidate for refactoring.
· Use C++ casts rather than C-style casts, as they provide more compile-time checking and are more restrictive in what they can change, - rationale – syntactic distinction – in C++ obvious.. 
· Make Class class member functions that can be ‘staticc’, should be ‘static’. Make Class class member functions that cannot be ‘static’, but can be ‘const’, should be ‘const’ 	Comment by Stephen Michell: Move elsewhere
· The ‘mutable’ keyword for class member variables should be used sparingly	Comment by Stephen Michell: Belongs elsewhere
· Do not use volatile for inter-thread communication or synchronization
· See C++ Core guidelines CP.8, CP.200, CP.111,
· Don't mix signed and unsigned types in arithmetic
· Follow the advice provided in TR 24772-3 clause 6.2.2. when using C-style numeric types, and implicit  conversions. 


[bookmark: _Toc310518158][bookmark: _Toc1165230]6.3 Bit Representations [STR]
6.3.1 Applicability to language
This vulnerabilities described in TR24772-1 clause 6.3 is applicable to C++.
Document the C++ behaviours- handling bit-fields, - hitting enclosing word, concurrent access, hardware implications, 
Able to use non-integer types (such as enumerations) in accessing bit fields.
A C++  memory location is either an object is or a contiguous collection of bit-fields. 

C++ bit fields are not separated from adjacent bit-fields for purposes of thread synchronization or volatility. Bit-fields are very difficult to use correctly in these contexts.


6.3.2 Guidance to language users 
In addition to the  advice of TR 24772-3 clause 6.3.2:
See C++ Core Guidelines ES101 use unsigned types for bit manipulation.
CERT INT34-C
· Do not use std::vector<bool>
· Use bit-fields with care or avoid them entirely. Instead, use a class type containing one or more unsigned integer data members and member functions appropriate to the particular situation.
· Do not create a bit-field of a signed type and size one.
See AUTOSAR A9-6-1,
Issue was raised about padding bits between object/struct/union members can leak information. Where to put this?  Mitigation – use member copy instead of byte-wise copy.
CERT EXP62-CPP


[bookmark: _Toc310518159][bookmark: _Toc1165231]6.4 Floating-point Arithmetic [PLF]
6.4.1 Applicability to language

C++ uses the floating point mechanisms similar toof C, as documented in TR 24772-3 clause 6.4.1.

Issue: Put signature mismatch in a separate vulnerability (clause 7), maybe.

AI – steve – speak with Hubert about C++ FP issues and see what needs to be done.

6.4.2 Guidance to language users
Follow the general advice of TR 24772-13 clause 6.4.2, which is invoked by TR 24772-3 clause 6.4.2..
· Verify compliance to ISO/IEC/IEEE 605592011 at compile time through std::numeric_limits<T>::is_iec559. Other numeric characteristics such as min(), max(), existence of NaNs, has_denorm, and infinities can be determined in this class template.
[bookmark: _Toc310518160][bookmark: _Toc1165232]6.5 Enumerator Issues [CCB]
6.5.1 Applicability to language
6.5.1.1 References
AUTOSAR A7-2-2 Enumeration base type shall be explicitly defined
6.5.1.2 Applicability
C++ offers enums for defining distinct types composed of sets of related named constants. The type of each enum is different from all other types. Each enum has an underlying integral type, which the user can specify. Since enums are distinct types, the user can only assign values to an object of enumerated type that are values of that enumerated type.  C++ does not support implicit conversion of an int to an enum, therefore preventing A = B + C where A, B and C are variables of the same enum, unless an overloaded operator “+” is provided. 

C++ enums can be scoped (enum class) ) or unscoped (enum).  C++ supports implicit conversion of an unscoped enum to an integer by integral promotion
enum Color : short {red, green, blue};
shortint i = red; // implicit conversion
C++ does not support implicit conversion of a scoped enum to an int. Hence, operations such as ++, +, < and enums used as array indices require explicit definitions. 
enum class Color : short {red, green, blue};
shortint i = red; // error – no implicit conversion
Where unscoped enums are used as array indexes and have a user-specified mapping to an underlying representation, there will be “holes” as documented in TR24772-1 clause 6.6.

Note that unsScoped enumeration types implicitly promote their underlying type and can cannot be used as the index of an array without a cast, with all of the issues described in TR 24772-1 clause 6.5..

FromIn C++ 2017 forward,  casting  a value to an enumeration type is  undefined behavior unless the source value is within the range of values of an enumeration type.  See CERT INT50-CPP.

6.5.2 Guidance to language users
· Use scoped enumerations  in preference to the C-style unscoped enumerations for related values, especially at namespace-level. 
· 
· See CPP Core Guidelines Enum.34 “Prefer class enums over ‘plain’ enums”and Enum.6 .(titles?)
· See AUTOSAR A7-2-3 “Enumerations shall be declared as scoped enum classes”
· See MISRA C++ 28.5.5 
· Use constexpr to declare a set of unrelated values, such as
constexpr size_t bufferLen  = 128; 
constexpr char   special_char = ‘a’;
· Provide operators and functions that perform the arithmetic operations and conversions appropriate to the enumerated type. Outside those functions, avoid directly performing arithmetic or conversions on objects of the enumerated type.
· See CPP Core Guidelines Enum.4 “Define operaions on enumerations for safe and simple use” 
· If unscoped enumerations are used, follow the general advice of TR 24772-3 clause 6.5.2 as well as the following:
· Avoid casting arbitrary integer values to enumeration type. If it is unavoidable, use braced initialization instead of C-style or static casts
             e_type{7};
See CERT INT50-CPP “Do no Cast to an out-of-range-value”
· Obtain the underlying enumeration value, by casting the enumeration to its underlying type, e.g.,
enum e_type{A, B, C};
auto value = static_cast<std::underlying_type_t<e_type>>(B);

· type, e.g.,
enum e_type{A, B, C};
auto value = static_cast<std::underlying_type_t<e_type>>(B);
[bookmark: _Toc310518161]
[bookmark: _Toc1165233]6.6 Conversion Errors [FLC]
6.6.1 Applicability to language
C++ includes some of the conversion mechanisms of C, as documented in TR 24772-3 clause 6.6.1.
C++ type conversion mechanisms differ from the mechanisms of C, as documented in ISO IEC 14882 Annex C. This subclause highlights those differences where C++ eliminates potential vulnerabilities found in C. 

Implicit conversions from void* to any other object type is invalid.

C++ adds a number of new features relevant to type conversion:
· C-style casts (using the desired type in brackets in front of an expression), whilst still available in C++, are augmented by four C++ specific cast and function style casts. These provide a number of (mostly) compile-time checks, so prevent casting between obviously inappropriate types
· The programmer can add code to the definition of a class to allow values of any other type to be implicitly cast to that class type, or for a class object to be implicitly cast to any other type (including basic numeric types). As implicit conversions can make code maintenance more difficult, in general they should be avoided

Implicit casting to a class type occurs when a class has a constructor that can take a single parameter, as in the following example:
class C
      {public:
        C(int x=10, float y=0){…}
      };

void foo(C param){…}

…  foo(21); …

The call to foo requires a parameter of type C, but is provided with an int. However, as C has a constructor that can take an int parameter (the float parameter is ignored because it has a default value), a temporary object of type C is constructed using 21 as the x parameter. This is passed to foo. The temporary object is destroyed when foo returns.

Note that this implicit conversion to a class object is the default behavior of constructors that can be called with a single parameter. To prevent this happening, the keyword ‘explicit’ is used before the constructor, as in:
      explicit C(int x=10, float y=0){…}
The call  foo(21)  would now not be legal.
6.6.2 Guidance to language users
In addition to the general advice of TR 24772-1 clause 6.6.5:
· Guidance for numeric conversions: Use the brace form of function style casts
· 
· Use C++ casts rather than C-style casts, as they provide more checking
· If a class has a converting constructor and implicit conversions are not required, make that constructor ‘explicit’ 
[bookmark: _Toc310518162][bookmark: _Toc1165234]6.7 String Termination [CJM]
[bookmark: _Toc310518163]6.7.1 Applicability to language
The vulnerability as documented in TR 24772-1 exists in C++ when C-style strings are used. A string in C++ is composed of a contiguous sequence of characters terminated by and including a null character (a byte with all bits set to 0).  Therefore strings in C++ cannot contain the null character except as the terminating character.  Inserting a null character in a string either through a bug or through malicious action can truncate a string unexpectedly.  Alternatively, not putting a null character terminator in a string can cause actions such as string copies to continue well beyond the end of the expected string.  Overflowing a string buffer through the intentional lack of a null terminating character can be used to expose information or to execute malicious code.
In C, strings are usually implemented as arrays of chars. Such arrays can be prone to accidental or deliberate overflow, as they are inherently of a fixed size. Hence attempting to copy an string longer than the array, or appending a string where the result will be longer than the array, will lead to corruption of the program state.
C++ provide a string class (in the iostream library), std::string. Internally, the class maintains an array of char on the heap. If an attempt is made to copy or append a string that results in a string larger than the current size of the array, a new larger array is allocated.
UNICODE and multibyte strings??
6.7.2 Guidance to language users
· [bookmark: _Toc1165235]Use std::string or similar, in preference to C-style arrays of chars
· Provide guidance on collecting C-style strings at nterfaces and converting them to std::string. 

[bookmark: _Toc1165236]6.8 Buffer Boundary Violation [HCB]
[bookmark: _Toc310518164]6.8.1 Applicability to language
A buffer boundary violation condition occurs when an array is indexed outside its bounds, or pointer arithmetic results in an access to storage that occurs outside the bounds of the object accessed. This behaviour may occur when copying, initializing, writing or reading.
In C++, the built-in subscript operator [] is defined such that E1[E2] is identical to (*((E1)+(E2))), so that in either representation, the value in location (E1+E2) is returned.  C++ does not perform bounds checking on arrays: arrays may be accessed outside of their bounds which is undefined behaviour. For example, in C++ the following code is syntactically valid, though, if offset has the value 10, the behaviour is undefined:
int foo(const int offset) {
       int t;
       int x[] = {0,0,0,0,0};
       t = x[offset];
       return t;
	  }

or, when written using iterators, the same issues can occur 
int foo(const int offset) {
  std::array<int, 5> a;
  return *(a.begin() + offset);
For further explanation and examples, see 
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR50-CPP.+Guarantee+that+container+indices+and+iterators+are+within+the+valid+range
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR53-CPP.+Use+valid+iterator+ranges
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR55-CPP.+Do+not+use+an+additive+operator+on+an+iterator+if+the+result+would+overflow
Note: Consider C++ Core guidelines if completed.

As described in 6.7 [CJM], C++ provides library functions, e.g. std::string, that encapsulate strings and prevent boundary violations when accessing arrays of characters. It also provides standard templates that provide similar facilities for any other type, such as std::vector.	Comment by Stephen Michell: Consider integrating this paragraph.

6.8.2 Guidance to language users
· Avoid C-style arrays. Guidance for the use of C-style arrays is provided in TR 24772-3 clause 6.8.2.
· Use a library class such as std::array to encapsulate an array, or write a class with similar behavior. 
· Use library classes such as gsl::span or std::string_view to represent ranges of elements within an array or container.
· Use containers of the standard library, such as std::vector or std::deque, to model arrays with dynamically changing size.
· Use iterator-based algorithms, such as those of the standard library.
· Use the range-based for loop construct such as for (auto I: some container) to iterate within the defined bounds of the object.
· Use iterators over the range of elements to be accessed instead of using an array and bounds as parameters.
· Perform range checking before indexing into an array.  In the interest of speed and efficiency, range checking only needs to be done when it cannot be statically shown that an access outside of the array cannot occur.
· When performing random access by indexing, follow the guidance of clause 6.9.2. When performing other forms of random access, follow the guidance of clause 6.12.2.         (Define random access in clause 3 or 4)	Comment by Stephen Michell: Define random access in clause 3 or 4
· Use static analysis tools to detect buffer boundary violations.

[bookmark: _Toc1165237]6.9 Unchecked Array Indexing [XYZ]
[bookmark: _Toc310518165]6.9.1 Applicability to language

Like a C-style array, some STL containers, such as std::vector, can be indexed using [], and as in C such an access is unchecked. However, these containers also provide an access function  at()  that behaves like [], but performs a check that the access is within the bounds of the container.
Similar issues arise from accessing elements in containers by pointer arithmetic.
The following example compares C and C++ performing equivalent array operations:

	C
	C++
	Comment

	
	#include <array>
	

	int arr [10];
	std::array<int,10>arr;
	Both arrays are of 10 elements

	arr[10] = 0;
	arr[10] = 0;
	Both accesses silently violate array’s bounds

	arr[10] = 0;
	arr.at(10) = 0;
	The C++ access fails with an error exception




6.9.2 Guidance to language users

· Follow the guidance from clause 6.8.2.
· Use static analysis or explicit checks to establish that bounds violations do not occur. Otherwise use the at() member function of the standard library containers and handle the bounds violation exceptions. See clause 6.36 Ignored error status and unhandled exceptions.
 
[bookmark: _Toc1165238]6.10 Unchecked Array Copying [XYW]
[bookmark: _Toc310518166]6.10.1 Applicability to language
This subclause requires a complete rewrite.

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to another and the amount being copied is greater than is allocated for the destination buffer. In essence this is a special case of Buffer Boundary Violation [HCB]. 

As with [HCB], in most cases the vulnerability can be avoided by using library classes, such as std::vector, which provides a copy assignment operator that adjusts the size of the target to fit the object being copied.

If for some reason this is not acceptable, C++ has access to the C library functions memcpy and memmove. Both simply copy memory and no checks are made as to whether the destination area is large enough to accommodate the amount of data being copied.  It is assumed that the calling routine or programmer has ensured that adequate space has been provided in the destination.  Problems can arise when the destination buffer is too small to receive the amount of data being copied.
6.10.2 Guidance to language users
This subclause requires a complete rewrite.
· Use standard library containers, such as std::vector, that provide copying mechanisms that ensure the target array is large enough for the indicated source.
· For copies of fixed-sized arrays, perform range checking to prevent out-of-bounds access on the target and the source arrays.  In the interest of speed and efficiency, range checking only needs to be done when it cannot be statically shown that an access outside of the arrays cannot occur.
· Use std::string_view to represent immutable string literals. 	Comment by ploedere: Discuss again.
How to deal with immutable dynamically sized strings? 

· Use std:string to represent mutable strings.	Comment by ploedere: Discuss again!.
[bookmark: _Toc1165239]6.11 Pointer Type Conversions [HFC]
6.11.1 Applicability to language
In this clause, all  C++ references, in addition to pointers. The shared_ptr casts 
The vulnerabilites as described in TR 24772-1 clause 6.11.1 also apply to C++. 
In general casting pointers breaks the type system and should be avoided.

In C++, a C-style cast is defined in terms of the C++ cast operators const_cast, static_cast, and reinterpret_cast. In some cases, it is unspecified which cast is used, for example when a cast operation involves an incomplete type, a reinterpret_cast may be used for the conversion which can produce an incorrect result.

Reinterpret_cast has the problem that it  simply treats the unmodified pattern of bits in the pointer as being of the target type rather than the original type, but the C++ standard recognizes that the language or compiler may impose constraints or additional data requirements on a pointer. Static_cast and dynamic_cast take this difference into account, but other cast operators do not take this into consideration and hence can give incorrect results.  For example, in the use of multiple inheritance, the address of an object may be different than one of its base class sub-objects, causing the potential for the exploitable access of adjacent memory.

C++ permits the change of constant or volatile properties as part of a conversion. Such conversions, unless done in extremely limited ways, puts the program at risk of creating undefined behavior. 
A typical use of pointer conversion in C++ is where there is a hierarchy of classes declared, as in:
                  struct Base {virtual ~Base() = default; };
                  struct Derived: Base { };
Where a Base pointer needs to be converted to Derived pointer, dynamic_cast will check at runtime that the pointer is to an object of the correct type. If it’s not, either nullptr will be returned, or an error exception thrown.

Pointer casts to a more strictly aligned pointer type is undefined behaviour.

Reinterpret_cast for pointer-interconvertible on objects (see clause 6.9.2 of IS 14882) 
C++ permits reinterpret_cast to be used to convert a pointer to an object, a, to a pointer to another object, b, only in specific restricted circumstances, i.e., when
· a and b are the same object,
· either a or b is a standard-layout union object and the other is a non-static data member of that object,
· Examples:
union A { int i; double d; } a;
int* iptr = reinterpret_cast<int*>(&a);
double* dptr = reinterpret_cast<double*>(&a);
A* uptr1 = reinterpret_cast<A*>(iptr);
A* uptr2 = reinterpret_cast<A*>(dptr);
· either a or b is a standard-layout class object and the other is the first non-static data member of that object,
· Examples:
struct B { int i; double d; } b;
int* iptr = reinterpret_cast<int*>(&b);
B* bptr = reinterpret_cast<B*>(iptr);
· either a or b is a standard-layout class object with no non-static data members and the other is the first base class subobject of that object, or,
· Examples:
struct A { double d; };
struct B : A { static int i; } b;
double* dptr = reinterpret_cast<double*>(&b.d);
B* cptr = reinterpret_cast<B*>(dptr);
· there exists an object c where a and c are pointer-interconvertible and c and b are pointer-interconvertible.
In essence, such pointer-interconvertibility implies objects a and b have the same address, however, having the same address does not imply a and b are pointer-interconvertible! For example, an array and its first element have the same address but they are not pointer-interconvertible. This means that one cannot use reinterpret_cast to cast an array object to the type of its first element or vice versa. [Reference: ISO 14882 Section 6.9.2 [basic.compound], Paragraph 4].


6.11.2 Guidance to language users

· Follow the advice provided by TR 24772-1 clause 6.11.5.
· Avoid the C-style cast, reinterpret_cast, and casts to and from void*. 
· For conversions that remove the constant qualification, see the guidance in TR24772-1 clause 8.2.5
· or volatile qualifications
· When downcasting, prefer dynamic_cast and explicitly handle the possible failure cases.
· References???  
· Heed compiler warnings that are issued for pointer conversion instances.  The decision may be made to avoid all conversions so any warnings must be addressed.  Note that casting into and out of  void * pointers will most likely not generate a compiler warning as this is valid in C++
· Use new and delete to allocate/deallocate memory, rather than malloc/free 
[bookmark: _Toc310518167][bookmark: _Toc1165240]6.12 Pointer Arithmetic [RVG]
[bookmark: _Toc310518168]6.12.1 Applicability to language

The vulnerabilites as described in TR 24772-1 clause 6.12.1 also apply to C++ pointers. Analogous vulnerabilities can also apply to C++ iterators.

Although based on the same implementation principles, iterators provide a layer of abstraction over pointer arithmetic. Their use typically restricts the arithmetic to the safe access to elements of the container. This restriction is enforced by the typical usage, not necessarily by the capability of iterators. 
 

6.12.2 Guidance to language users
This subclause requires a complete rewrite.
· Follow the guidance of clause 6.8.2.
· Prefer standard algorithms to hand-written loops
· See Core Guideline.xxx
· Use iterators in lieu of pointers and pointer arithmetic.  <<<John McF. to provide list of extras.>>>
· 
· Use an iterator thatthat checkss against the bounds of the container before performing the intended operation on the container.
· Consider an outright ban on pointer arithmetic due to the error-prone nature of pointer arithmetic.
· Verify that all pointers are assigned a valid memory address for use.
[bookmark: _Toc1165241]6.13 NULL Pointer Dereference [XYH]
6.13.1 Applicability to language

The vulnerability as described in TR 24772-1 clause 6.13 exists in C++,…

C++ provides a number of mechanisms that allow the programmer to create, manipulate and destroy objects  without the explicit use of raw pointers.
j) Containers manage memory and separate memory management from the use of objects. 
k) The container interface throws an exception if any container cannot be allocated.  
l) Smart pointer creation functions allocate heap memory and handle memory management. 
m) References provide similar functionality as pointers, but cannot be null.

C++ mechanisms new, by default, throws an exception if the allocated object cannot be created (i.e. if a null pointer would be returned). C++ does provide other allocation mechanism, including C malloc and a non-throwing new, that are not recommended for general use.	Comment by Stephen Michell: WG 21 SG-12 is concerned about the realm of memory management issues. Confirm that such issues are covered elsewhere. 
Suggestion that a clause 7 issue could be added.

See C++ Core Guidelines R: Resource Management, and CERT EXP34-C “Do not dereference null pointers”

6.13.2 Guidance to language users
When dereferencing objects of pointer-like types that may contain a null value, follow the guidance from TR 24772-3 clause 6.13.2.
· Avoid the use of direct memory allocation. Prefer the use of library facilities such as std::make_unique, and std::make_shared. 
· Consider using std::array when the size of the array is known at compile time. 
· Consider using std::vector instead of dynamic memory allocation of an array of dynamic size. 
· Use references to reduce the number of places where pointers are dereferenced. 
· Do not suppress exceptions on memory allocation. If exceptions are suppressed, follow the guidance of TR 24772-3 clause 6.13.2.
[bookmark: _Toc310518169][bookmark: _Toc1165242]6.14 Dangling Reference to Heap [XYK]
[bookmark: _Toc310518170]6.14.1 Applicability to language
The vulnerability as expressed in TR 24772-1 and TR 24772-3 C exists in C++. C++, however, provides mechanisms to mitigate the vulnerability.

C++ provides a rich set of types whose objects may dangle, e.g.
· References
· Pointers
· Iterators
· std::string_view
· gsl::span
· std::reference_wrapper
We call these types potentially dangling.	Comment by Stephen Michell: For discussion

If the lifetime of a potentially dangling object ends before its referent’s lifetime ends, then the vulnerability does not apply to that potentially dangling object. This is the primary C++ strategy for avoiding vulnerabilities due to potentially dangling objects. For example, passing a potentially dangling object as a function parameter/argument(?), and the function does not take ownership of the referent (for example by deleting the referent), then the language guarantees that the lifetime of the referent is longer than the lifetime of the parameter. This does not apply to further copies made to longer-lived potentially dangling objects.  

Unanticipated aliasing between parameters, global objects, or function results may sometimes lead to this vulnerability. Because it is not practical to test for or document all disallowed aliasing, a restrictive stance is preferred: “All aliasing that is not explicitly allowed by documentation is forbidden.” Allowances for aliasing may be given to some classes of functions by blanket documentation.  In particular, aliasing is expected and allowed in these classes of functions:
· Assignment and compound assignment operators: the right parameter may alias the left parameter. The function result always refers to the left parameter.
· Functions named “swap”: The two parameters to be swapped may refer to the same object.
· Shift operators used for input and output: the result always refers to the left parameter.
· Prefix increment and decrement operators: the result always refers to the parameter.

// Documentation: “v may refer to a portion of s.  The result refers to s.”
std::string_view& f( std::string& s, std::string_view v )
  {
   s = v;     // For operator=, aliasing is allowed by blanket documentation.
   return s;  // Returning a result aliased to the parameter is explicitly allowed.  
  }


// Documentation of this function does not mention aliasing
void g( std::string& s, std::string_view v )
  {
                       // If v were to alias s...
   s.clear();   // ...now v would be dangling!
   s = v;          // And this would have undefined behavior.    
  }


void h()
  {
   string hello{ “Hello world!” };
   f( hello, hello ); // OK: aliasing is explicitly allowed by f.
   g( hello, hello );  // wrong: g does not document an allowance
                       // for aliasing, so callers must not pass aliased parameters.
  }

Or even as simple as:

std::string_view bad("a temporary string"s); // "bad" holds a dangling pointer


C allows memory to be dynamically allocated primarily through the use of of malloc(), calloc(), and realloc(). C allows a considerable amount of freedom in accessing the dynamic memory.  Pointers to the dynamic memory can be created to perform operations on the memory.  Once the memory is no longer needed, it can be released through the use of free().  However, freeing the memory does not prevent the use of the pointers to the memory and issues can arise if operations are performed after memory has been freed.

Consider the following segment of code:
   int foo() {
	int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/
	if (ptr != NULL) {	/* check to see that the memory could be allocated */
                     /* perform some operations on the dynamic memory */
		free (ptr);    /* memory is no longer needed, so free it */
                     /* program continues performing other operations */
		ptr[0] = 10;   /* ERROR – memory being used after released */
		…
	 }
	…
   }

The use of memory in C after it has been freed is undefined.  Depending on the execution path taken in the program, freed memory may still be free or may have been allocated via another malloc()or other dynamic memory allocation.  If the memory that is used is still free, use of the memory may be unnoticed.  However, if the memory has been reallocated, altering of the data contained in the memory can result in data corruption.  Determining that a dangling memory reference is the cause of a problem and locating it can be difficult.
Setting and using another pointer to the same section of dynamically allocated memory can also lead to undefined behaviour.  Consider the following section of code:
  int foo() {
	int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers */
	if (ptr != NULL) {                  /* check to see that the memory 
                                          could be allocated */
    int ptr2 = &ptr[10];               /* set ptr2 to point to the 10th
                                          element of the allocated memory */
       …                               /* perform some operations on the
       dynamic memory */
		free (ptr);                     /* memory is no longer needed */
		ptr = NULL;                     /* set ptr to NULL to prevent ptr 
                                          from being used again */
		…	                             /* program continues performing 
                                          other operations */
		ptr2[0] = 10;                   /* ERROR – memory is being used 
                                          after it has been released via ptr2 */
		…
		}
	return (0);
    }

Dynamic memory was allocated via a malloc()and then later in the code, ptr2 was used to point to an address in the dynamically allocated memory.  After the memory was freed using free(ptr) and the good practice of setting ptr to NULL was followed to avoid a dangling reference by ptr later in the code, a dangling reference still existed using ptr2.

6.14.2 Guidance to language users
In addition to the guidance provided in TR 24772-1 clause 6.14.5:This subclause requires a complete rewrite.
· Prefer value types, for example std::string instead of const char*.
· Adopt a style that makes explicit the ownership and lifetime of all resources.
· Limit the scope of potentially dangling objects.
· Document the referents of potentially dangling objects created by or modified by a function if any potentially dangling object outlives the invocation of that function. See the example above.
· Document any allowable aliasing between the referents of function parameters. Absent such documentation, avoid passing aliased parameters. See the example above.
· When allocating an object, adopt a style that all copies of any potentially dangling reference are guaranteed to be cleaned up before the referent’s lifetime ends.Follow 
· the advice provided by TR 24772-1 clause 6.15.2.
Set a freed pointer to NULL immediately after a free()call, as illustrated in the following code:
free (ptr);
ptr = NULL;
· Do not create and use additional pointers to dynamically allocated memory.
· Only reference dynamically allocated memory using the pointer that was used to allocate the memory.
[bookmark: _Toc1165243]6.15 Arithmetic Wrap-around Error [FIF]
6.15.1 Applicability to language

C++ shares the vulnerability with C as documented in TR 24772-1 clause 6.15 and TR 24772-3  clause 6,15.1.This subclause requires a complete rewrite.
 The mitigations for C++ are different.

C++ allows the definition of class types that embed integers together with the operations that provide the wrapping behaviour intended in an efficient way. 

Integral promotion – the addition of 2 unsigned chars will promote to (signed) int and then cast back.



Given the fixed size of integer data types, continuously adding one to an unsigned integer eventually will cause the value to go from the maximum possible value to a small value.  C permits this to happen without any detection or notification mechanism.  Continuously adding one to a signed integer eventually will cause undefined behaviour.

For example, consider the following code for a short int containing 16 bits:
   	int foo( short int i ) {
 		i++;
   		return i;
 	}

Calling foo with the value of 32767 would cause undefined behaviour, such as wrapping to -32768, or trapping.  Manipulating a value in this way can result in unexpected results such as overflowing a buffer. 

C is often used for bit manipulation.  Part of this is due to the capabilities in C to mask bits and shift them.  Another part is due to the relative closeness C has to assembly instructions.  Manipulating bits on a signed value can inadvertently change the sign bit resulting in a number potentially going from a positive value to a negative value.

In C, bit shifting by a value that is greater than the size of the data type or by a negative number is undefined.  The following code, where a int is 16 bits, would be undefined when j >= 16 or j is negative:
   	int foo( int i, const int j ) {
   		return i>>j;
 	}

6.15.2 Guidance to language users
· This subclause requires a complete rewrite.

· If you intend to wrap, use an unsigned type that does not promote to int.
· Document where wraparound is expected for a type.
· Consider creating classes that encapsulate integers and that detect or avoid wraparound errors.
· Consider creating classes that explicitly allow wrap-around behaviour.
· Document code that appears convoluted but has been created to avoidB wrapping. e aware that any of the following operators have the potential to wrap in C:
· 
References:a + b     a – b     a * b    a++      a--

Core Guidelines ES.102 “Use signed types for arithmetic”
Core Guidelines ES.103 “Don’t overflow”
MISRA C++ 5.19.1 

[bookmark: _Toc1165244][bookmark: _Toc310518171]6.16 Using Shift Operations for Multiplication and Division [PIK]
6.16.1 Applicability to language

The issues for C ++ are well defined in TR 24772-1 clause 6.16 Using Shift Operations for Multiplication and Division [PIK].  Also see clause 6.15 Arithmetic Wrap-around Error [FIF].
[bookmark: _Toc310518172][bookmark: _Ref314208059][bookmark: _Ref314208069][bookmark: _Ref357014778]6.16.2 Guidance to language users
The guidance for C++ users is well defined in TR 24772-1 clause 6.16 Using Shift Operations for Multiplication and Division [PIK].  Also see, 6.15 Arithmetic Wrap-around Error [FIF].
References:
[bookmark: _Toc1165245]6.17 Choice of Clear Names [NAI]
6.17.1 Applicability to language
This subclause requires a complete rewrite to have it reflect C++ issues..

C is somewhat susceptible to errors resulting from the use of similarly appearing names.  C does require the declaration of variables before they are used.  However, C allows scoping so that a variable that is not declared locally may be resolved to some outer block and a human reviewer may not notice that resolution.    Variable name length is implementation specific and so one implementation may resolve names to one length whereas another implementation may resolve names to another length resulting in unintended behaviour.
As with the general case, calls to the wrong subprogram or references to the wrong data element (when missed by human review) can result in unintended behaviour.
6.17.2 Guidance to language users
This subclause requires a complete rewrite.
· Use names that are clear and non-confusing.
· Use consistency in choosing names.
· Keep the scope of names as small as reasonable.
· Keep names short and concise in order to make the code easier to understand.
· Use longer names for longer-lived objects.
· Choose names that are appropriately richrich in meaning for the context.
· When choosing names, Keep keep in mind that code will be reused and combined in ways that the original developers never imagined. 
· Do not differentiate names through only a mixture of case or the presence/absence of an underscore character.
· Do not choose names that conflict with (unreserved) keywords or language-defined library names for the language being used, as follows:
· Names that begin with double underscore;
· Names that begin with a single underscore followed by an uppercase letter;
· Contextual keywords such as module, final and override;
· In the global namespace, identifiers commencing with std followed by any string of digits; 
Follow common conventions for naming macros:
· Avoid names for macros that are not all uppercase;
· Avoid names that are all uppercase not used for macros; 
· Avoid differentiating through characters that are commonly confused visually such as ‘O’ and ‘0’, ‘lI’ (lower case ‘L’), ‘Il’ (capital ‘I’) and ‘1’, ‘S’ and ‘5’, ‘Z’ and ‘2’, and ‘n’ and ‘h’.
· Develop Adopt or develop coding guidelines to define a common coding style and to avoid the above dangerous practices.
[bookmark: _Toc310518173][bookmark: _Ref420411596][bookmark: _Toc1165246]6.18 Dead Store [WXQ]
6.18.1 Applicability to language
The vulnerability as documented in TR 24772-1 clause 6.18 exists in C++.
Issue of finalization of class objects
For Volatile, what do you do to ensure that a write reaches memory?
Initializing part of an array zeros the rest in C++
For the definition of “dead store” in C++, non-trivial destructors constitute “use of an object” .

6.18.2 Guidance to language users

· Use compilers and static analysis tools to identify dead stores in the program.
· If variables are intended to be accessed by other execution threads, mark them as atomic.Declare variables to be accessed by other execution threads that represent values of type T  as std::atomic<T>.
· If variables are intended to be accessed by external devices, mark declare them as volatile.
· If variables are intended to be used to communicate with signal handlers, declare them as volatile sig_atomic_t.
· Declare variables as volatile when they are intentional targets of a store whose value does not appear to be used.
[bookmark: _Toc310518174][bookmark: _Ref357014706][bookmark: _Toc1165247]6.19 Unused Variable [YZS]
[bookmark: _Toc310518175]6.19.1 Applicability to language
The vulnerability as documented in TR 24772-1 clause 6.19 exists in C++.

6.19.2 Guidance to language users
· Follow the guidance of TR 24772-1 clause 6.19.5.
· Resolve all compiler warnings for unused variables. 
· 
[bookmark: _Toc1165248]6.20 Identifier Name Reuse [YOW]
6.20.1 Applicability to language

The vulnerability as described in TR 24772-1 clause 6.20 exists in C++, except for the second issue of limited identifier length. In C++ all characters in an identifier are significant. 

C++ provides the scope resolution operator ‘::’ to access identifier from non-local scopes.

Overloading and specialization of functions is  a cornerstone of C++ generic programming.  In this context, the reuse of function names is essential.  See clause 6.41 for inheritance issues associated with name reuse.



6.20.2 Guidance to language users


· Follow TR 24772-1 clause 6.20, with the exclusion of guidance related to truncated identifiers.
· Qualify names to disambiguate potential conflicts between names introduced from different scopes.
· Document argument-dependent lookup usage where name qualification is not desirable.
· Use modern integrated development environments that inform about the declaration of any identifier occurrence.
· Enable compiler diagnostics that inform about the hiding of declarations.

[bookmark: _Toc310518176][bookmark: _Ref357014663][bookmark: _Ref420411458][bookmark: _Ref420411546][bookmark: _Toc1165249]6.21 Namespace Issues [BJL]
6.21.1 Applicability to language 6.21.1 Applicability to language

The vulnerability described in TR 24772-1is restricted to the following cases:
· Overloading, where clause 6.20 applies;
· Overriding, where clause 6.41 applies.
In all other cases, C++ compilers are required to diagnose an ambiguity.

6.21.2 Guidance to language users
 Follow the guidance of clauses 6.20.2 and 6.41.2 as applicable.

[bookmark: _Toc1165250]6.22 Initialization of Variables [LAV]
6.22.1 Applicability to language
The vulnerability as described in TR 24772-1 exists in C++.

C++ provides language capabilities to mitigate the effects of uninitialized variables as follows:
See C++ Core Guidelines ES.20  and CERT C++ Coding Guidelines EXP53-CPP 
Need a list of references TBD – (AI – J. Daniel Garcia)

Readers should note that ES.20 and EXP53 are complementary. Both point out that you should always initialize before reading, but ES.20 uses the narrow sense of initialize while EXP53 includes assignment.

6.22.2 Guidance to language users
· Follow the guidance provided in 
· C++ Core Guidelines, section Class hierarchies, and Expressions and Statements  and 
· SEI CERT C++ Coding Standard section EXP53-CPP (and possibly more). 
[bookmark: _Toc310518178][bookmark: _Toc1165251]6.23 Operator Precedence and Associativity [JCW]
6.23.1 6.23.1 Applicability to language
[FROM PAUL PRENEY 2 NOV 2019]

Operator precedence and associativity in C++ are determined by the C++ grammar. There are four operators that cannot be overloaded (user-defined) '::', '.', '.*', and '?:'.  Due to the large number of operators, one is recommended to consult an operator precedence table when needed, e.g., https://en.cppreference.com/w/cpp/language/operator_precedence . One reason to do so, is the vulnerability as described in TR 24772-1 Clause 6.23 is applicable to C++. For example, in C and C++, the bitwise logical and shift operators are sometimes incorrectly treated as having the same precedence as arithmetic operations --they do not: the bitwise operators have lower precedence. For example, the following (correct) expression subtracts one from x and then checks if the result is zero:

  x - 1 == 0

which is equivalent to (x - 1) == 0, i.e., x - 1 is done first, then that result is compared to zero. Programmers mistakenly thinking the bitwise operations have the same precedence as arithmetic ones might write:

  x & 1 == 0

intending to perform (x & 1) == 0, but, precedence rules result in this evaluating x & (1 == 0) instead. (When in doubt, use parenthesis to ensure the proper evaluation of an expression.)

In addition to the aforementioned, C++ also permits operators to be overloaded when used with user-defined types. While it is not possible to change the precedence, associativity, and number of operands of overloaded operators [C++17, Clause 16.5 [over.oper], para. 6], overloaded operators can be executed differently than built-in operators. For example, overloaded operators lose any built-in operator short-circuiting properties, and, in most cases, overloaded operators and their arguments' evaluations behave as normal function calls --differing from built-in operator evaluation.


[END]
The vulnerability as described in TR 24772-1 clause 6.23 is applicable to C++.
In C and C++, the bitwise operators (bitwise logical and bitwise shift) are sometimes thought of by the programmer having similar precedence to arithmetic operations, so just as one might correctly write 	Comment by Stephen Michell: Need to write up the overloaded issues (that do not change short-circuiting. Overloading && causes both sides.)
x – 1 == 0 //x minus one is equal to zero 
a programmer might erroneously write 
x & 1 == 0 // mentally meaning “x and-ed with 1 is equal to zero” 
AI – Paul Preny – write up the overloading of Boolean operators and how they affect short circuit of standard operators.
the operator precedence rules of C and C++ actually bind the expression as 
compute 1==0,
producing ‘false’ interpreted as zero, then bitwise-and the result with x”, producing (a constant) zero, contrary to the programmer’s intent. 
Examples from an opposite extreme can be found in programs written in APL, which is noteworthy for the absence of any distinctions of precedence. One commonly made mistake is to write “a * b + c”, intending to produce “a times b plus c”, whereas APL’s uniform right-to-left associativity produces “b plus c, times a”. 
This subclause requires a complete rewrite to have it reflect C++ issues.
Operator precedence and associativity in C are clearly defined.
Mixed logical operators are allowed without parentheses.
6.23.2 Guidance to language users
· Follow the guidance provided in TR 24772-1 Clause 6.23.5 [JCW].
· Enable all C++ compiler/tool warnings and static analysis messages concerning possible issues with precedence and associativity to help avoid and detect mistakes.
· Even if technically unnecessary, use parentheses around operator (sub)expressions that are know to be or felt likely to be sources of error.
· Break up complex expressions and use temporary variables to make complex expressions easier to understand and maintain.


This subclause requires a complete rewrite.
· Follow the guidance provided in TR 24772-1 clause 6.23.5
· Use parentheses any time arithmetic operators, logical operators, and shift operators are mixed in an expression.
· Adopt programming guidelines (preferably augmented by static analysis). For example, use the language- specific rules cross-referenced within subclause 6.24 Side effects and order of evaluation of operations [SAM]. 
· Use parentheses around operator combinations that are known to be a source of error (for example, mixed arithmetic/bitwise and bitwise/relational operator combinations). 
· Break up complex expressions and use temporary variables to make the intended order clearer. 
[bookmark: _Toc310518179][bookmark: _Toc1165252]6.24 Side-effects and Order of Evaluation of Operands [SAM]
6.24.1 Applicability to language

Clause needs a complete rewrite.
AI 63-4 - Paul – write up the overloading of Boolean operators and how they affect short circuit of standard operators, include here.
The evaluation of an expression includes (i) its value computation and (ii) its side-effects. The value computation is the value returned by the expression, e.g., the valuation of 3 * 2 + 1 is 7. The side-effect of an expression are the read and write accesses to objects in that expression, calling a library I/O function, or calling a function that does any of these. For example consider:

  int i = 2;
  int j = i++;

the valuation of i++ is 2 and the side-effect is the writing of 3 to i.

With built-in operators, before C++17, within an expression, one must ensure an object is stored only once to avoid undefined behaviour, e.g.,

  i = i++ + 5; // undefined behaviour (before C++17)

and expressions modifying objects can only read the object to determine the value to be stored (e.g., ++i requires reading the value), i.e., other accesses are undefined behaviour, e.g.,

  my_array[i] = i++; // undefined behaviour (before C++17)

Starting with C++17, the value computation of a (full) expression involving operators preserves the sequenced before behaviour of the built-in operator:

  my_array[i] = i++;

i.e., assignment is sequenced after the value computation of the right and left operands and before the value computation of the assignment expression; and, the right operand is sequenced before the left operand. [C++17, Clause 8.18 [expr.ass], para. 1] Since this is the built-in operator, this statement can be thought of as:

  Compute value of right-hand-side: i++ (e.g., integer value).
  Compute value of left-hand-side: my_array[i] (e.g., memory address).
  Apply side-effects of i++.
  Apply side-effects of the assignment.

For built-in operators a rule-of-thumb is that value computations of operands are sequenced before the value computation of the operator, but, if the value computation cannot be performed without the side-effect, then that side-effect is sequenced before that value computation.

Had the previous example used prefix-increment instead:

  my_array[i] = ++i;

then the side-effect would have been required to occur first to increment i and since that is the right operand, it would have been evaluated first.

In general, one should follow commonly-stated C/C++ advice of never reading from and writing to the same object within an expression/statement to avoid potential issues/vulnerabilities. Often breaking the expression into separate statements achieves clear and clean semantics, e.g.,

  ++i;
  my_array[i] = i;

or:

  my_array[i] = i;
  ++i;

makes it unambiguous what the value of i is during the array assignment and also eliminates the possibility of issues/vulnerabilities.

The rules of how operands of operators are evaluated have changed since C++98 (the first ISO C++ standard) when overloaded (user-defined) operators are used. Originally, as a rule-of-thumb, overloaded operand evaluation was treated as if they were arguments to a function in a function call: they were all evaluated in any order before the call to the operator itself. With the introduction of concurrency in C++11, operand evaluation became indeterminately sequenced (i.e., they are not interleaved). In C++17, the rules were adjusted again to obey the sequencing rules of its corresponding built-in operator. Additionally, C++17 added these rules for some specific operators:

* when evaluating E1[E2] (i.e., array accesses), E1.*E2, E1->*E2, E1 << E2, or E1 >> E2 every value computation and side-effect of E1 is sequenced before every value computation and side-effect of E2; and,

* when evaluating an assignment, the value computation and side-effects of the right-hand side is sequenced before the value computation and side-effects of the left-hand side

which were added to help avoid problems with common mistakes when programming, e.g.,

  cout << i << i++; // C++17 order: cout, i, i++; undefined before C++17

That said overloading an operator does disable short-circuiting behaviours (e.g., built-in boolean operators): those operators' operands are all evaluated before the operator itself.

The C++ built-in (two-argument) boolean operators (e.g., && and ||) as well as <type_traits>'s std::conjunction and std::disjunction operations are all short-circuiting, i.e., if the value of an earlier (from left-to-right) operand of an operation determines the result of the operation, then all remaining arguments are not evaluated.

Typically this allows one to write code like this, e.g.,

  int *p;
  // ...
  if (p != nullptr && *p != 0) {
    /* do something */
  }

i.e., if p is nullptr, then *p != 0 is never executed, thus, avoiding undefined behaviour. Only when p is not nullptr is *p != 0 is evaluated. It must be stressed that this only applies to the built-in && and || operators: user-defined operator overloads always evaluate all operands first.

Consequently should one want to always evaluate all operands of a boolean expression, one should not write code like this:

  bool x = foo() && bar();

where foo() and bar() are functions that return sopmething convertible to bool. In this expression, if foo() returns false, then bar() will never be executed; --only when foo() returns true will bar() be executed. Similarly for ||:

  bool y = foo() || bar();

i.e., only when foo() returns false will bar() be executed --if foo() returns true then bar() will never be executed. Thus, if both foo() and bar() are both required to be executed, then execute them in separate statements first, e.g.,

  bool foo_result = foo();
  bool bar_result = bar();
  bool x = foo_result && bar_result;
  bool y = foo_result || bar_result;

[Stephen: My write-up here is lengthy but should help get more terse wording... but I note this: C++ operator information is in C++17 Clause 8 and Clause 16.5, ... Also per 16.5.1 para 2. unary and binary forms of the same operator are considered to have the same name so one can hide another from an enclosing scope. Thus, this is also a another possible vulnerability.]





C allows expressions to have side effects.  If two or more side effects modify the same expression as in:
       int v[10];
       int i;
       /* … */
       i = v[i++];

the behaviour is undefined and this can lead to unexpected results.  Either the “i++” is performed first or the assignment  i=v[i] is performed first, or some other undefined behaviour occurs.  Because the order of evaluation can have drastic effects on the functionality of the code, this can greatly impact portability.

There are several situations in C where the order of evaluation of subexpressions or the order in which side effects take place is unspecified including:
· The order in which the arguments to a function are evaluated (C, Section 6.5.2.2,"Function calls").
· The order of evaluation of the operands in an assignment statement (C, Section 6.5.16,"Assignment operators").
· The order in which any side effects occur among the initialization list expressions is unspecified. In particular, the evaluation order need not be the same as the order of subobject initialization (C, Section 6.7.9, “Initialization").

Because these are unspecified behaviours, testing may give the false impression that the code is working and portable, when it could just be that the values provided cause evaluations to be performed in a particular order that causes side effects to occur as expected.


[bookmark: _GoBack]6.24.2 Guidance to language users
[FROM PAUL PRENEY]
· Follow the guidance provided in TR 24772-1 Clause 6.24.5.
· Overloaded operators do not perform short-circuited evaluation of their operands.
· Be aware to which C++ standard a compiler is compiling code against: this determines the semantics of all operator (overloaded and built-in) expressions.
· Document which C++ standard (minimally) code must be compiled against for correct operator evaluation semantics. If code was written to use semantics in a newer standard, it may not work with the semantics of an older standard.
· Prefer writing simple code expressions and statements so that within any expression or statement an object is either only read from, or, is only clearly written to (possibly with a (mandatory) read tied to that write, e.g., the increment and compound assignment operators).





· Follow the guidance provided in TR 24772-1 clause 6.24.5
· Be aware that overloaded logical operators will not short-circuit.
· Expressions should be written so that the same effects will occur under any order of evaluation that the C++ standard permits since side effects can be dependent on an implementation specific order of evaluation.
 
Become familiar with Annex C of the C standard ISO/IEC 9899:2011 [4], which is a list of the sequence points that enforce an ordering of computations.

[bookmark: _Toc310518180][bookmark: _Toc1165253]6.25 Likely Incorrect Expression [KOA]

6.25.1 Applicability to language

This subclause requires a complete rewrite to have it reflect C++ issues.

C++ has several instances of operators which are similar in structure, but vastly different in meaning. The most common quoted example for C-based languages is the replacement of “==” with “=” in an expression, or confusion between ‘&’ and ‘&&’, ‘|’ and ‘||’, ‘<’, ‘<<’ and ‘<<<’, ‘>’, ‘>>’ and ‘>>>’.

As a general rule, the use of ‘=’, ‘+=’, ‘-=’ in an expression when the operator is not the final assignment to a variable is unsafe since the assignment operator creates side-effects within the expression which are difficult to analyze by a human reader and can be have different results depending upon the order of evaluation of terms within the expression.

 This is so common that the C example of confusing the Boolean operator “==” with the assignment “=” is frequently cited as an example among programming languages.  Using an expression that is technically correct, but which may just be a null statement can lead to unexpected results.

C++  provides significant of freedom in constructing statements.  This freedom, if misused, can result in unexpected results and potential vulnerabilities.

The flexibility of C++ can obscure the intent of a programmer.  Consider:
int x,y;
/* … */
if (x = y){
  /* … */
}
A fair amount of analysis may need to be done to determine whether the programmer intended to do an assignment as part of the if statement (perfectly valid in C++) or whether the programmer made the common mistake of using an “=” instead of a “==”.  The major issue with assignment inside ofa term of an expression is that it creates side effects that can cause the expression to evaluate in different orders and create different results on different compilers, or even in different executions with the same implementation.
In order to prevent this confusion, it is suggested thatmove  any assignments in contexts that are easily misunderstood be moved outside of the Boolean expression.  This would change the example code to:
int x,y;
/* … */
x = y;
	if (x == 0) {
	 /* … */
	}
This would clearly state what the programmer meant and that the assignment of y to x was intended.

Programmers can easily get in the habit of inserting the “;” statement terminator at the end of statements.  However, inadvertently doing this can drastically alter the meaning of code, even though the code is valid as in the following example:
	int a,b;
	/* … */
	if (a == b);  // the semi-colon will make this a null statement
	{
	 /* … */
	}

Because of the misplaced semi-colon, the code block following the if will always be executed.  In this case, it is extremely likely that the programmer did not intend to put the semi-colon there.

Unary ‘+’ on a variable is a no-op, and is possibly a mistype of ‘++’. A unary ‘-‘ on a variable will switch its sign, unless applied to a variable of an unsigned type, in which case WHAT??. 

Document with comments any use of ‘+’ or ‘-‘ applied as a unary since (as opposed to the binary ‘+’ or ‘-‘.
· Unary minus on unsigned type (MISRA 5-3-2)
· Size of a pointer

6.25.2 Guidance to language users
· Simplify statements with interspersed comments to aid in accurately programming functionality and help future maintainers understand the intent and nuances of the code.   The flexibility of C permits a programmer to create extremely complex expressions.
· From Core guidelines:
· ES 85 Make empty statements visible
· ES 40
· ES 41
· ES 44 Do not depend on order of evaluation
· Avoid assignments embedded within other statements, as these can be problematic.  Each of the following would be clearer and have less potential for problems if the embedded assignments were conducted outside of the expressions:

	int a,b,c,d;
	/* … */
	if ((a == b) || (c = (d-1)))	/* the assignment to c may not
						   occur if a is equal to b */
               or:
  int a,b,c;
  /* … */
  foo (a=b, c);
            
      Each is a valid C statement, but each may have unintended results.
· Give null statements a source line of their own.  This, combined with enforcement by static analysis, would make clearer the intention that the statement was meant to be a null statement.
· Consider the adoption of a coding standard that limits the use of the assignment statement within an expression.

[bookmark: _Toc310518181][bookmark: _Toc1165254]6.26 Dead and Deactivated Code [XYQ]

6.26.1 Applicability to language

The vulnerability as documented in TR 24772-1 clause 6.26 exists in C++.


6.26.2 Guidance to language users
· Follow the guidance of TR 24772-1 clause 6.26.5.

[bookmark: _Toc310518182][bookmark: _Toc1165255]6.27 Switch Statements and Static Analysis [CLL]

6.27.1 Applicability to language

Because of the way in which the switch-case statement in C++ is structured, it can be relatively easy to unintentionally omit the break statement between cases causing unintended execution of statements for some cases.

The switch statement has the form:

	int abc = someExpression();
	/* … */
	switch (abc) {
	   case 1:
          sval = “a”;
		   break;
	   case 2:
		   sval = “b”;
		   break;
	   case 3:
		   sval = “c”;
		   break;
	   default:
		   throw SomeException();
    }

If there isn’t a default case and the switched expression doesn’t match any of the cases, then control simply shifts to the next statement after the switch statement block.  Unintentionally omitting a break statement between two cases will cause subsequent cases to be executed until a break or the end of the switch block is reached.  This could cause unexpected results.

The attribute [[fallthrough]] [[fallthrough]] expresses the programmer’s intent that the code where it is placed is intended to fall through. If this attribute is not used, compilers typically diagnose the absence of a break statement.

6.27.2 Guidance to language users
· Apply the guidance provided in TR 24772-1 clause 6.27.5
· Use [[fallthrough]] wherever fall-through is intended.
· Terminate every case with either a flow control transfer or [[fallthrough]] [[fallthrough]], as illustrated in the following example:
· 
int i;
. . .
switch (i) {
	   case 1: 
                     [[fallthrough]]; // documents the intended fallthrough.
	   case 2:
	   	    i++;	
		    break;
	    case 3: 
		    j++; 
          [[fallthrough]]; // documents the intended fallthrough.
       case 4: //other code
			return 42;
       default: throw CaseNotFound();	
	  }

· Adopt a style that permits your language processor and analysis tools to verify that all cases are covered. Where this is not possible, use a default clause that diagnoses the error.

See also the C++ Core Guidelines ES.78
 
[bookmark: _Toc310518183][bookmark: _Ref420411612][bookmark: _Toc1165256]6.28 Demarcation of Control Flow [EOJ]

6.28.1 Applicability to language

C++ lacks a keyword to be used as an explicit terminator.  Therefore, it may not be readily apparent which statements are part of a loop construct or an if statement.

Consider the following sections of code:

	int foo(int a, const int *b) {
		int i=0;
		// . . .
      a = 0;
		for (i=0; i<10; i++);
		{
	 	   a = a + b[i];
		}
     int c = 0;
     int x = 0;
     for (int i=0; i<10; i++)
        c = c + b[i];
        x+= c; 
 }


At first it may appear that  after the first loop, a will be a sum of the numbers b[0]to b[9].  However, even though the code is laid out so that the a = a + b[i] code appears to be within the for loop, the “;” at the end of the for statement causes the loop to be on a null statement (the “;”) and the a = a + b[i];statement to only be executed once. Similarly, the indentation leads us to believe that that assignment to x is part of the second loop, but it is not. These mistakes may be readily apparent during development or testing.  More subtle cases may not be as readily apparent leading to unexpected results.

If statements in C are also susceptible to control flow problems since there isn’t a requirement in C for there to be an else statement for every if statement.  An else statement in C always belong to the most recent if statement without an else.  However, the situation could occur where it is not readily apparent to which if statement an else belongs due to the way the code is indented or aligned.

Similar issues arise for if-statements, particularly during maintenance, for example:

int a,b,i;
// . . . 
if (i == 10){
	   a = 5;		
	   b = 10; // added later, but correct since within the {…}
	  }
	  else 
		  a = 10;	
		  b = 5;	// added later, intended to be part of the else clause
	
If the assignments to b were added later and were expected to be part of each if and else clause (they are indented as such), the above code is incorrect: the assignment to b that was intended to be in the else clause is unconditionally executed.

6.28.2 Guidance to language users
· Follow the rules provided in TR 24772-1 clause 6.28.5.
· Enclose the bodies of if, else, while, for, and similar in braces.  This will reduce confusion and potential problems when modifying the software.  
· Declare loop variables in the initializer of the loop statement
·  Prefer the standard library algorithms over hand-crafted loops.

See also the C++ Core Guidelines ES.85, ES.71, ES.74, ES.1 and ES.2

[bookmark: _Toc310518184][bookmark: _Toc1165257]6.29 Loop Control Variables [TEX]

6.29.1 Applicability to language

C++ allows the modification of loop control variables within a loop.  Though this is usually not considered good programming practice as it can cause unexpected problems, the flexibility of C++ expects the programmer to use this capability responsibly.

Since the modification of a loop control variable within a loop is infrequently encountered, reviewers of C++ code may not expect it and hence miss noticing the modification.  Modifying the loop control variable can cause unexpected results if not carefully done.  In C++, the following is valid:

       int a;
       for (int i=1; i<10; i++){
          …
          if (a > 7)
             i = 10;
          …
       }
which would cause the for loop to exit once a is greater than 7 regardless of the number of iterations that have occurred.

C++ also permits the use of multiple variable of the same type in the loop header
Mitigation – range for statement – document with an example  (see ES.71) – Gabriel


6.29.2 Guidance to language users
· Apply the guidance of TR 24772-1 clause 6.29.5.
· Do not modify a loop control variable within a loop.  Even though the capability exists in C, it is still considered to be a poor programming practice. 
· Use a range for loop  in preference to general loops
· Alternatively, use std library functions copy, accumulate, transform, for_each, etc. in preference to general loops.
· Something about multiple loop control variables in the same loop?

See also the C++ Core Guidelines ES.71, ES.86, 

[bookmark: _Toc310518185][bookmark: _Toc1165258]6.30 Off-by-one Error [XZH]

6.30.1 Applicability to language


Arrays are a common place for off by one errors to manifest.  In C, arrays are indexed starting at 0, causing the common mistake of looping from 0 to the size of the array as in:

     int foo() {
        int a[10];
        int i;
        for (i=0, i<=10, i++)
          …
        return (0);
     }

C++ mitigates the issue of sentinel values in strings document in TR 24772-1 by providing the string class and the string_view class. 

C++ does not flag accesses outside of array bounds, so an off by one error may not be as detectable in C++ as in some other languages.  Several good and freely available tools can be used to help detect accesses beyond the bounds of arrays that are caused by an off by one error.  However, such tools will not help in the case where only a portion of the array is used and the access is still within the bounds of the array.

C++ mitigates these issues by providing
· Range-based for loops
· Std algorithms
· Iterator style loops terminated by !=
· Container classes 
· gsl::span  (soon to be std::span)




6.30.2 Guidance to language users
· Follow the guidance of TR 24772-1 clause 6.30.5.
· Use careful programming, testing of border conditions, and static analysis tools to detect off by one errors in C++.
· Use range-based for loops, Std algorithms, iterator style loops terminated by !=, or container classes in preference to C-style arrays and structures.
See also the C++ Core guidelines ES.1, ES.42, ES.71, SL.con.3 (more to come)

[bookmark: _Toc310518186][bookmark: _Toc1165259]6.31 Structured Programming [EWD]

6.31.1 Applicability to language

It is as easy to write structured programs in C++ as it is not to.  C++ contains the goto statement, which can create unstructured code.  Also, C has continue, break, and return that can create a complicated control flow, when used in an undisciplined manner.  Spaghetti code can be more difficult for static analyzers to analyze and is sometimes used on purpose to intentionally obfuscate the functionality of software.  Code that has been modified multiple times by an assortment of programmers to add or remove functionality or to fix problems can be prone to become unstructured.
Because unstructured code in can cause problems for analyzers, (both automated and human,) of code, problems with the code may not be detected as readily or at all as would be the case if the software was written in a structured manner.

6.31.2 Guidance to language users
· Write clear and concise structured code to make code as understandable as possible.
· Avoid the use of longjmp
· Avoid the use of goto except in the case of exiting a nested loop.

See also the C++ Core guidelines ES.76, ES.77, SL.C.1

[bookmark: _Toc310518187][bookmark: _Ref336414969][bookmark: _Toc1165260]6.32 Passing Parameters and Return Values [CSJ]

6.32.1 Applicability to language

C++ provides both call by value and call by reference  parameter passing. The argument is evaluated to initialize the formal parameter (in the first case) or bound to the formal parameter (in the second case) of the function that is being called.  A formal parameter behaves like a local variable. 

An object can be modified in a function by passing the address to the object to the function, for example
      void swap(int *x, int *y) { // C-style
         int t = *x;
         *x = *y;
         *y = t;
      }
A call to this function is swap( &a, &b);
In a preferred style (below), an object may be passed to a function by reference, which eliminates many of the problems enumerated in TR 24772-1 clause 6.32.1 and 6.32.3.

void swap(int & x, int & y) { // C++-style which is like std::swap
         int t = x;
         x = y;
         y = t;
      }

This function is called by swap(a,b);


Where x and y are integer pointer formal parameters, and *x and *y in the swap()function body dereference the pointers to access the integers.

C macros use a call by name parameter passing; a call to the macro replaces the macro by the body of the macro. This is called macro expansion.  Macro expansion is applied to the program source text and amounts to the substitution of the formal parameters with the actual parameter expressions.  Formal parameters are often parenthesized to avoid syntax issues after the expansion.  Call by name parameter passing reevaluates the actual parameter expression each time the formal parameter is read.

Paragraph about the violation of the keyword “restrict” in Part 3.  – C++ does not have this keyword. Think about the issue.

6.32.2 Guidance to language users
· Follow the advice of TR 24772-1 clause 6.32.5.
· Use caution for reevaluation of function calls in parameters with macros.
· Use caution when passing the address of an object.  The object passed could be an alias[footnoteRef:2]. Aliases can be avoided by following the respective guidelines of TR 24772-1 Clause 6.32.5.  [2:    An alias is a variable or formal parameter that refers to the same location as another variable or formal parameter.] 

· 
See also the C++ Core Guidelines F.7 through F.48.

[bookmark: _Toc310518188][bookmark: _Toc1165261]6.33 Dangling References to Stack Frames [DCM]

[bookmark: _Toc310518189][bookmark: _Ref357014582][bookmark: _Ref420411418][bookmark: _Ref420411425]6.33.1 Applicability to language

C++ allows one variable to refer to another variable. For example, a pointer variable can contain the address of another variable; a reference can be bound to a variable; and an iterator can point to a portion of a variable (in this case a container).  Should the referencing variable outlive the referenced variable, the subsequent operations through the referencing variable will have undefined behavior.

For example

int *bad_pointer() {
  int a = 0;
  return &a;
 }

int& bad_reference() {
  int a = 0;
  return a;
 }

std::array<int,3>::iterator bad_iterator()
 {
  std::array<int,3> a = { 1, 2, 3 };
  return a.begin();
 }

auto bad_lambda() {
    int x = 0;
    return [&] { x = 1; };
}

void erroneous_use() {
  std::cout << *bad_pointer();
  std::cout << bad_reference();
  std::cout << *bad_iterator();
  std::cout << bad_lambda()();
 }



6.33.2 Guidance to language users
· Do not assign the address of an object, or reference to any entity where the referencing entity persists after the object has ceased to exist.  This is done in order to avoid the possibility of a dangling reference.
· Do not return the address of a local variable as the result of a function call.
· Do not return a local variable as the result of a function returning a reference type
· Avoid capturing by reference in lambdas that will be used non-locally, including return, or passing it to another thread, or stored in dynamic memory 

See also C++ Core Guidelines F.53, …

[bookmark: _Toc1165262]6.34 Subprogram Signature Mismatch [OTR]
6.34.1 Applicability to language

In general, there must be a match between the number of parameters in a function call and the number of arguments in the function definition, with the exception of va_arg functions f(…).

C++ allows a variable number of arguments in function calls.  A good example of a va_arg function  the printf() function.  This is specified in the function call by terminating the list of parameters with an ellipsis (, ...).  After the comma, no information about the number or types of the parameters is supplied.  The use of this feature outside of special situations can be the basis for vulnerabilities.



6.34.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.34.5.
· Avoid va_arg functions .
See also C++ Core Guidelines F.55. 

[bookmark: _Toc310518190][bookmark: _Toc1165263]6.35 Recursion [GDL]

6.35.1 Applicability to language

C++ permits recursion, hence is subject to the problems described in 6.35.

6.35.2 Guidance to language users
· Apply the guidance described in TR 24772-1 clause 6.35.5.
[bookmark: _Toc310518191][bookmark: _Ref420411403][bookmark: _Toc1165264]6.36 Ignored Error Status and Unhandled Exceptions [OYB]
6.36.1 Applicability to language
By default, C++ has the C weakness of permitting the call to a function that returns an error code without capturing the return value in a variable. For example

 errnum foo( int a, int b);
. . .
foo(x, y);  // failure to capture the return error code.

C++ offers as a mitigating mechanism the [[nodiscard]] attribute. This attribute indicates that the function result must not be discarded. 

[[nodiscard]] errnum foo( int a, int b);
. . .
foo(x, y);  // compiler error.

if( auto e = foo(a,b); e == 0) { // no compiler error
// success
}
else {
// handle errors
}

 Should we include a discussion about C++  error_code???  AI – Michael Wong

Discuss global error states, such as errno (which is thread-local) but still static.
Global state for error codes is hard to manage and it is easy to forget to check it (C++ Core Guidelines E.28).

C++ offers a set of  library-defined exceptions for error conditions that may be detected by checks that are performed by the standard library. In addition, the programmer may define exceptions that are appropriate for their application. These exceptions are handled using an exception handler. Exceptions may be handled in the environment where the exception occurs or may be propagated out to an enclosing scope. 

6.36.2 Guidance to language users
· Follow the mitigation mechanisms of subclause 6.36.5 of TR 24772-1.
· Check the returned error status upon return from a function.  The C standard library functions provide an error status as the return value and sometimes in an additional global error value.
· Use static analysis tools to detect and report missing or ineffective error detection or handling.
· Avoid error handling based on global state.
· Use [[nodiscard]] to prevent callers from ignoring error values.
· 
· Prefer throwing exceptions to returning error values.
· Handle an error as close as possible to the origin of the error but as far out as necessary to be able to deal with the error. 
· 


· Use destructors to manage the finalization of the current context upon exit, whether erroneous or not.
· Return error values from each enclosing function until an alternative strategy is available.  Consider throwing an exception in lieu of returning an error value.
· Handle exceptions at each function where an alternative strategy is available. In functions where no alternative strategy is available, do not catch the exception.
· Consider termination as a last resort strategy for main or for noexcept functions.  
· Notify higher level constructs before a thread is allowed to terminate.
· Consider the use of an exception_ptr object to transport an exception from the terminating thread to another thread for further processing.

[bookmark: _Toc310518192]See also C++ Core Guidelines E.1, E.2, E.5, E.6, E.13, E.17, E.19, E.25, and E.28.
[bookmark: _Toc310518193][bookmark: _Toc1165265]6.37 Type-breaking Reinterpretation of Data [AMV]
6.37.1 Applicability to language
This subclause requires a complete rewrite to have it reflect C++ issues.

The primary way in C that a reinterpretation of data is accomplished is through a union which may be used to interpret the same piece of memory in multiple ways.  If the use of the union members is not managed carefully, then unexpected and erroneous results may occur.
C allows the use of pointers to memory so that an integer pointer could be used to manipulate character data.  This could lead to a mistake in the logic that is used to interpret the data leading to unexpected and erroneous results.

Wait for Gabriel to help analyze this.

6.37.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.38.5.
· When using unions, implement an explicit discriminant and check its value before accessing the data in the union.

[bookmark: _Toc440397663][bookmark: _Toc440646186][bookmark: _Toc1165266]6.38 Deep vs. Shallow Copying [YAN]
[bookmark: _Toc440646187]6.38.1 Applicability to Language
This vulnerability only arises in C++ when there is a mismatch between the object’s copy semantics and the programmer’s intent.    (references to Core Guidelines C.22)
C++ objects, by default, are copied member-wise. Each class type may define its own copy, move and assignment operations, allowing a class author to choose an appropriate depth for these operations. Class member types should be chosen to have copy and move semantics that support the semantics of the enclosing class.
<This may belong elsewhere – TBD>    C++ provides the “string view” mechanism as safer pointers to strings. Updates through string view are prohibited, but the initial non “view” value can be updated and this change will be seen by all viewers, even if they are dependent on fixed value. 
Note: in C++, this is more commonly known as member-wise copying vs semantic copying, or owning vs observing rights.
Note: Why CERT does not address this issue – involves programmer intent and not readily tool-checkable.
6.38.2 Guidance to language users
· Prefer the composition of most types from types that have either value semantics or semantics that support the intended copy and move semantics of the enclosing type.
· When the above is not achievable, ensure that the copy assignment operator, copy constructor, move assignment operator, move constructor and destructor provide the desired semantics.
· Avoid the use of raw pointers with the copy operation and (finish or delete)
· Follow the guidance of C++ core guidelines C.20, C.22, C.32, C.67
· <This may belong elsewhere – TBD>    Avoid updating the value of a string while there are valid string views in existence.

[bookmark: _Toc1165267]6.39 Memory Leak and Heap Fragmentation [XYL]
6.39.1 Applicability to language
C++ uses destructors, and a pattern called Resource Acquisition Is Initialization (RAII) which performs recovery of resources. Destructors (and therefore memory and resource releases) are deterministically ordered with respect to other events on their thread. Object destructors will not be called 
· When an unhandled exception escapes its thread of execution
· Under conditions of abnormal termination
See CERT ERR50-CPP for list of cases.
The memory leak vulnerability documented in TR24772-1 clause 6.39 exists in C++, unless the programmer takes steps to avoid it. The steps mentioned above will mitigate most memory leak issues.
The mechanisms std::shared_ptr and std::shared_future and similarly constructed reference-counting user code do not detect  cycles which will cause leaks because the shared pointers (and hence what they point to) will not be destroyed.
 
6.39.2 Guidance to language users
· Use containers and smart pointers in preference to direct (manual) memory management.
· Follow C++ Core guidelines section R and CERT MEM51.
· For heap fragmentation issues, follow the guidance of TR 24772-1 clause 6.39.5. In particular, create pools of fixed size with user-defined operators new and operators delete.
· Use dynamic analysis tools to detect cycles.
· Break cycles, for example by using std::weak_ptr or appropriate weak pointers.
· Use std::abort() or std::terminate() and related functions only in extreme situations. See CERT ERR50-CPP for list of cases.
· Use debugging tools such as leak detectors to help identify unreachable memory. 

[bookmark: _Toc310518195][bookmark: _Toc1165268]6.40 Templates and Generics [SYM]

6.40.1 Applicability to language
The following text came from Part one. Consider its relevance for C++.
The value of generics comes from having a single piece of code that supports some behaviour in a type independent manner. This simplifies development and maintenance of the code. It should also assist in the understanding of the code during review and maintenance, by providing the same behaviour for all types with which it is instantiated.
Problems arise when the use of a generic actually makes the code harder to understand during review and maintenance, by not providing consistent behaviour. 
In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these assumptions are not met, the result is likely to be a compiler error. For example if the sort function is instantiated with a user defined type that does not have a relational operator. Where ‘misuse’ of a generic leads to a compiler error, this can be regarded as a development issue, and not a software vulnerability.
Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently invalid, but does not result in a compiler error. For example, a generic class defines a set of members, a subset of which rely on a particular property of the instantiation type (such as a generic container class with a sort member function, only the sort function relies on the instantiating type having a defined relational operator). In some languages, such as C++, if the generic is instantiated with a type that does not meet all the requirements but the program never subsequently makes use of the subset of members that rely on the property of the instantiating type, the code will compile and execute (for example, the generic container is instantiated with a user defined class that does not define a relational operator, but the program never calls the sort member of this instantiation). When the code is reviewed the generic class will appear to reference a member of the instantiating type that does not exist.

The problem as described in the two prior paragraphs can be reduced by a language feature (such as the concepts language feature being designed by the C++ committee). (RESEARCH – AI Clive.).	Comment by Stephen Michell: AI – CLIVE ask Michael

Similar confusion can arise if the language permits specific methods of an instance of a generic to be explicitly defined, rather than using the common code, so that behaviour is not consistent for all instantiations. For example, for the same generic container class, the sort member normally sorts the elements of the container into ascending order. In some languages, a ‘special case’ can be created for the instantiation of the generic with a particular type. For example, the sort member for a ‘float’ container may be explicitly defined to provide different behaviour, say sorting the elements into descending order. Specialization that does not affect the apparent behaviour of the instantiation is not an issue. 
(C++-specific text, move when appropriate – AI Clive.).	Comment by Stephen Michell: AI - CLIVE
Again, for C++, there are some irregularities in the semantics of arrays and pointers that can lead to the generic having different behaviour for different, but apparently very similar, types. In such cases, specialization can be used to enforce consistent behaviour.

(C++-specific text, move when appropriate – AI Clive.).Again, for C++, there are some irregularities in the semantics of arrays and pointers that can lead to the generic having different behaviour for different, but apparently very similar, types. In such cases, specialization can be used to enforce consistent behaviour.

Core guidelines
I.9 T.10, T.11, 12, 13, T.20, T.21, T.22, T.23, T.24, T.25, T.26, T.30, T.31 – forward to Clive.
[bookmark: _Toc310518196]This subclause requires a complete rewrite to have it reflect C++ issues.

6.40.2 Guidance to language users



[bookmark: _Toc1165269]6.41 Inheritance [RIP]

[bookmark: _Toc1165270]6.41.1 Applicability to language 

Inheritance, the ability to create enhanced and/or restricted object classes based on existing object classes, can introduce a number of vulnerabilities, both inadvertent and malicious. Because inheritance allows the overriding of methods of the parent class and because object-oriented systems are designed to separate and encapsulate code and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. 

Also, since an overriding method does not need to call the method in the parent class that has been overridden, essential manipulation of class data may be bypassed. 

This can be especially dangerous in copy assignment operator and move assignment operators and in particular when private data components (that is, data components not visible to methods of subclasses) of the parent class are left unchanged. Serious violations of type invariants can arise as a consequence.
Multiple inheritance adds additional complexities to the resolution of method invocations. 

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in several ways:
· Execution of malicious redefinitions, which can occur through the insertion of a class into the class hierarchy that overrides commonly called methods in the parent classes. 
· mitigation – make member functions ‘final’, 
· reduce the use of inheritance
· Accidental override, where a member function is defined that inadvertently overrides a member function that has already been defined in a parent class.
· Mitigation – use “override” and “final”  keywords on member functions to generate compiler diagnostics when overriding is accidental 
· Accidental failure to override, when a method is incorrectly named or the parameters are not defined properly, and thus does not override a member function in a parent class.
· Mitigation – use “override” and “final”  keywords on member functions to generate compiler diagnostics when overriding is accidental 
· Breaking of class invariants, which can be caused by redefining methods that assign, move, or validate class data without including the assigning, moving or validating in the overriding member function. This applies particularly to class invariants involving data of the parent class not visible in methods of the subclass. Inherited methods of the parent that have access to these “private” components will likely fail, if the components are set inappropriately.
· Mitigation – if any class invariant depends upon a value of a data member, then make that member private
· Direct reading and writing of visible class members when matching getting and setting member functions include additional functionality.
· Guidance: make data members private and provide a public interface to access them that preserves class invariants.
These vulnerabilities can increase dramatically as the complexity of the hierarchy increases, especially in the use of multiple inheritance. 

As member functions are inherited from multiple chains of ancestors, the determination of which member function implementations exist and are being called, becomes increasingly more difficult for the programmer. Understanding which member functions and data members apply to a given (sub)class becomes exceedingly difficult if these methods or components are inherited homographs (i.e., data components with identical names or member functions with identical signatures). Misunderstandings lead to inadvertent coding errors. The complexity increases even more when multiple inheritance is used to model “has-a“ relationships (see subclause  6.42 Violations of the Liskov substitution principle [BLP]): member functions never intended to be applicable to instances of a subclass are inherited nevertheless. For example, an instance of class aircraftCarrier may be “turn”ed merely because it obtained its propulsion screw by a “has-a“-inheritance with “turn” being an obviously meaningful method for the class of propulsionScrew. Meanwhile the user has a quite different expectation of what it means to turn an aircraft carrier. The complications increase if the carrier inherits twice from the class propulsionScrew because it has two propulsion screws. 

Changes in the execution of methods can be introduced by adding an unrelated but homographic member function (with signatures involving implicitly convertible types) anywhere is the hierarchies of ancestor classes during maintenance of the code. Malicious implementations can thus be added with each release of an object-oriented library and affect the behaviour of previously verified code. (see subclause 6.42 Violations of the Liskov substitution principle [BLP])
· Guidance: Keep inheritance hierarchies short
· Guidance: Qualify the program to invoke member functions in explicit parent classes.
· Mitigation: use the ‘= delete’ construct to prevent a member function from being called due to an inheritance. 


[bookmark: _Toc1165271]6.41.2 Guidance to language users
· Follow the guidance of 24772-1 clause 41.5.
· Avoid the use of multiple inheritance whenever possible.
· Avoid access to data components when getting and setting functions are available for them.
· Keep inheritance hierarchies short and narrow
· Prefer non-virtual functions to virtual functions
· Use “override” and “final”  keywords on member functions to generate compiler diagnostics when overriding is accidental 
· Use the ‘= delete’ construct to prevent a member function from being called due to an inheritance.
· If any class invariant depends upon a value of a data member, then make that member private 
· Make data members private and provide a public interface to access them that preserves class invariants 
· Provide complete documentation of all encapsulated data, and how each method affects that data for each object in the hierarchy.
· Inherit only from trusted sources, and, whenever possible, check the version of the parent classes during compilation and/or initialization.
· Provide a member function that provides versioning information for each class.
· Prohibit the use of public inheritance for “has-a” relationships. Use composition instead for “has-a”-relationships.
· Delegate assigning and moving of the parent’s data components by calling the corresponding operation of the parent type. You must delegate in particular when the parent has data components not visible to methods of the subclass. Alternatively, prohibit assignment and motion for classes intended to be base types. (clarify – this has 2 possible meanings)
· Avoid the creation of base classes that are both virtual and non-virtual in the same hierarchy. 

[bookmark: _Toc440397667][bookmark: _Toc440646191][bookmark: _Toc1165272]6.42 Violations of the Liskov Substitution Principle or the Contract Model  [BLP] 


This subclause requires a complete rewrite to have it reflect C++ issues.
[bookmark: _Toc1165273]6.42.1 Applicability to language 

This vulnerability applies to C++ . It can be mitigated by a style of programming that uses wrapper functions to check preconditions, calls a virtual function to perform the required functionality and subsequently checks the postconditions before returning. An example is provided below.

class Base  {
  private:
     virtual int function_to_override( int x ) = 0;
     // ...

  public:
     int interface_to_overridden_function( int x ) {
           check_preconditions( x );
           const auto saved = data_saved_for_postcondition( x );
           auto result = function_to_override( x );
           check_postconditions( x, saved, result );
           return result;
         }
     // ...      
 };
[bookmark: _Toc1165274]6.42.2 Guidance to language users
· Obey all preconditions and postconditions of each member function, whether they are specified in the language or not.
· Prohibit the strengthening of preconditions (specified or not) by overriding member functions.
· Prohibit the weakening of postconditions (specified or not) by overriding member functions. 
· Prohibit the use of public inheritance for “has-a” relationships. Use composition for “has-a”-relationships instead.
· Use static analysis tools that identify misuse of inheritance in the contract model.
· Ensure that all invariants of a derived class are preserved by all public operations on its public base classes. If this cannot be ensured, make the base class private, or avoid inheritance.
· See also C++ Core Guidelines C.120, C.121, C.122, C.126, C.127, and C.129 through C.133. Avoid the creation of base classes that are both virtual and non-virtual in the same hierarchy. 



[bookmark: _Toc440397668][bookmark: _Toc440646192][bookmark: _Toc1165275]6.43 Redispatching [PPH]

This subclause requires a complete rewrite to have it reflect C++ issues.

[bookmark: _Toc1165276]6.43.1 Applicability to language 

In C++, the vulnerability exists for virtual functions, except for constructors and destructors which are not dispatching. An example of the infinite recursion is: 

#include <iostream>

class A {
public:
    virtual void f() { std::cout << "A::f()\n"; }
    virtual void g() { std::cout << "A::g()\n"; A::f(); }  //call to f() will not dispatch.
    virtual void h() { std::cout << "A::h()\n"; g(); }     //call to g() will dispatch,
                                                           //showing the vulnerability
};

class B : public A {
public:
    void f() override { std::cout << "B::f()\n"; g(); }
    //void g() override { std::cout << "B::g()\n"; f(); }
    //void h() override { std::cout << "B::h()\n"; g(); }
};

int main() {
    B b;
    A * pA = &b;
    pA->f();
    std::cout << "---\n";
    pA->g();
}

In C++, the call to a member function can be qualified, as shown in the above example, and avoids the vulnerability.
[bookmark: _Toc1165277]6.43.2 Guidance to language users
· At a call site, consider whether virtual dispatch is desired. If not, construct the call using the qualified name.
· Be suspicious of any call from a virtual member function of the derived class to any member function of any of its base classes.

[bookmark: _Toc440646193][bookmark: _Toc1165278]6.4444 Polymorphic variables [BKK]

This subclause requires a complete rewrite to have it reflect C++ issues.
Object-oriented languages allow polymorphic variables, in which values of different classes can be stored at different times. In most of these languages, variables are declared to be of some class, while the actual value may be of a more specialized subclass. Polymorphic variables go hand in hand with method selection at run time, when the method defined for the actual subclass of the receiving object or controlling argument is invoked. This approach is safe, as method implementation and actual type of the object match by construction. If, however, the language permits casting of the polymorphic reference to process the object as if it were of the class casted to, several vulnerabilities arise. We distinguish the following casts: 
· upcasts, where the cast is to a superclass,
· downcasts, where the cast is to a subclass and a check is made that the object is indeed of the target class of the cast (or a subclass thereof),
· unsafe casts, where there is no assurance that the object is of the casted class.
Distinct vulnerabilities arise for each of these cast types:
Upcasts are needed so that redefined methods can call upon the corresponding method of the parent class to achieve the respective portion of the needed functionality and then complete it for the extensions added by the subclass. Without calling the parent’s implementation of a method in the redefined method, the private components of the parent class are inaccessible to the redefined method. Hence there is a risk that they are no longer consistent with the overall state of the object. Inversely, if the issue is avoided by inheriting rather than redefining the method for a subclass, there is the risk that the subclass-specific parts are inconsistent with the overall state of the object or even uninitialized.
Downcasts carry the risk that the object is not of the correct class. If checked by the language, as language-defined downcasts typically are, an exception will occur in this case.
Unsafe casts allow arbitrary breaches of safety and security. See subclause  HYPERLINK \l "_6.11_Pointer_type"  6.11 Pointer Casting and Pointer Type Changes [HFC].
Note that some languages also have implicit upcasts and downcasts as part of the language semantics. The same issues apply as for explicit casts.

Part 3

Objects left in an inconsistent state by means of an upcast and a subsequent legitimate method call of the parent class can be exploited to cause system malfunctions. 
Exceptions raised by failing downcasts allow Denial-of-Service attacks. Typical scenarios include the addition of objects of some unexpected subclasses in generic containers. 
Unsafe casts to classes with the needed components allow reading and modifying arbitrary memory areas. See subclause  HYPERLINK \l "_6.11_Pointer_type_1" 6.11 Pointer Casting and Pointer Type Changes [HFC] for more details.
[bookmark: _Toc1165279]6.44.1 Applicability to language 

This vulnerability applies to C++. In addition to the upcast and downcast issues addressed in TR 24772-1 clause 6.44, this clause also addresses crosscasting, which is unique(?) to C++.

C++ provides language mitigations to help avoid the problems as follows:

Since C++ supports multiple inheritance, up-casting, down-casting, and cross-casting operations can be used to switch to different (pointer/reference) types in the inheritance hierarchy of a specific object, i.e.,
· up-casting is casting an object to an ancestor type in the object's type inheritance hierarchy.
· down-casting is casting an object to a descendent type in the object's type inheritance hierarchy, and,
· cross-casting is casting an object to a sibling/cousin (possibly removed) type in the object's type inheritance hierarchy.
· Unsafe casts, which include C-style casts and reinterpret_cast, can cast to unrelated arbitrarily structured types. This allows reading and modifying arbitrary memory areas. See subclause 6.11 Pointer Casting and Pointer Type Changes [HFC] for more details.

Developers should be aware that virtual member functions can be overridden in derived classes, even if they are private.

Given the following:
struct Z { int z; virtual ~Z() { } };
struct Y { int y; virtual ~Y() { } };
struct A : Z { int a; };
struct B : virtual A { int b; };
struct C : virtual A, Y { int c; };
struct D : B, C { int d; };
D d_inst;

then these examples demonstrate upcasts, downcasts, and crosscasts:

Upcasts:
B* b_ptr = &d_inst; // implicit
C& c_ref = d_inst; // implicit
Z* z_ptr = static_cast<Z*>(&d_inst);
Y* y_ptr = dynamic_cast<Y*>(&d_inst);
Downcasts: 
D& d_ref = dynamic_cast<D&>(*y_ptr);
D* d_ptr = static_cast<D*>(b_ptr);
Crosscasts:
C* c_ptr = dynamic_cast<C*>(b_ptr);
Y* y_ptr2 = dynamic_cast<Y*>(b_ptr);
C* c_ptr = static_cast<C*> (static_cast<D*>(b_ptr));

and notes the following about such:

Upcasts:
· are the only ones that can be performed implicitly 
· can also be done with dynamic_cast or static_cast

Downcasts
· are explicit;
· can be done safely with dynamic_cast;
· dynamic_cast requires appropriate portions of inheritance to be polymorphic (i.e. has virtual members);
· can be done using static_cast which is unchecked and may be unsafe;

Crosscasts:
· are explicit
· can be done safely with a single call to dynamic_cast which requires appropriate portions of inheritance to be polymorphic (i.e. has virtual members).
· can often be done with a chain of static_casts traversing the inheritance hierarchy, which is almost always unsafe. 

[bookmark: _Toc1165280]6.44.2 Guidance to language users
· Follow the advice provided in TR 24772-1 clause 6.44.5.
· If an upcast is needed, prefer using implicit conversion, since an explicit upcast adds unnecessary complexity for the reader.
· If a downcast or a crosscast is needed, prefer using dynamic_cast because it is checked.
· Ensure that all invariants of a derived class are preserved by all public operations on its public base classes. If this cannot be ensured, make the base class private, or avoid inheritance.
· Do not attempt to navigate class hierarchies using C-style casts or reinterpret_cast.
· For any class that implements a virtual member function, consider marking that member function final in the definition of that class. 
NOTE: This forbids any derived class to redefine the implementation and thereby precludes ambiguity, regardless of whether a call is qualified or not.
NOTE: Making instead the class final contradicts C++ Core Guideline C.139, so is not recommended here.
· Consider declaring virtual methods with protected or private visibility to preclude code from outside of the class hierarchy calling any specific implementation directly. 
NOTE: This assumes that within the class hierarchy any qualified call is intentional and is the pattern of a non-public virtual interface.
See also C++ Core Guidelines ES.48, ES.49, C.146, C.147, C.148 and C.153.

[bookmark: _Toc310518197][bookmark: _Ref420410974][bookmark: _Toc1165281]6.45 Extra Intrinsics [LRM]

This vulnerability does not apply to C++ for the following reasons:
· When adding intrinsics, implementors  are required to follow a specific name pattern that users are not allowed to use in definitions. See C++ standard clause 5.10 [Lex.name]. 


[bookmark: _Toc310518198][bookmark: _Toc1165282]6.46 Argument Passing to Library Functions [TRJ]

Libraries that supply objects or functions are in most cases not required to check the validity of parameters passed to them. In those cases where parameter validation is required there might not be adequate parameter validation.

When calling a library, either the calling function or the library may make assumptions about parameters. For example, it may be assumed by a library that a parameter is non-zero so division by that parameter is performed without checking the value. Sometimes some validation is performed by the calling function, but the library may use the parameters in ways that were unanticipated by the calling function resulting in a potential vulnerability. Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and can cause unanticipated results.

6.46.1  6.46.1 Applicability to language
This vulnerability applies in particular to C++ libraries which are designed for high efficiency; responsibility for satisfying the preconditions for most functions rests with the caller. When these preconditions are not met, the result will be undefined behaviour. In addition, error conditions are specified by the language for specific functions, such as raising an exception, returning an error code or a known value, such as NaN.


6.46.2 Guidance to language users

· Follow the guidelines of TR 24772-1 clause 6.47.5.
· 
· Use translation modes provided the implementation to perform addition analysis or checking, such as contracts checks, or instrumentation of executing code.  Do not make assumptions about the values of parameters.
· Pay attention to the distinction between precondition violation and error conditions in library documentation. The former results in undefined behaviour; the latter results in defined but possibly unwanted behaviour.

[bookmark: _Toc1165283]6.47 Inter-language Calling [DJS] 
6.47.1 Applicability to language

6.47.1 Applicability to language
C++ is a multi-paradigm language with a number of features that do not interface simply with other language systems. It is left to the implementation team the task of converting the results of these paradigms to constructs that can cross an interface for further processing in other languages. 

C++ compilers provide an application binary interface (ABI) that delineates areas of interoperability with other languages or other C++ compiler/runtime systems. An ABI includes calling conventions, data layout, error and exception handling and return conventions, name mangling, data model, initialization of memory, and linkage to operating systems and libraries.

C++ compilers implement a C++ language linkage and a C language linkage. It is implementation-defined what other languages the implementation supports. Alternatively, other language systems provide linkages to C systems[footnoteRef:3], leaving the developer the task of channeling everything through this common language system. [3:  Ada has developed a standard for interfacing with C. Fortran has included a Clause 15 that explains how to call C functions. 
] 


The C Standard defines the calling conventions, data layout, error handing and return conventions needed to use C from another language.  Ada has developed a standard for interfacing with C. Fortran has included a Clause 15 that explains how to call C functions. Calls from C into other languages become the responsibility of the programmer.
6.47.2 Guidance to language users
Follow the guidelines of TR 24772-1 clause 6.48.5.
· Minimize the use of those issues known to be error-prone when interfacing from C, such as 
· passing character strings, 
· dimension, bounds and layout issues of arrays, 
· interfacing with other parameter formats such as call by reference or name, 
· receiving return codes, and 
· bit representation.Follow the guidance contained in TR 24772-1 clause 6.47.5
· Use standard layout types for the interoperable interfaces. 
· Use language linkage facilities that support the languages being used
· Be aware that the static initialization phase and dynamic initialization for every language system are required before the system begins execution
· Be aware that C++ exceptions are not usually compatible with exceptions in other languages. 
· Segregate outgoing cross-language interfacing code into functions that present a C++ interface to the C++ code and implements that interface by calling code compatible with the other language system. Similarly implement incoming cross-language interfaces by providing simplified functions that presents a simplified (C or other language) interface and is implemented by calling C++ code with the correct style.
· Separate the interfacing code from the code containing the main functionality 

See also the C++ Core Guidelines CPL.3.

AI 63-6 – group – add the guidance from 6.47.2 Interoperability into the Core Guidelines.
[bookmark: _Toc310518199][bookmark: _Ref312066365][bookmark: _Ref357014475][bookmark: _Toc1165284]6.48 Dynamically-linked Code and Self-modifying Code [NYY]

6.48.1 Applicability to language
The vulnerability as discussed in TR 24772-1 clause 6.48 is applicable to C++.

6.48.2 Guidance to language users
Follow the guidance of TR 24772-1 clause 6.48.5.

[bookmark: _Toc310518200][bookmark: _Toc1165285]6.49 Library Signature [NSQ]
6.49.1 Applicability to language
The vulnerability as enumerated in TR 24772-1 applies to C++. 

As a mitigation, the C++ ‘extern “C”’ linkage specifier usually provides simple interoperability with libraries using the C application binary interface (ABI). This subclause requires a complete rewrite to have it reflect C++ issues.




6.49.2 Guidance to language users
From Part 1, 6.49.5
· Follow the guidance of TR 62443-1 clause 6.49.5.
· Follow the advice of clause 6.47.2 as applicable.Use a tool, if possible, to automatically create the interface wrappers.
· [bookmark: _Toc310518201]
6.50 [bookmark: _Toc1165286] 6.50 Unanticipated Exceptions from Library Routines [HJW] 
6.50.1 
Applicability to language
The vulnerability as documented in TR 24772-1 exists for C++. In particular the issue of the failing dynamic initialization of namespace-scope objects exists in C++.

When dynamic initialization of a namespace-scope object fails with an exception, the exception cannot be caught and the program is terminated. Function-scope static objects, in contrast, are initialized the first time execution passes through the declaration.  Using function-scope static objects in preference to dynamic initialization ensures that there is always an enclosing function that could catch the exception.

exception_prone_type troubling_object;
   // An exception from the constructor could cause termination.

// The following function always returns a reference to the same object,
// which is initialized the first time this function is called.
// If initialization fails, it will be retried on the next call.
exception_prone_type& safer_object()
  {
   static exception_prone_type the_safer_object;
   return the_safer_object;
  }
· 

6.50.2 Guidance to language users
· Expect functions not marked noexcept to throw exceptions of arbitrary type. Note that all destructors are implicitly noexcept.
· Follow the advice of 6.36.2  for catching and handling exceptions.
· Prefer function-scope static objects to namespace-scope objects for objects needing dynamic initialization.

[bookmark: _Toc310518202][bookmark: _Toc1165287]6.51 Pre-processor Directives [NMP]
[bookmark: _Toc310518203]6.51.1 Applicability to language

The vulnerability as described in TR 24772-1 clause 6.51 applies to C++.


The C++ pre-processor allows the use of macros that are text-replaced before compilation.  
Function-like macros look similar to functions but have different semantics.  Because the arguments are text-replaced, expressions passed to a function-like macro may be evaluated multiple times.  This can result in unintended and undefined behaviour if the arguments have side effects or are pre-processor directives .as described by C §6.10 [1].  Additionally, the arguments and body of function-like macros should be fully parenthesized to avoid unintended and undefined behaviour. [2].

The following code example demonstrates undefined behaviour when a function-like macro is called with arguments that have side-effects (in this case, the increment operator) [2.]:
#define CUBE(X) ((X) * (X) * (X))
//* ... */
int i = 2;
int a = 81 / CUBE(++i);

The above example could expand to:
	int a = 81 / ((++i) * (++i) * (++i));

whichthis is has undefined behaviour so this macro expansion is difficult to predict.

Another mechanism of failure can occur when the arguments within the body of a function-like macro are not fully parenthesized.  The following example shows the CUBE macro without parenthesized arguments [2].:
#define CUBE(X) (X * X * X)
//* ... */
int a = CUBE(2 + 1);

This example expands to:
       int a = (2 + 1 * 2 + 1 * 2 + 1)

which evaluates to 7 instead of the intended 27.
6.51.2 Guidance to language users

· Replace macro-like functions with inline functions where possible.  
· Ensure that if a function-like macro must be used, that its arguments and body are parenthesized. 
· In a function-like macro, ensure that each argument is evaluated at most once.
· Do not embed pre-processor directives or side-effects such as an assignment, increment/decrement, volatile access, or function call in a function-like macro.

[bookmark: _Toc1165288]6.52 Suppression of Language-defined Run-time Checking [MXB]
6.52.1 Applicability to language

With the exception of the macro assert, the vulnerability as described in TR 24772-1 does not apply to C++, because there is no language-defined runtime checking. Macro assert is defined by the standard but is invoked by the programmer, hence is not a language-defined check. 

C++ libraries, however, often provide run-time checks which meet the criteria of this vulnerability. Also compilers and other tools commonly provide means to perform such runtime checks.
[bookmark: _Ref357014743]6.51.2 Guidance to language users
Follow the advice provided in TR 24772-1 clause 6.52.5 with respect to library and compiler-provided checks. Note that this will almost always require explicitly enabling the checks.

[bookmark: _Toc1165289]6.53 Provision of Inherently Unsafe Operations [SKL]
6.53.1 Applicability to language

The vulnerability as described in TR 24772-1 clause 6.53 applies to C++. In particular, anything described by ISO/IEC 14882:2017 as “undefined behaviour” is unsafe.




6.53.2  Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.534.5.
· Enable checks that warn about unsafe operations.
· Use static analysis tools to detect unsafe constructs. 


[bookmark: _Toc1165290]6.54 Obscure Language Features [BRS]
6.54.1 Applicability of language 
The vulnerability as described in TR 24772-1 clause 6.54 applies to C++. 
6.54.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.54.5.
[bookmark: _Toc310518204][bookmark: _Toc1165291]6.55 Unspecified Behaviour [BQF]
6.55.1 Applicability of language 
 The vulnerability as described in TR 24772-1 clause 6.55 applies to C++.

6.55.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.556.5.
[bookmark: _Toc310518205][bookmark: _Toc1165292]6.56 Undefined Behaviour [EWF]
6.56.1 Applicability to language
The vulnerability as described in TR 24772-1 clause 6.56 applies to C++. In ISO/IEC 14882:2017, the terms “undefined behaviour” and “ill-formed, no diagnostic required” expose situations to be avoided.

6.56.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.567.5.
· Augment static analysis tool usage with runtime tools such as ASAN (address sanitizer) and related tools.
[bookmark: _Toc310518206][bookmark: _Toc1165293]6.57 Implementation–defined Behaviour [FAB]
6.57.1 Applicability to language

The vulnerability as described in TR 24772-1 clause 6.57 applies to C++. In ISO/IEC 14882:2017, the term “implementation-defined” is used to describe implementation-defined behaviour. In addition, the C++ standard provides an index titled “Index of implementation-defined behaviour”. 

6.57.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.578.5.
· Eliminate to the extent possible any reliance on implementation-defined behaviour from programs in order to increase portability.  Even programs that are specifically intended for a particular implementation may in the future be ported to another environment or sections reused for future implementations.
[bookmark: _Toc310518207][bookmark: _Toc1165294]6.58 Deprecated Language Features [MEM]
6.58.1 Applicability to language

The vulnerability as described in TR 24772-1 clause 6.58 applies to C++. Appendix D “Compatibility features” of ISO/IEC 14882:2017 enumerates the deprecated features. The C++ attribute [[deprecated]] allows library writers and users to mark deprecated declarations. 

Although backward compatibility is sometimes offered as an option for compilers so one can avoid changes to code to be compliant with current language specifications, updating the legacy software to the current standard is a better option.



6.58.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.589.5.
· Enable compiler options that identify the use of deprecated features.
· Apply the [[deprecated (“reason”)]] attribute to obsolete declarations that exist only for backward compatibility.
[bookmark: _Toc358896436][bookmark: _Toc1165295]6.59 Concurrency – Activation [CGA]
6.59.1 Applicability to language 
C++ permits concurrent execution through the creation of user-defined threads, hence the vulnerabilities defined by TR 24772-1 apply to C++.
TR 24772-1 uses the term “activation”, which is not a C++ term. We will use the term creating thread”, and “created thread”.

C++ uses the fork-join model for task creation. When a thread object is created, either all resources needed to execute the thread have been acquired, or an exception is be thrown in the creating thread. Non-standard threading packages may have the vulnerability that the creating thread does not know if the created thread successfully begins execution.

As soon as the created thread is successfully created, it begins execution and the creating thread resumes execution. If multiple threads are to be created, say in a loop, then each creation is an individual step. Should a resource allocation error occur during the creation of multiple threads, the exception handler associated with the creation will only know which creation cause the exception if the application makes a record of successful creations. 

C++ provides the std::thread::get_id() call to acquire the identity of the created thread, which can be then recorded to make further queries about the state of each active thread.


(The vulnerability documented in TR 24772-1 does not apply in C++ when std::thread is used for threading.)
The second vulnerability of attempts to communicate with non-existing threads does not exist since the std::thread::get_id() associated with the thread object is unavailable until after creation has completed.

Forking new thread will raise exception in the forking thread if unable to create thread.
There is a scenario where you can think that you are stating a thread, but thread is not launched. Caused by syntax confusion. Declaration of a function that resembles a thread-launching statement (need example) std::thread mythread(backgroundtask()); // declares a function mythread but does not start a thread. Fix std:thread mythread((backgroundtask())); or std::thread mythread{backgroundtask()};

Use of a lambda expression avoids this problem. 
std::thread mythread{[](){backgroundtask();}}; // explain // items in [] will be copied and the lifetime will be the same as the background thread.
Affects lifetime. In standard thread creation, a reference to the object that it will work with is made, but both the initiator and the thread must synchronize how they access the object. When a lambda is used, a local copy is made of all objects mentioned in the braces, so a referenced object will be copied.

There is no way to know that the thread is still running from the thread object.

Parallel algorithms rely on “parallel” libraries.
The std::thread clss provides the following methods to query or manipulate a thread:

(constructor)    - Construct thread (public member function )
(destructor)      - Thread destructor (public member function )
operator=         - Move-assign thread (public member function )
get_id            - Get thread id (public member function )
joinable     - Check if joinable (public member function ) (Boolean)
join                    - Join thread (public member function )
detach                - Detach thread (public member function )
swap                  - Swap threads (public member function )
native_handle     - Get the native handle (public member function )
hardware_concurrency - Detect hardware concurrency (public static member function )
The following comparisons are available to compare two threads:
== (equality), 
!= (not equal), 
< (less than), 
<= (less than or equal), 
> (greater), and 
>= (greater or equal)


6.59.2 Guidance to language users
· [bookmark: _Toc358896437][bookmark: _Ref411808169][bookmark: _Ref411809401]Follow the guidelines of TR 24772-1 clause 6.60.5.

[bookmark: _Toc1165296]6.60 Concurrency – Directed termination [CGT]
6.60.1 Applicability to language 
A thread in C++ runs until completion, either a normal completion or as the result of an unhandled exception. There is This subclause requires a complete rewrite to have it reflect C++ issues.no mechanism in the language to terminate another thread. If the threading model is POSIX or some other underlying paradigm, the underlying threading service calls can be used to terminate a thread.

C++ threads use a fork-join model. This means that the initiating thread will wait for the completion of the initiated thread at the join place at the end of the scope that created the initiated thread. 

Programmed mechanisms can be constructed to cause another thread to complete or to raise an exception, such as setting a shared variable to a known state that the target thread reads and then terminates itself.

If a thread terminates before it reaches 

Are there any language-defined ways to check on the progress of a thread or know if it is executable? Can always use underlying mechanism where available. Future mechanism provides for communication with the spawned thread to know if it terminated returning a value or returning an exception.




[bookmark: _Toc1165298]6.60.2 Guidance to language users
Follow the guidance of 24772-1 Clause 6.59.5
[bookmark: _Toc358896438][bookmark: _Ref358977270]
[bookmark: _Toc1165299]6.61 Concurrent Data Access [CGX] 
6.61.1 Applicability to language 
C++ has threading and shared access to variables which have the vulnerabilities described in TR 2772-1 clause 6.61.1. C++ provides features such as atomic (type template) that guarantee the internal consistency of the data and to prevent .This subclause requires a complete rewrite to have it reflect C++ issues.


Need the C++ definition of atomic (indivisible access and memory ordering)
 and volatile. 


Atomic tied to memory orders.

Mutexes provide mutual exclusion and guaranteed visibility (consistency) of the shared data.
Mutex is a lock-and-release that is usually hidden.  

Encapsulate mutexes and data 
Thread-level storage (official term thread_local) has lifetime of the thread. Can exist at local scope or global scope.
For massively parallel concurrency – concurrent access mechanisms not applicable.
No resource management
Exception and exception handling (has some impact on threading)


Memory management issues more complex under concurrency



Volatile should be used for signal handlers to prevent the optimization of replicated accesses to volatile memory. (other) and does not guarantee that the object value will be available to other threads.
Controlling access to shared data (protected or including 

Use of volatile (keyword type qualifier) for signal handlers (communicating with hardware?). Prefer volatile for communicating with hardware?



As stated in clause 5.1.2.4 of the C standard, a program that contains a data race exhibits undefined behaviour.  In addition to threads, signal handlers also pose a risk of concurrent data access.  It is the responsibility of the application to use atomic variables or mutexes to ensure that one thread or signal handler cannot modify an object while another thread or signal handler is attempting to access the same object.
6.61.2 Guidance to language users
· Follow the guidelines of TR 24772-1 clause 6.62.5.
· Do not explicitly lock or unlock a mutex.
· Use atomic variables where appropriate to avoid data races.
· Do not use volatile for inter-thread communication or synchronization	Comment by Stephen Michell: Move to 6.6x, data race
· See C++ Core guidelines CP.8, CP.200, CP.111,
Use mutexes appropriately to protect accesses to non-atomic shared objects.
· Multiple deallocation of shared memory

[bookmark: _Toc358896439][bookmark: _Ref411808187][bookmark: _Ref411808224][bookmark: _Ref411809438][bookmark: _Toc1165300]6.62 Concurrency – Premature Termination [CGS]
6.62.1 Applicability to language
This subclause requires a complete rewrite to have it reflect C++ issues.

This vulnerability applies to C because the standard does not provide a mechanism to determine whether a thread has terminated.
6.62.2 Guidance to language users
· [bookmark: _Toc358896440]Follow the guidelines of TR 24772-1 clause 6.63.5.
· Use low-level operating system primitives or other APIs where available to check that a required thread is still active.

[bookmark: _Toc1165301]6.63 Protocol Lock Errors [CGM]
6.63.1 Applicability to language
This subclause requires a complete rewrite to have it reflect C++ issues.

The C standard does not provide hidden protocols.  Although the vulnerability does not apply to the C language, there could exist an application vulnerability if a program uses synchronization mechanisms incorrectly.  For example:
atomic int a;
int b;
/* . . . */
a += b;  // This operation is an atomic read-modify-write of the variable ‘a’.
a = a + b;  // This statement contains two accesses to ‘a’ and is not atomic.
6.63.2 Guidance to language users
· [bookmark: _Toc358896443]Follow the guidelines of TR 24772-1 clause 6.64.5.
· Be aware of the operation of each synchronization mechanism, such as the cases where accesses to atomic variables may occur more than once in a statement.

[bookmark: _Toc1165302]6.64 Uncontrolled Format String  [SHL]
6.64.1 Applicability to language
This subclause requires a complete rewrite to have it reflect C++ issues.

6.64.2 Guidance to language users
[TBD]


[bookmark: _Toc1165303]7. Language specific vulnerabilities for C
7.2 Copy/move semantics from Classes. (Peter Sommerlad’s paper at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1412r0.pdf [TBD]

[bookmark: _Toc1165304]8. Implications for standardization
Future standardization efforts should consider:	Comment by Stephen Michell: This was for C. Requires a rewrite for C++.
· Moving in the direction over time to being a more strongly typed language.  Much of the use of weak typing is simply convenience to the developer in not having to fully consider the types and uses of variables.  Stronger typing forces good programming discipline and clarity about variables while at the same time removing many unexpected run time errors due to implicit conversions.  This is not to say that C should be strictly a strongly typed language – some advantages of C are due to the flexibility that weaker typing provides.  It is suggested that when enforcement of strong typing does not detract from the good flexibility that C offers (for example, adding an integer to a character to step through a sequence of characters) and is only a convenience for programmers (for example, adding an integer to a floating-point number), then the standard should specify the stronger typed solution.
· A common warning in Annex I should be added for floating-point expressions being used in a Boolean test for equality.
· Modifying or deprecating many of the C standard library functions that make assumptions about the occurrence of a string termination character.
· Define a string construct that does not rely on the null termination character.
· Defining an array type that does automatic bounds checking.
· Deprecating less safe functions such as strcpy() and strcat() where a more secure alternative is available.
· Defining safer and more secure replacement functions such as memncpy() and memncmp() to complement the memcpy() and memcmp() functions (see 6.11.6 Implications for standardization)
· Defining an array type that does automatic bounds checking.
· Defining functions that contain an extra parameter in memcpy() and memmove() for the maximum number of bytes to copy.  In the past, some have suggested that the size of the destination buffer be used as an additional parameter.  Some critics state that this solution is easy to circumvent by simply repeating the parameter that was used for the number of bytes to copy as the parameter for the size of the destination buffer.  This analysis and criticism is correct.  What is needed is a failsafe check as to the maximum number of bytes to copy.  There are several reasons for creating new functions with an additional parameter.  This would make it easier for static analysis to eliminate those cases where the memory copy could not be a problem (such as when the maximum number of bytes is demonstrably less than the capacity of the receiving buffer).  Manual analysis or more involved static analysis could then be used for the remaining situations where the size of the destination buffer may not be sufficient for the maximum number of bytes to copy.  This extra parameter may also help in determining which copies could take place among objects that overlap.  Such copying is undefined according to the C standard.  It is suggested that safer versions of functions that include a restriction max_n on the number of bytes n to copy (for example, void *memncpy(void * restrict s1,const void * restrict s2,size_t n), const size_t max_n) be added to the standard in addition to retaining the current corresponding functions (for example, memcpy(void * restrict s1,const void * restrict s2,size_t n))).  The additional parameter would be consistent with the copying function pairs that have already been created such as strcpy()/strncpy() and strcat()/strncat().  This would allow a safer version of memory copying functions for those applications that want to use them in to facilitate both safer and more secure code and more efficient and accurate static code reviews[footnoteRef:4]. [4:    This has been addressed by WG 14 in an optionally normative annex in the current working paper] 

· Restrictions on pointer arithmetic that could eliminate common pitfalls.  Pointer arithmetic is error-prone and the flexibility that it offers is useful, but some of the flexibility is simply a shortcut that if restricted could lessen the chance of a pointer arithmetic based error.
· Defining a standard way of declaring an attribute to indicate that a variable is intentionally unused.
· A common warning in Annex I should be added for variables with the same name in nested scopes.
· Creating a few standardized precedence orders.  Standardizing on a few precedence orders will help to eliminate the confusing intricacies that exist between languages.  This would not affect current languages as altering precedence orders in existing languages is too onerous.  However, this would set a basis for the future as new languages are created and adopted.  Stating that a language uses “ISO precedence order A” would be useful rather than having to spell out the entire precedence order that differs in a conceptually minor way from some other languages, but in a major way when programmers attempt to switch between languages.
· Deprecating the goto statement.  The use of the goto construct is often spotlighted as the antithesis of good structured programming.  Though its deprecation will not instantly make all C code structured, deprecating the goto and leaving in place the restricted goto variations (for example, break and continue) and possibly adding other restricted goto’s could assist in encouraging safer and more secure C programming in general.
· Defining a “fallthru” construct that will explicitly bind multiple switch cases together and eliminate the need for the break statement.  The default would be for a case to break instead of falling through to the next case.  Granted this is a major shift in concept, but if it could be accomplished, less unintentional errors would occur.
· Defining an identifier type for loop control that cannot be modified by anything other than the loop control construct would be a relatively minor addition to C that could make C code safer and encourage better structured programming.
· Defining a standardized interface package for interfacing C with many of the top programming languages and a reciprocal package should be developed of the other top languages to interface with C.
· Joining with other languages in developing a standardized set of mechanisms for detecting and treating error conditions so that all languages to the extent possible could use them.  Note that this does not mean that all languages should use the same mechanisms as there should be a variety ( label parameters, auxiliary status variables), but each of the mechanisms should be standardized.
· Since fault handling and exiting of a program is common to all languages, it is suggested that common terminology such as the meaning of fail safe, fail hard, fail soft, and so on along with a core API set such as exit, abort, and so on be standardized and coordinated with other languages.
· Deprecating unions.  The primary reason for the use of unions to save memory has been diminished considerably as memory has become cheaper and more available.  Unions are not statically type safe and are historically known to be a common source of errors, leading to many C programming guidelines specifically prohibiting the use of unions.
· Creating a recognizable naming standard for routines such that one version of a library does parameter checking to the extent possible and another version does no parameter checking.  The first version would be considered safer and more secure and the second could be used in certain situations where performance is critical and the checking is assumed to be done in the calling routine.  A naming standard could be made such that the library that does parameter checking could be named as usual, say “library_xyz” and an equivalent version that does not do checking could have a “_p” appended, such as “library_xyz_p”.  Without a naming standard such as this, a considerable number of wasted cycles will be conducted doing a double check of parameters or even worse, no checking will be done in both the calling and receiving routines as each is assuming the other is doing the checking. 
· Creating an Annex that lists deprecated features.
[bookmark: _Python.3_Type_System][bookmark: _Python.19_Dead_Store][bookmark: I3468][bookmark: _Toc443470372][bookmark: _Toc450303224]
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